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Abstract

This thesis is the result of an investigation of musical instrument sound morphing guided by
perceptually motivated features. Sound morphing encompasses a set of models and techniques
whose goal is to obtain gradual transformations between sounds. Sound morphing has been used
in music compositions, in sound synthesizers, and even in psychoacoustic experiments, notably
to study timbre spaces. When morphing musical instrument sounds, the focus is on timbral
features and how to control them in a perceptually relevant way. The aim of this work is to
morph musical instrument sounds across timbre dimensions to create the auditory illusion of hybrid
musical instruments.

Sound morphing is an inherently perceptual problem, so the morphing transformation is usually
required to produce perceptually intermediate results. A very challenging aspect of this problem
is to control the transformation with a single parameter, called morphing or interpolation factor.
Ideally, the morphing factor should control perceptually related features of the transformation.
In this thesis, the ultimate goal is to obtain a perceptually linear morph when the morphing
factor varies linearly. Most morphing techniques proposed in the literature use the interpolation
principle, which consists in interpolating the parameters of the model used to represent the sounds
regardless of the perceptual impact. The basic idea behind the interpolation principle is that we
should obtain a seamsless transition between sounds by interpolating between these parameters.
However, most morphing techniques found in the literature tend to produce nonlinear transitions,
so this thesis aimed at developing a method to obtain more perceptually linear morphs with the
aid of perceptually motivated features.

There seems to be no consensus in the literature about what sound morphing is, or equiv-
alently, what transformations can be considered morphing. This thesis approaches the question
from a theoretical and technical perspectives, discussing the requirements of morphing and the
di�erence between morphing and other hybridization processes. This work reviews thoroughly the
transformations usually referred to as morphing in the literature, and proposes a system to classify
the di�erent types of morph. In this work, the investigation revolves around the morphing trans-
formation that produces several instances of the departure sound that become progressively closer
to a target sound, called cyclostationary morph. The cyclostationary morph �gures prominently
as a very challenging morphing transformation because it requires accurate control of temporal
and spectral characteristics of the morph to obtain a perceptually linear result.

This thesis developed a source-�lter (SF) model for musical instrument sounds that gives in-
dependent control of the spectral envelope and frequency of the partials to perform the transfor-
mations. The sounds are decomposed into a sinusoidal and a residual parts, which are represented
independently with the SF model. The sinusoidal component comprises a time-varying spectral
envelope model (�lter) and the frequencies of the partials (source), while the residual component
is modeled as white noise (source) shaped by a time-varying spectral envelope (�lter). The SF
representation was validated with a listening test. Participants were presented the original and SF
representation of sounds and asked to assess their perceptual similarity.

This thesis formalized the concept of morphing sounds, proposed a general algorithm, and a
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framework to objectively evaluate morphing using three criteria, namely correspondence, inter-
mediateness, and smoothness. Most works about morphing in the literature skip the evaluation
of the results, usually considered too di�cult and subjective. The evaluation is considered a
crucial part of this research work, responsible for the validation of the results. In this work,
the evaluation consisted in verifying the linearity of the morph using objective measures and
subjective tests. This thesis proposes to use perceptually related features to objectively evaluate
the linearity of the morph. The features used are acoustic correlates of salient timbre dimensions
derived from perceptual studies. The focus is on spectral envelope morphing, an important
part of the SF model that is related to the perception of the timbral subset of attributes called
sound color. A major part of the evaluation lay in the comparison of the linearity across several
spectral envelope morphing techniques found in the literature together with others prosed in the
scope of this thesis. The SF representation of musical instrument sounds was compared to the
popular sinusoidal model in a listening test on the perceptual linearity of the cyclostationary morph.

Keywords: sound morphing, musical instrument, source-�lter model, timbre, sound features,
acoustic correlates of timbre dimensions



Résumé

Cette thèse concerne le �morphing� de sons d'instruments de musique guidé par descripteurs
audio fondés sur la perception. Le �morphing� sonore inclut un ensemble de modèles et techniques
qui ont pour but d'obtenir des transformations graduelles entre sons. Le �morphing� sonore est
déjà utilisé en compositions musicales, en synthèse sonore et en expériences psychoacoustiques,
notamment pour étudier des espaces de timbre. Pour le �morphing� entre sons d'instruments de
musique, l'intérêt porte sur les aspects du timbre et comment les contrôler perceptivement. La
spéci�cité de cette thèse a été de combiner des sons d'instruments de musique à travers di�érentes
dimensions du timbre pour créer l'illusion auditive d'instruments musicaux hybrides.

Le �morphing� sonore est une thématique inhérente à la perception utilisé pour créer de sons
perceptivement intermédiaires. Un aspect di�cile est contrôler le �morphing� avec un seul para-
mètre, le facteur de �morphing�, qui dans l'idéal doit contrôler des aspects liés à la perception.
Dans cette thèse, le but est d'obtenir une transformation linéaire sur le plan perceptif en variant
le facteur de �morphing� linéairement. Les techniques de �morphing� dans la litterature appliquent
le principe de l'interpolation, qui consiste à interpoler les paramèteres du modèle utilisé pour re-
présenter les sons sans tenir en compte l'impact perceptif. Le principe de l'interpolation suppose
qu'on obtient des transformations graduelles entre sons en interpolant les paramètres de ses repré-
sentations. Pourtant, la plupart de techniques de �morphing� décrites dans la litterature présente
une tendence à produire des transformations non linéaires sur le plan perceptif. Cette étude a pour
but l'obtention de transformations plus linéaires en utilisant les descripteurs audio fondés sur la
perception.

Il n'y pas de consensus dans la litterature sur une dé�nition du terme �morphing� ou quelles
transformations sonores y correspondent. Cette thèse s'intéresse à cette question d'un point de
vue théorique et pratique, et décrit les conditions nécessaires pour qu'une transformation soit
considérée comme �morphing.� Ce travail présente une rèvision approfondie du �morphing� dans
la litterature et propose un système de classi�cation. Ce travail étudie une transformation en
particulier, appelée �morphing cyclostationaire� dont le but est d'avoir plusieurs versions du son de
départ qui s'approchent petit à petit du son d'arrivée. Le �morphing cyclostationaire� �gure parmi
les transformations très di�ciles parce qu'il faut contrôler simultanément des aspects temporels et
spectraux pour obtenir une transformation linéaire.

Cette thèse a developé une implémentation du modèle source-�ltre (SF) pour les sons d'instru-
ments de musique qui permet de transformer indépendamment l'enveloppe spectrale et la fréquence
des partiels. Les sons sont décomposés en une partie sinusoïdale et une autre partie bruitée, re-
presentées indépendamment avec le modèle SF. La composante sinusoïdale contient un modèle
d'enveloppe spectrale variable dans le temps (le �ltre) et les fréquences des partiels (la source). La
composante bruitée est modélisée comme du bruit blanc �ltré par une enveloppe spectrale variable
dans le temps. La répresentation SF a été validée lors d'un test d'écoute. Les participants ont jugé
la similarité perceptuelle entre l'enregistrement original et sa répresentation SF.

Cette thèse formalise le concept de �morphing sonore� et propose un algorithme avec un cadre
d'évaluation objective qui utilise trois critères, correspondence, intermédiarité et �smoothness.� La
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plupart des travaux sur le �morphing� sonore dans la litterature ne présente pas d'évaluation des
résultats, considerée comme une tâche trop complexe. L'évaluation est une partie essentielle de
ce travail, nécessaire à la validation des résultats. L'évaluation consiste à veri�er si le �morphing
cyclostationaire� est linéaire en utilisant des mesures objectives et un test d'écoute. Ce travail
propose l'utilisation des descripteurs sonores fondés sur la perception pour évaluer la transforma-
tion. Ces descripteurs sont des corrélats acoustiques des dimensions d'espaces de timbre dérivés
d'études de perception. Ce travail met en avance l'enveloppe spectrale, une partie importante du
modèle SF qui correspond à la qualité sonore appelée �couleur.� L'évaluation s'est concentrée sur
l'enveloppe spectrale et de son e�ect dans la transformation. La répresentation SF a été comparée
avec le modèle sinusoïdal dans un test découte qui a eu pour but de décider quelles méthode
donne des transformations plus linéaires sur le plan perceptif.

Mots-clés : morphing sonore, instrument de musique, modèle source-�ltre, timbre, descripteurs
sonores, corrélats acoustiques des dimensions du timbre
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Preface

This work is about sounds, not sound waves or waveforms. Sound waves are the pattern of pressure
waves that travels in a compressible physical medium, and, as such, sound waves are the subject of
acoustics, a brach of physics that studies mechanical waves and phenomena associated with them.
When the sound wave reaches our ears, we hear sounds. Sounds are cognitive representations of
sound waves resulting from the subjective experience of sound perception. Psychoacoustics is the
branch of science that studies the psychological and physiological responses associated with sound.
But even though this work makes extensive use of psychoacoustics, it is not about psychoacoustics.
Rather, it is a work on signal processing. Signal processing deals with operations or analysis of
signals, such as images, sensor data, biological data, and waveforms. Waveforms are mere graphic
representations of sound waves, and even though they are extremely useful in the present work,
they are not the central object of study here because they do not represent all possible aspects
of sound perception. The aim of this work is to transform waveforms in order to attain a desired
perceptual e�ect. The question to be answered is then �What operations should we perform on
what representation of the sound wave in order to achieve a desired perceptual result?�

When I arrived at IRCAM, Xavier Rodet, my advisor, spent a couple of weeks with me asking
around, looking for an interesting problem for me to work on. We asked composers and other
researchers. Finally, the problem he came up with seemed to me simple to understand but very
hard to solve. The basic idea was to perform perceptually linear sound transformations to navigate
through a user-de�ned space. The user would input a sequence of sounds that de�nes a direction
of transformation in an abstract space. My task was to �nd the direction of transformation de�ned
by the sounds input by the user as a straight line that represents perceptually salient features of
the sequence of sounds and allow the user to perform perceptually linear transformations along
the axis of transformation using a single parameter that controls the displacement. The idea is
illustrated below in �gure 1, where we see the sequence of sounds input by the user as �x� in an
abstract space de�ned by perceptually related features of the sounds. Given the sequence of sounds
(notice that the sounds are ordered) and a prede�ned set of features (that de�ne the dimensions of
the space), the task is to �nd the dashed straight line that follows the direction of transformation.

Even though the problem is very interesting, unfortunately it is also ill posed. Nothing guar-
antees that the sounds input by the user will de�ne a direction of transformation. They might be
better �tted by a closed-loop curve (such as a triangle or a circle) rather than a straight line. In
principle it is possible to perform cyclic transformations following user-input sounds that close a
loop. However, the concept of linearity must be carefully reconsidered. When the sounds input by
the user follow no clear pattern, zig-zagging wildly all over the space, the corresponding transfor-
mation might sound rather perceptually discontinuous when following the prede�ned sequence. In
any case, obtaining smooth transitions between each pair of sounds was already very challenging.
One thing I knew for sure, in order to transform smoothly between any pair, I would need to be
able to obtain intermediate sounds. But the real challenge was that I would also need to be able
to have independent control of the features to propose a perceptually relevant solution. So I knew
that the solution involved some sort of hybridization of sonic features. It had sound morphing
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Figure 1: Depiction of user-de�ned abstract sound space. The �gure illustrates the sequence of
sounds input by the user as �x� in an abstract space de�ned by perceptually related features of the
sounds.

written all over it.
When I started working on it, trying to �nd a solution to the sound hybridization problem,

I realized that, even though everybody seems to be very excited about sound morphing for its
creative potential, not many people have actually worked on it. My �rst attempts using pure
sinusoidal analysis did not give satisfactory results. IRCAM's superVP didn't do a good job
either. Most of the audio processing techniques were originally developed for speech and they
are relatively unknown to the music technology oriented researchers, especially those working on
musical instrument sounds. So I realized that this is I was supposed to do, apply the techniques
developed for speech to musical instrument sounds whenever bene�cial and develop new improved
ones whenever necessary. This constitutes the main contribution of this work. The result is the
work that I will describe in the next pages. I hope you will enjoy reading it as much as enjoyed
doing it and writing about it.
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Prologue

�Once upon a time, in a very lonely place, there lived a man endowed by Nature with extraordinary
curiosity and a very penetrating mind. For a pastime he raised birds, whose songs he much enjoyed;
and he observed with great admiration the happy contrivance by which they could transform at
will the very air they breathed into a variety of sweet songs. One night this man chanced to hear a
delicate song close to his house, and being unable to connect it with anything but some small bird
he set out to capture it. When he arrived at a road he found a shepherd boy who was blowing into
a kind of hollow stick while moving his �ngers about on the wood, thus drawing from it a variety
of notes similar to those of a bird, though by quite a di�erent method. Puzzled, but impelled by
his natural curiosity, he gave the boy a calf in exchange for his �ute and returned to solitude. But
realizing that if he had not chanced to meet the boy he would never have learned of the existence
of a new method of forming musical notes and the sweetest songs, he decided to travel to distant
places in the hope of meeting with some new adventure. As the man roved, he encountered songs
made by a bow sawing upon some �bers stretched over a hollowed piece of wood, by the hinges
of a temple gate, by a man running his �ngertip around the rim of a goblet, and by the beating
wings of wasps. As his wonder grew, his conviction proportionately diminished that he knew how
sounds were produced; nor would all his previous experiences have su�ced to teach him or even
allow him to believe that crickets derive their sweet and sonorous shrilling by scraping their wings
together, particularly as they cannot �y at all. Well, after this man had come to believe that no
more ways of forming tones could possibly exist...he suddenly found himself once more plunged
deeper into ignorance and ba�ement than ever. For having captured in his hands a cicada, he
failed to diminish its strident noise either by closing its mouth or stopping its wings, yet he could
not see it move the scales that covered its body, or any other thing. At last he lifted up the armor
of its chest and there he saw some thin hard ligaments beneath; thinking the sound might come
from their vibration, he decided to break them in order to silence it. But nothing happened until
his needle drove too deep, and trans�xing the creature he took away its life with its voice, so that
he was still unable to determine whether the song had originated in those ligaments. And by this
experience his knowledge was reduced to di�dence, so that when asked how sounds were created he
used to answer tolerantly that although he knew a few ways, he was sure that many more existed
which were not only unknown but unimaginable.�

Galileo Galilei, from Il Saggitore (The Assayer) 1623
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Chapter 1

Introduction

This thesis is about morphing musical instrument sounds. Thus the focus is on timbre and how to
control spectral and temporal characteristics of the sounds produced by quasi-harmonic acoustic
musical instruments to obtain a gradual transformation. In essence, sound morphing is intrinsically
a perceptual problem. Consequently, the morphing transformation is usually required to produce
perceptually intermediate results that would be associated with hybrid musical instruments. The
aim of this thesis is the development of a method that allows intuitive control of the morphing
transformation guided by perceptually motivated features.

Sound transformations weave the background of sound morphing techniques, which can be
considered to be a speci�c subset of transformations with speci�c characteristics. In this work,
the main purpose is to study morphing from a technical point of view. Therefore, theoretical,
conceptual, and aesthetic aspects of the problem are approached from a practical perspective. The
central questions investigated concern the requirements for a sound transformation to be considered
morph, which transformations respect these conditions, how to obtain a perceptually linear morph,
and how to objectively evaluate the results.

Sound transformations, morphing among them, have been used in di�erent contexts, artistic,
technical and scienti�c. There are di�erent possible types of morph, depending on the intended
application and desired e�ect. Technically, some of the morphing transformations are more di�cult
to achieve than others. This thesis studies a very challenging case, dubbed cyclostationary morph,
which produces several instances of the departure sound that become progressively closer to a
target sound. The result of the cyclostationary morph is evaluated using three criteria, namely
correspondence, intermediateness, and smoothness.

An important contribution of this work is the development of an implementation of the source-
�lter (SF) model based on a sinusoidal plus residual decomposition of acoustic musical instrument
sounds. The SF model is very appropriate to independently manipulate spectral and temporal
characteristics of the sounds using features as guides. The approach adopted in this work impels
the investigation of perceptual and conceptual consequences of sound morphing, such as whether
the mental representation of musical instrument timbre is inherently categorical or metric in nature.

1.1 Background

The 20th century witnessed a paradigm shift in music. According to Trevor Wishart
[Wishart, 1996], the main responsible for this important change in our vision of what consti-
tutes music is closely related to the invention of sound recording, and later sound manipulation
procedures, usually intimately connected with the medium used to store the sounds. Sound record-
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Figure 1.1: Schematic view of computer sound transformations.

ing and especially manipulation have broadened our knowledge about the nature of sounds and
how we perceive them. Sound manipulation techniques whose aim is to change the way sounds
are perceived, called sound transformations, have been the focus of interest from both composi-
tional [Landy, 2011, Wishart, 2011] and technical [Amatriain et al., 2003, Amatriain et al., 2002]
standpoints.

The advent of the digital computer is at the core of the revolution in the representation and
manipulation of sounds. There are no theoretical limitations to the use of the computer in sound
representation and manipulation, and even as a source of new sounds that were before unimag-
inable. Computer sound transformations are a very challenging class of sound transformations
that cannot be performed by analog means. Notable examples are sound transformations that
require that the result be perceived as a single auditory stream, such as sound hybridization (also
called cross-synthesis) and morphing, as shown in the schematic view in �gure 1.1. Therefore,
there is a burgeoning interest in the search for computational techniques that allow the user to ob-
tain perceptually relevant sound transformations and seamless transitions because computer sound
transformations are widespread in a myriad of activities, such as music composition, sound design,
and sound synthesis, among others.

An important requirement of any sound transformation technique from the user point of view
is to have intuitive control of the results. Manipulation of the values of the parameters that
control the transformation should lead to predictable changes. An example of counterintuitive
parameter control can be found in frequency modulation techniques, where changing the value of
one parameter sometimes can lead to rather unpredictable changes in the perceptual aspects they
a�ect. A desireable aspect of sound transformation techniques is to have parameters independently
control perceptually relevant characteristics of the results. Increasing the value of a parameter
should increase a perceptual characteristic of the result without changing the others.

Among the many di�erent possible sound transformations [Serra and Bonada, 1998], the manip-
ulation of characteristics of sounds that are related to timbre perception stand out as the most excit-
ing to date. Sound morphing �gures prominently as one of the most interesting timbre manipulation
techniques due to its enormous creative potential, opening up an exciting new world of possibilities.
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Many sound transformations are referred to as morphing in the literature, ranging from artistic con-
texts, such as music compositions [Wishart, 1996, McNabb, 1981, Harvey, 1981], to more technical
applications, such as the design of sound synthesizers [Tellman et al., 1995], and even in psychoa-
coustic experiments, notably to study timbre spaces [McAdams et al., 2006, Caclin et al., 2005,
Krimpho� et al., 1994, McAdams et al., 2005, Grey, 1975, Grey and Gordon, 1978].

1.1.1 Sound Morphing in a Nutshell

In music compositions, sound morphing allows the exploration of the sonic continuum, as theo-
retically proposed by Wishart [Wishart, 1996]. There exist notable examples of the exploration
of the sonic continuum in music composition using sound morphing techniques. Jonathan Har-
vey's �Mortuos Plango, Vivos Voco� [Harvey, 1981] morphs seamlessly from a vowel sung by a
boy to the complex and rich spectrum of a bell consisting of many partials. Another example is
Trevor Wishart's �Red Bird� where the word `listen' gradually morphs into birdsong, among other
unusual morphs [Wishart, 1996]. Wishart himself mentions [Wishart, 1997] Michael McNabb's
�Dreamsong� [McNabb, 1981] and its particularly striking opening and closing morphs. Most of
these examples were achieved by hand, either using studio techniques or with the aid of the com-
puter. Ideally, we would like to have an automatic morphing technique that takes as input the
sounds we want to morph between and how we want to do the transformation and automatically
outputs the result.

The composition and manipulation of audio to create a certain e�ect or have a speci�c per-
ceptual impact is one of the most challenging tasks sound designers face. Sound morphing �gures
prominently among the techniques that can be used to achieve such impact. Some of the software
available for sound design (be it commercial, shareware or open source) include sound transfor-
mation techniques that are usually referred to as morphing. A remarkable example is Pete John-
ston's Bantu webpage http://www.bantusound.com/SoundMorphing/SoundMorphingPage.html,
which includes examples online designed using Kyma workstation. Kyma Sound Design Work-
station http://www.symbolicsound.com/cgi-bin/bin/view/Company/WebHome is a commercial
sound design environment. Kyma's webpage also includes some sound morphing examples. Loris
http://www.cerlsoundgroup.org/Loris/ (the defunct Lemur http://www.cerlsoundgroup.

org/Lemur/) is a shareware Macintosh application for sound analysis, transformation, and synthe-
sis based on sinusoidal analysis. Loris' webpage includes interesting tutorials on sound morphing us-
ing sinusoidal models. Finally, the Composer's Desktop Project (CDP) is an international network
of composers and programmers that provides a software-only music system designed speci�cally
to transform existing sound samples for musical purposes http://www.composersdesktop.com/.
Morphing is one of the transformations.

Tellman et al. [Tellman et al., 1995] propose a sound morphing technique based on sinusoidal
modeling that is intended to improve the performance of a sample-based synthesizer. They morph
between sounds of the same instrument to obtain intermediate pitches, dynamics, and other e�ects.
The most interesting results of sound morphing, though, are obtained when we morph between
di�erent musical instruments to obtain sounds that would correspond to hybrid instruments.

Sound morphing can notably be used in psychoacoustic experiments to study timbre perception.
Figure 1.2 shows a three-dimensional timbre space obtained with multidimensional scaling (MDS)
by Grey [Grey and Gordon, 1977] with acoustic musical instruments occupying speci�c spots. The
MDS algorithm maps the subjective distances into an orthogonal metric space which has the num-
ber of dimensions speci�ed by the investigator [Grey and Gordon, 1977]. The distances between
pairs of instruments represent the perceptual (dis)similarity between them when the sounds have
the same pitch, duration and dynamics. Notice that timbre spaces obtained from acoustic musical
instrument sounds are essentially sparse in nature, which means that the space is mostly void and
each musical instrument corresponds to a small portion that does not overlap with others. This is

http://www.bantusound.com/SoundMorphing/SoundMorphingPage.html
http://www.symbolicsound.com/cgi-bin/bin/view/Company/WebHome
http://www.cerlsoundgroup.org/Loris/
http://www.cerlsoundgroup.org/Lemur/
http://www.cerlsoundgroup.org/Lemur/
http://www.composersdesktop.com/
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Figure 1.2: Example of multidimensional timbre spaces. After Grey [Grey and Gordon, 1977]

where sound morphing plays its fundamental role. When the morphed sound represents a hybrid
between two musical instrument sounds, it would be placed between them in the underlying timbre
space. Sound morphing would �ll the voids and permit exploration of the sonic continuum.

However, not all of the transformations called sound morphing in the literature are conceptually
similar. Figure 1.3 illustrates the two main types of transformation that are usually called sound
morphing, but which di�er notably in the temporal dimension. In �gure 1.3 the two sounds being
morphed, shown at the top, are represented by di�erent shapes. In this simpli�ed example, each
shape represents all the temporal and spectral characteristics of sounds. When the transformation
occurs during the course of the sound, we call it dynamic morphing and represent it in �gure 1.3
as a transformation from the shape used to represent sound 1 to that used to represent sound 2.
Notice that the shapes change dynamically while the morphed sound is heard. On the other hand,
when the morphed sound is perceived as equally intermediate during all its duration, we call the
transformation stationary morphing and represent it as the same intermediate shape along the
whole duration of the morphed sound. Depending on the temporal nature of the transformation,
stationary or dynamic, the morphed sound could either correspond to a point in timbre space or
to a trajectory.

This lack of uniformity in nomenclature calls for the formalization of a theory of morphing,
clearly de�ning which type of transformation can be considered morphing and allowing us to
categorize them according to certain criteria. De�ning precisely and formally the requirements of
the desired morphing process has proved to be a di�cult problem [Caetano and Rodet, 2010b].
On the other hand, describing the desired result is not any easier (partly so because more than
one type of transformation is commonly called morphing). For now, su�ce it to say that simply
playing the instruments simultaneously is not enough to achieve the desired auditory result. The
ear is capable of telling multiple auditory streams apart (otherwise listening to polyphonic music
would be an entirely di�erent experience). So, a requirement of the sound transformation usually
called morphing is that the result should fuse into a single percept that somehow resembles both
instruments at the same time. This requirement rules out mixing the sounds to try to achieve
stationary morphs and cross-fading to try to perform dynamic morphs. As we will see later, from
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Figure 1.3: Temporal di�erence between the two main types of transformation usually called
morphing.

a technical point of view, stationary morphing is a much more challenging problem than dynamic
morphing because we need to transform both temporal and spectral characteristics of sounds.

This work investigates musical instrument sound morphing across dimensions of sound
perception usually associated with timbre. This is sometimes called timbre morphing
[Tellman et al., 1995] or timbre interpolation [Osaka, 1995] in the literature. The focus of in-
terest gravitates around this type of question: �What is the auditory result of the morph between
a violin sound and a french horn sound?� As a result, most of the techniques described in this
document were developed speci�cally to deal with the aspects of the problem from the point of
view of a speci�c set of sonic features that somehow capture relevant information related to the
perception of musical instrument sounds.

In this work, the term �parameter� refers to coe�cients that can be used to resynthesize sounds,
while �feature� refers to coe�cients used to describe or identify a particular aspect of a sound. Usu-
ally, we cannot resynthesize sounds directly from feature values. Waveforms are useful representa-
tions of sounds because they can be played (and therefore heard). More sophisticated models are
useful to allow the investigation of di�erent aspects of sounds that are not clear from the waveform
representation. Whenever we want to hear sounds, we need to invert the parameters of the model
back to its waveform representation. This process, usually called resynthesis, cannot be done from
just any model representation. Some models represent information that is not invertible. Sound
manipulation, on the other hand, is usually performed by changing the values of the parameters
of a given sound representation to change the way the sound is perceived.

One very challenging aspect of morphing is that we want to be able to control the transformation
with a single parameter α, called morphing or interpolation factor. Ideally, the morphing factor α
should control perceptual aspects of the transformation, such that the morphed sound should be
perceived as halfway between source and target when α = 0.5, for example. Notice that, following
this requirement, successive application of the transformation procedure with di�erent values of the
morphing factor α ranging from 0 to 1 would produce a sequence of sounds that starts perceptually
very close to one of the sounds being morphed, and gradually shifts closer and closer to the other
one. This is the ultimate goal of the morphing procedure described here and the results will be
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evaluated as to whether this task is successfully accomplished with the implementation of the
source-�lter model.

One important and di�cult requirement we face when morphing sounds is that it is a percep-
tually related problem. That is, when we de�ne the desired result, we usually do so by means of
psychological dimensions of sound perception such as pitch and loudness; or dimensions related to
timbre perception, such as sharpness of attack, brightness, onset asynchrony, spectral �ux, rough-
ness, among others. On the other hand, the classical approach to sound morphing is to interpolate
the parameters of a model. The idea behind the interpolation principle illustrated in �gure 1.4 is
that if we can represent two di�erent sounds by simply adjusting the parameters of a model used
to describe them, we obtain a somewhat smooth transition between the sounds by interpolating
between these parameters. However, when blindly following the interpolation principle, the per-
ceptual impact of the interpolation of parameters depends largely on what type of parameters we
chose to represent the sounds with. If the parameters of the model we used represent information
that is not directly related to how we perceive sounds, the result of the interpolation of these
parameters will very likely have very little perceptual signi�cance.

The adoption of a sound model whose parameters are more closely or directly related to sound
perception can greatly improve the results when morphing musical instrument sounds. Morphing
musical instrument sounds guided by perceptually related features requires a sound model whose
parameters are closely related to perceptual aspects. This is a di�cult problem because it involves
the representation and manipulation of both temporal and spectral features of musical instrument
sounds, which are often interdependent. The independent representation and manipulation of such
features is a key aspect of the problem and, as such, in this work it led naturally to the adaptation
of the source-�lter model of speech production [Rabiner and Schafer, 1978] to the problem at hand.
It is generally accepted that the source is associated with prosody for speech and expressivity for
music, and the �lter carries information about speaker [Stylianou, 2008] or musical instrument
[Peeters, 2003] identi�cation. I studied techniques for the estimation and representation of each
part of the model aiming at the speci�c characteristics and requirements of stationary morphing
of musical instrument sounds. In this work, the �lter is represented as the spectral envelope
(estimated with true envelope and manipulated in the line spectral frequency domain), while a
very �exible representation of the source is sinusoidal models for the quasi harmonic component
and white noise for the noisy residual. Finally, the parameters of the source-�lter model allow the
direct manipulation of signal-level counterparts (sonic features) of dimensions of musical instrument
sound perception. One example is the fundamental frequency, which can be extracted from the
sound signal and is correlated to pitch perception. Chapter 5 develops in depth the correlation
between musical instrument timbre perception and the features adopted to evaluate the morphing
results.

Although there are a few exceptions [Osaka, 1998], most authors pose the problem of
morphing sounds using perceptual requirements, but hardly ever perform perceptual evalua-
tions of their results mainly because perceptual evaluations are cumbersome and costly, and
there are no standard evaluation criteria established for sound morphing. Actually, most
works about morphing sounds [Ahmad et al., 2009, Boccardi and Drioli, 2001, Ezzat et al., 2005,
Fitz et al., 2003, Hatch, 2004, Osaka, 2005, Osaka, 1995, Röbel, 1998, Tellman et al., 1995,
Williams and Brookes, 2007, Williams and Brookes, 2009] include the description of the type of
transformation referred to as morphing (due to the lack of consensus in the literature), the sound
model used (which can vary greatly depending on the type of sound material being morphed),
the approach to apply the interpolation principle and then some examples, usually spectrograms
of morphed sounds using the method. Very seldom do the authors of these works present any
evaluation of their results.

One very important contribution of this work lies in the evaluation procedure adopted, fol-
lowing the three criteria originally proposed by Osaka [Osaka, 1998] to evaluate sound morphing
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Figure 1.4: Depiction of the classical morphing scheme using the interpolation principle.

algorithms, namely correspondence, intermediateness, and smoothness, appropriately adapted to
the main goal of this work described above. The objective evaluation uses an error measure in
a quantitative evaluation of the results. The proposal is to use temporal and spectral features
of sounds that can be estimated directly from the parameters of the source-�lter model, such as
log attack time and spectral centroid, as objective measure. The values of the features are used
in the quantitative evaluation as a means to objectively estimate the perceptual impact of the
transformation under the three evaluation criteria adopted.

The evaluation investigates how accurately the morphing factor α controls the morph. There
is an emphasis on the spectral envelope morphing procedure. The interpolation properties of
several spectral envelope representations are investigated according to two criteria, behavior of the
spectral peaks and variation of the spectral shape features (spectral centroid, spread, skewness,
and kurtosis). Finally, the results of listening tests done to compare and validate the results will be
discussed. There was a perceptual similarity test to validate the source-�lter (SF) model developed,
and a �smoothness� test, comparing morphs obtained with the SF and the traditional sinusoidal
model.

The bulk of the work described here is devoted to the techniques I developed to estimate and
manipulate the parameters of the source-�lter model in order to produce the variation in the values
of the features that would re�ect the desired transformation on the perceptual level. The temporal
representation involves the estimation of the temporal envelope and the automatic segmentation
of the sounds into perceptually relevant regions, such as attack, steady state, and release. The
spectral model is estimated for every frame of a spectro temporal representation of the sound.
For each frame we estimate the spectral envelope to represent the �lter and we use a sinusoidal
model to represent the source part of the model. After the estimation step, we can perform the
proper manipulation of the parameters of the model according to the requirements of the problem
of sound morphing.

1.2 Scope of the Thesis

The main objective of this work is to morph isolated musical instrument sounds across timbre
dimensions, so as to produce the perception of hybrid musical instruments. The problem of mor-
phing sounds is essentially perceptual because most formulations use perceptual requirements to
de�ne their objectives. However, this would require a perceptual evaluation of the results as well,
which can be cumbersome and very long.
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In this work, I propose to approach the problem of sound morphing from a more technical
point of view, which allows for the adoption of objective evaluation methods. I propose to adapt
the evaluation criteria originally proposed by Osaka [Osaka, 1998] and use a set of sonic features
correlated with musical instrument timbre perception to compare the results of the method I
proposed with a standard sinusoidal modeling approach.

The musical instruments used in the experiments reported in this work were selected from the
Vienna database, which contains recordings of sounds from musical instruments commonly found
in orchestras. This means that the sounds available are quasi-harmonic and most are sustained
(rather than percussive).

1.2.1 The Approach Adopted

When we think of the applicability of morphing, the number of events contained in the source
material we use greatly in�uences the type of transformation that can be performed. When we
have sounds that are perceived as continuous isolated events, such as a long trumpet note or
a scream, dynamic transformations usually produce impressive results with considerably little
e�ort because we only need to perform the spectral transformation. However, when we consider
sounds that can be segmented into several discrete events, such as a melody played by a musical
instrument or a sentence uttered by a speaker, only performing spectral transformation is not
enough. In this case we need to match the events (correspondence) and transform between each
pair taking temporal and spectral aspects into account, such as attack and duration, among many
others. One interesting application of this type of transformation would be morphing between
two instruments playing the same melody, for example. If we have two recordings of two di�erent
musical instruments playing the same melody, we could imagine a transformation where the melody
starts being played by one of the instruments that gradually morphs into the other, playing the
same melody. In this case, each note of the melody is a discrete event that has to be morphed
separately, and temporal features such as attack and duration need to be transformed as well.
This type of gradual transformation between di�erent sonic events, which is the main applicability
of the work described here, requires techniques to morph temporal and spectral characteristics of
each event, as well as an appropriate sound model. The type of sound morphing studied, called
cyclostationary morph in this text and described in more detail in chapter 3, was chosen to satisfy
the requirements of challenging transformations such as morphing many instances of discrete sonic
events. As a brief overview of the work described in this text, I will describe in general lines the
aspects of the sound model adopted, and then the morphing procedure.

1.2.1.1 Source-Filter Modeling

The source-�lter model was originally proposed to explain speech production
[Rabiner and Schafer, 1978, Rabiner, 1993]. According to this model, speech is viewed as
the result of passing a glottal excitation signal (source) through a time-varying linear �lter that
models the resonant characteristics of the vocal tract. The most well known source-�lter system is
based on linear prediction (LP) of speech [Markel and Gray, 1976, Makhoul, 1975]. In its simplest
form, a time-varying �lter modeled as an autoregressive �lter is excited by either quasiperiodic
pulses (during voiced speech), or noise (during unvoiced speech). A more compact and at the
same time �exible representation of the excitation signal has been proposed from a family of
signal representations referred to as sinusoidal models [McAulay and Quatieri, 1986]. For musical
instrument sounds, the �lter is associated with the resonant cavity of the instrument, and the
source with the excitation method. Figure 1.5 illustrates the use of the source-�lter model from a
spectral perspective in part a), and part b) shows the spectro-temporal representation of sounds,
which corresponds to a temporal succession of the representation in part a). The source-�lter
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Figure 1.5: Depiction of the source-�lter model. The �gure shows the spectral representation of
the source and the �lter in part a) and the spectro-temporal representation, which corresponds to
the temporal succession of the representation in part a)

model of musical instrument sounds developed in this work models the �lter as the spectral
envelope and the source as either sinusoids or white noise, after decomposing the signal into a
sinusoidal (quasi-harmonic component) and a noisy residual. The theoretical and mathematical
source-�lter model developed will be presented in Chapter 6.

1.2.1.2 Sinusoidal plus Residual Decomposition

The musical instrument sound y (t) is separated into a sinusoidal component ys (t) plus a residual
component yr (t) as follows

y (t) = ys (t) + yr (t) (1.1)

where yr (t) is obtained by subtraction of the purely sinusoidal component ys (t) from the
original sound y (t) as follows yr (t) = y (t) − ys (t). Both the sinusoidal component ys (t)
and the residual component yr (t) are modeled as source and �lter. The �lter component of
both is modeled via spectral envelope estimation, while the sources are modeled separately.
The source part of the sinusoidal component is modeled as sinusoids using sinusoidal analysis
[McAulay and Quatieri, 1986, Serra and Smith, 1990], and the source part of the residual compo-
nent is modeled as white noise. Chapter 7 presents spectral envelope estimation, which corresponds
to the �lter modeling. Sinusoidal modeling is presented earlier in the text, in chapter 4, as part of
the review of the models commonly used in the literature of sound morphing.

1.2.1.3 Signal-Level Features and Perception

However controversial and notoriously avoided for being ill-de�ned, the concept of timbre is in-
trinsically intertwined with musical instruments. In this work, the focus on morphing sounds from
di�erent musical instruments demands a speci�c attention to aspects of sound perception normally
associated with timbre. Therefore, sonic features that are correlated with timbre perception are
extremely relevant in the context of this work. Among many possible choices (tristimulus, zero
crossing rate, etc), the sonic features that are correlated with dimensions of timbre spaces studied
in psychoacoustics, such as spectral centroid and log attack time, are very convenient because they
can be directly calculated from the source-�lter model representation adopted, and this represen-
tation can be used to retrieve the parameters of a sinusoidal plus residual model that are used for
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resynthesis. The temporal sonic features considered are log attack time, temporal centroid and
duration of transition, steady state and release. The spectral sonic features are spectral centroid,
spread, skewness and kurtosis. The temporal sonic features can be estimated from the temporal
representation of the sounds, and are mainly related to the perceptual dimension of percussive-
ness [Skowronek and McKinney, 2006], even though they are not totally independent of perceptual
features usually associated with spectral information. For example, Hartmann [Hartmann, 1978]
showed that there is a relation between the temporal envelope of sinusoids and their pitch. The
spectral sonic features, on the other hand, are calculated on each frame of a spectro-temporal
representation of the source-�lter model. We estimate the parameters of the model (i.e, the spec-
tral representation of source and �lter) for each temporal frame. Then the spectral sonic features
(spectral centroid, spread, skewness and kurtosis) are calculated on each frame of the source-�lter
representation. The spectral sonic features are a measure of the spectral shape, and as such, they
are related to dimensions of timbre perception that depend on the distribution of spectral energy.
Slawson [Slawson, 1985] refers to these dimensions as sound color and associates them with the
�lter representation.

Chapter 5 explains the relation between the temporal and spectral features adopted in this work
(to evaluate the results) and musical instrument sound perception. We will pay special attention
to the association of hybrid musical instruments and dimensions of timbre spaces unveiled in
psychacoustic (perceptual) experiments.

1.2.1.4 General Description of the Morphing Algorithm Developed

Here I will brie�y present how to manipulate the parameters of the model presented above to achieve
perceptually meaningful transformations of isolated musical instrument sounds across timbre di-
mensions. Stationary morphing of musical instrument sounds requires attention to both temporal
and spectral features of sounds. Due to the dynamic nature of musical instrument sounds, the
temporal aspects can be global or local. Global aspects, such as sharpness of attack or overall du-
ration, only need one value to describe them. Local aspects, on the other hand, are usually related
to spectro-temporal changes, so we need a succession of values to capture the rate of change along
the duration of the sound. One simple example is a piano note heard backwards. Even though
the spectral characteristics of the sound are the same, the perception is di�erent because they are
heard in a di�erent order.

Any stationary morphing algorithm should deal with the temporal and spectral characteristics
of sounds. In this work, there are two main procedures applied to achieve a perceptually meaningful
morphed sound, namely, temporal alignment followed by spectral morphing.

1.2.1.5 Temporal Alignment

The temporal alignment procedure uses global temporal information to align the local spectral vari-
ations of both sounds being morphed. Figure 1.6 illustrates the concept of temporal alignment,
supposing that the sounds being morphed can be segmented into three perceptually di�erent re-
gions, the attack, the sustain and the release. Only a very naive morphing algorithm would combine
the original sounds shown in �gure 1.6 regardless of duration because one of them is longer than the
other, as highlighted in the �gure. One possible solution to this problem would be to time-stretch
the shorter sound (or equivalently compress the longer one) only taking the total duration into ac-
count. The result would be somewhat similar to the simple temporal alignment shown in the �gure,
where we combine similar regions together, but also cross regions as highlighted in the �gure. The
result of cross combinations is a less perceptually convincing or less meaningful morph. Ideally,
when stationary-morphing isolated musical instrument sounds, the desired temporal alignment is
the one shown in �gure 1.6, which allows the spectral combination of similar regions together,
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resulting in a more seamless morph. Naturally, the temporal alignment procedure relies on the
previous segmentation of the sounds. Chapter 8 presents an automatic temporal segmentation al-
gorithm developed specially for this work [Caetano and Rodet, 2010a]. Chapter 12 deals with the
consequent temporal alignment of isolated acoustic musical instrument sounds using the automatic
segmentation method.

Figure 1.6: Schematic representation of the temporal alignment.

1.2.1.6 Spectral Morphing

After the sounds are properly aligned in time, we proceed with the spectral morphing procedure.
In the morphing algorithm developed in this work, there is perfect correspondence between frames
after the temporal alignment, as shown in �gure 1.7. Correspondence is one of the three main
requirements in the evaluation criteria adopted. Naturally, the spectral morphing procedure also
requires correspondence. Figure 1.8 illustrates the lack of spectral correspondence by showing two
spectra that have a di�erent number of characteristics. The spectra shown in �gure 1.8 have a
di�erent number of spectral peaks and a di�erent number of partials, such that we cannot easily
establish correspondence between them either in terms of spectral peaks or partials. The spectral
correspondence depends on the parametric description of the spectra. That is, we can choose to
describe the spectra in terms of spectral peaks, partials, spectral envelope curves, among other
possibilities. Each parametric representation will present advantages and disadvantages depending
on the problem at hand.

As we will see in chapter 3, when the spectral representation we use is the classical sinusoidal
model, correspondence between partials becomes easily an issue. This is partially the reason why
the source-�lter model is used in this work instead. I will show in chapter 13 that representing
source and �lter separately brings back the necessary spectral correspondence, and also allows



38 CHAPTER 1. INTRODUCTION

Figure 1.7: Frame to frame correspondence after temporal alignment.

us to tackle some other perceptually related issues that come up when morphing the spectral
representation of sounds. The spectral envelope morphing techniques represent a major part of
the work developed, and as such will be the focus of the evaluation procedure. The use of the
spectral shape features as objective measure led to the adoption of a minimum quadratic error
deviation to choose the most appropriate spectral envelope representation when morphing musical
instrument sounds.

Figure 1.8: Spectral correspondence. The �gure shows two spectra without correspondence because
they have di�erent numbers of spectral peaks (represented by P) and di�erent numbers of partials
(represented by F).
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1.2.1.7 Temporal Envelope Morphing

Finally, the temporal envelope is an important aspect in musical instrument sound perception, and
as such, should be treated and morphed separately. In the morphing algorithm presented in this
work, the temporal envelope, which modulates the frames of the source-�lter representation of the
sounds, plays a fundamental role in the morphed result. Chapter 9 presents a temporal envelope
estimation technique based on true envelope cepstral smoothing developed in the context of this
work [Caetano and Rodet, 2011a] and compares it to traditional temporal envelope estimation
techniques.

1.2.2 Contributions

One of the main contributions of this work is the development of a model speci�cally devoted to
morph musical instrument sounds. Perceptually relevant features of musical instrument sounds
are modeled independently such that we can manipulate only one of them without changing the
others.

Another major contribution of this work is the development of speci�c techniques that allow us
to more intuitively control the features associated with each part of the model when morphing both
the temporal and spectral representation of sounds. The features are used as objective measures to
evaluate the results according to three evaluation criteria adopted for morphed sounds, correspon-
dence, intermediateness, and smoothness. In order to present our model and justify the need to
use the features and the decisions I made during the development of the model, I will present the
theoretical aspects of morphing and its applications in image morphing and sound morphing. This
is another important contribution of this work, the formalization of concepts related to morphing
and their application to the speci�c problem of sound morphing. The music signal processing
community can largely bene�t from a solid theoretical background and formalization of sound
morphing because nowadays the concepts are fuzzy and knowledge is scattered. For example, the
terminology is not consistent and the de�nitions are vague or imprecise. Yet another important
aspect of this document is the extensive bibliographical research presented.

The speci�c problem I set to tackle raised a long list of theoretical and technical issues about
sound morphing, which I will address accordingly in this text. Most of the questions are strictly
related to the lack of formalism in the literature. One of the main goals of the next chapter is
therefore to present a theoretical and mathematical formalization of morphing that will form the
basis of the work described and that o�ers the possibility to propose solutions to the many problems
that arise in the context of morphing isolated quasi-harmonic acoustic musical instrument sounds.

The main contributions of this work are

• the formalization of morphing objects in general, from a theoretical, mathematical and algo-
rithmic point of view;

• the formalization of sound morphing, explicitly listing the known sound transformations that
can be considered morphing and those that cannot according to the theoretical formalization
above;

• an extensive review of the literature on sound morphing, describing the di�erent techniques
and goals. An important side-e�ect of this review is the proposal of a homogeneous nomen-
clature;

• a signal-processing formalization of source-�lter model for musical instruments. The sinu-
soidal source is modeled as a set of time-varying sinusoidal partials and the �lter as the
short-time spectral envelope;
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• the development of a temporal envelope estimation technique;

• the proposal of a perceptually inspired automatic temporal segmentation technique, which
lead to the temporal alignment algorithm used in this work;

• the adoption of evaluation criteria for morphing and the consequent development of objective
measures for morphed musical instrument sounds;

• the study of the perceptual impact of several popular spectral envelope morphing techniques
as measured by the spectral shape features;

• the derivation of an analytic correspondence between the cepstral coe�cients and the spectral
shape features;

1.3 Overview of the Thesis

The text is divided in three parts. Part I deals with the theoretical and practical problems we
encounter when morphing, sounds or otherwise. In part II we will examine the sound model
developed in the context of this work to morph musical instrument sounds. Finally, part III explains
the morphing techniques applied to di�erent parts of the model, together with the evaluation of
the results. The document �nishes with the conclusions and future perspectives of this work.

The next chapter introduces the general problem of morphing objects from a theoretical point
of view with the aim of presenting all the conceptual issues raised in the problem of morphing ob-
jects theoretically. Chapter 2 makes extensive use of the image morphing analogy to exemplify the
many conceptual and theoretical questions we are faced with when morphing. Chapter 3 after that
narrows it down to sound morphing, focusing mainly on the speci�c problems we encounter when
morphing sounds, more speci�cally musical instrument sounds. In chapter 3 we will formalize the
requirements of morphing, the di�erent types of transformation that meet these requirements, and
we will also adopt criteria to evaluate the result of a sound morphing technique from a technical
point of view. Chapter 4 presents a thorough review of the literature of sound morphing, scrutiniz-
ing each model and algorithm applied in the problem. One of the most popular sound models used
to morph sounds, sinusoidal modeling, is introduced here in detail, as well as the general morphing
technique when we choose to use it. To conclude part I, chapter 5 focuses on morphing musical
instrument sounds across timbre dimensions. In chapter 5 we will review timbre perception with a
focus on timbre spaces and their acoustic correlates, that is, features that can be calculated from
representations of sounds that are correlated with sound perception. These features will be used
later to evaluate the results from an objective point of view.

Part II begins with the source-�lter model from a rather theoretical point of view. In chapter
6 we will see how the source-�lter model can be applied to musical instruments, and we will also
explore the relationship between parameters of the model and musical instrument sound production
as well as perception. The next chapters in this part present theoretical aspects of the estimations
of di�erent parts of the source-�lter model., Chapter 7 is dedicated to the estimation of spectral
envelopes, reviewing the major spectral envelope estimation techniques in the literature, those
based on linear prediction and cepstral smoothing. The aim of this chapter is to subsidize the
theoretical foundations necessary to justify the application of di�erent techniques in the estimation
and representation of spectral envelopes in this work. Next, chapter 8 presents di�erent models
used to segment musical instrument sounds into salient perceptual regions, such as attack and
steady state. This is the basis of the automatic temporal segmentation technique developed in the
context of this work. Chapter 9 reviews the major temporal envelope estimation techniques in the
literature, and then presents the temporal envelope estimation method proposed in this work.
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Part III starts with chapter 10, in which the Vienna sound database is brie�y presented, and
the musical instrument sounds used throughout the rest of the text are introduced. Then, an
extensive overview of the morphing method is covered in chapter 11, where the implementation of
the source-�lter model is explained, together with the result of the estimation techniques applied
to each part of the model. Chapter 11 also explains the morphing algorithm developed in this
work in detail, showing the temporal and spectral morphing techniques step by step. This is
followed by a description of the morphing techniques used in this work. Chapter 12 explains
the temporal alignment of perceptually salient regions of musical instrument sounds, followed by
chapter 13, where the spectral morphing techniques are presented. Chapter 13 is very important in
the context of this work because of the strong focus of spectral techniques when morphing musical
instrument sounds across timbre dimensions. The evaluation presented in chapter 14 is intrinsically
connected with chapter 13. Chapter 14 proposes to evaluate the results using the values of the
features as an objective measure, and presents a listening test to cross validate the results of the
objective evaluation.

Finally, chapter 15 concludes the document and presents some remarks for people interested in
pursuing the extremely di�cult but highly rewarding task of morphing musical instrument sounds.
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Chapter 2

Morphing

This chapter is entirely dedicated to the concept of morphing objects in general. In this chapter,
these conceptual objects can be geometrical, graphic or auditory in nature. The main idea is
to shed light on the pitfalls we face when morphing sounds from a simpler viewpoint. The �rst
important question that will be addressed is about what morphing is. The relationship between
hybridization and morphing will be discussed. Then, some theoretical considerations on morphing
will be presented, focusing on how they a�ect the procedure and the results of morphing.

The requirements of morphing, namely, correspondence, intermediateness, and smoothness, will
be discussed. Among these, intermediateness is at the core of the standard approach to morphing
objects, called the interpolation principle, which uses a convex combination to perform the morph,
Smoothness, on the other hand, is what we expect from a gradual transition. The nature of the
perception of the objects being morphed, continuous or categorical, determines the smoothness of
the results and it is an intrinsically perceptual issue.

The way the subjectiveness in evaluation and the conceptual distance between the objects a�ect
the result will be addressed. The criteria used when evaluating the results of morphing usually
depend on the purpose or application. A general purpose morphing algorithm will be presented in
this chapter, along with di�erent types of transformation that respect the requirements of morphing
discussed here.

An interesting analogy, image morphing, will be used to explore the concepts and problems
attached to morphing. At the very beginning of this chapter, the focus will be on morphing objects
and how their shapes are transformed. More complex scenarios will be gradually introduced along
the chapter to pave the way to the central question addressed in this chapter, morphing by feature
interpolation. The next chapter will apply the ideas developed here to morphing sounds.

2.1 What is Morphing?

The word morph comes from the Greek morf / morphe, which means form, and is associated with
di�erent scienti�c domains, ranging from biology to linguistics. The Merriam-Webster Dictionary
lists three entries for `morph', a noun, a verb, and an abbreviation.

• Main Entry: 1 `morph', Function: noun, Etymology: back-formation from morpheme Date:
1947. 1 a : allomorph b : a distinctive collocation of phones (as a portmanteau form) that
serves as the realization of more than one morpheme in a context (as the French du for the
sequence of de and le) 2 a : a local population of a species that consists of interbreeding
organisms and is distinguishable from other populations by morphology or behavior though
capable of interbreeding with them b : a phenotypic variant of a species

45
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• Main Entry: 2 `morph', Function: verb, Etymology: short for metamorphose Date: 1982
transitive verb : to change the form or character of : transform. intransitive verb : to
undergo transformation; especially : to undergo transformation from an image of one object
into that of another especially by means of computer-generated animation.

• Main Entry: 3 `morph', Function: abbreviation morphology.

We are interested in the second entry, which has the general meaning of to transform or undergo
transformation. It is interesting to notice that this de�nition makes no reference to sound at all.
Also, according to the dictionary, it is especially used to refer to the transformation of images of
objects, revealing that morph usually refers to a transformation of shape, as illustrated in �gure
2.1. Finally, we should notice that the de�nition emphasizes the use of the digital computer to
perform the transformation.

Figure 2.1: Depiction of object morphing. The �gure shows two objects with intermediate shapes
between the cube and the pyramid.

First of all, let us introduce the nomenclature adopted in this document. The objects being
combined to produce the morph will be referred to as base objects. The result of the morphing
will be dubbed morphed object and we say it occupies an intermediate point in space between the
base objects or, alternatively, it has an intermediate shape. We should notice that sometimes there
is more than one possible way of de�ning intermediate (or morphed) shapes between two. Figure
2.2 illustrates this important concept. What is the intermediate shape between the circle and the
square? When we imagine the gradual transformation of shape between these two geometrical
forms, the polygon with more and more sides seems to be as good an intermediate shape as
the square with rounded corners. The �best� or �most appropriate� hybrid shape is application-
dependent when we use objective criteria to evaluate the transformation or user-dependent when
we use subjective criteria, that is, a user's personal taste or aesthetics.

Figure 2.3 depicts a �owchart with the two major applications of morphing, followed by the
evaluation type and criteria proposed in this work, and possible measures used for them. When
the purpose of morphing is artistic, the evaluation of the results is usually subjective. This means
that each individual will evaluate the results di�erently, according to their own aesthetic criteria.
In practice, we use the opinion of one single expert to judge the quality of the results instead of
measuring the mean of several evaluations by di�erent people because in this case the standard
deviation would be very large. When we want to obtain morphed results for technical applications,
such as image or sound synthesizers or to study perceptual aspects of morphing (such as continuous
spaces), we need to establish an objective way of measuring the quality of the results. In �gure 2.3
we see three criteria originally proposed by Osaka [Osaka, 1998]. Each criterion will be explored
in this chapter as a motivation to the challenges we face when morphing. Let us consider other
important issues that a�ect the quality of the �nal result.

When we need to specify the direction of transformation, instead of base objects we will talk
about source and target objects. This is usually the case when the transformation happens dynam-
ically, changing in time from the source to the target object. In this case a trajectory speci�es the
course of the morph. Dynamic transformations between static objects, such as images, give rise
to morphed objects that possess an added temporal dimension, such as movies, where each frame
corresponds to a di�erent intermediate position in the trajectory or equivalently a di�erent static
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Figure 2.2: Depiction of the problem of interpolation of shape. The �gure illustrates two di�erent
possible paths that contain shapes that could be considered intermediate between the square and
the circle.

morphed object. The result of di�erent transformations between di�erent types of objects will be
examined in detail from a theoretical point of view in this chapter, and later in chapter 3 for the
speci�c case of morphing sounds. Naturally, for sound objects we need to specify what we mean
when we talk about sound shape. Section 3.1.2 brie�y presents Dennis Smalley's formalization
of sound shape [Smalley, 1997], which is heavily in�uenced by Pierre Scha�er's concept of sound
object [Schae�er, 1966].

Another important aspect to be taken into account is the features that in�uence the transfor-
mation. When we are only considering shape, both transformations shown in �gure 2.2 satisfy
intuitively the requirement of a gradual transformation. But we can always consider simultane-
ously more than one such feature of the objects being transformed. For the objects depicted in
�gure 2.1, instead of only considering the shape, we could also include color, for instance. Now
we have two independent dimensions, such that we have more than one possible transformation.
Consider, for example, objects that inherit the color from one of the base objects, and the shape
from the other. But inheriting features such as color and shape from either �parent� or base object
is not the only possible hybridization process. We can also imagine morphed objects whose color
and texture are combinations of the corresponding features of the base (original) objects being
combined.

According to the above, morphing can be viewed as a transformation that involves hybridization
of form or even other features. The term hybridization is applied in many areas generally to refer
to a process that involves the combination of two (or more) objects, individuals, varieties, etc,
depending on what it is being considered. A �rst important aspect of the problem of hybridization
is to understand that there are several possible ways of combining two things. We are going to
consider two simpli�ed hybridization processes, one commonly found in nature and the other one
usually only accessible by arti�cial means, in order to specify the transformation we refer to when
we use the term morphing in this text.

2.1.1 Natural Hybridization

The hybridization process called sexual repreduction is ubiquitous in nature. In general terms,
when a couple has children, we can usually easily recognize who the parents are because of phys-
iological similarities. In other words, the kids take after their parents, and we usually say that
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Figure 2.3: Depiction of two possible applications of morphing and the corresponding evaluation
criteria used to evaluate the results.

they might have their mother's nose, the father's eyes, etc. This is a speci�c case of hybridization
where the hybrid individual (the child) consists of a combination of parts from either parent (and
eventually parts that are a combination of the corresponding original versions from both parents,
but we will not consider this case at this point for clarity's sake.) We could identify how close to
one of the parents the child is by a simple ratio r , de�ned as rM = ΠM

N , where ΠM represents
the number of parts that resemble the mother's (hence subscript M , the father would be referred
to as F ) and N represents the total number of parts. Notice that this ratio depends on which
parent we use as reference, such that rM = 0.7 means that the child resembles more the mother
because subscript M stands for parts that the child �inherited� from the mother. Another way of
calculating the same information would be to express P and Π as the inner product of vectors. Now
N = αP = [1, 1, · · · , 1] [p1, p2, · · · , pN ]T , whereN is the total number of parts, α is a membership
vector, and P is a vector listing all the parts taken into consideration. We express ΠM or ΠF

by means of vector P and a membership vector αM,F that contains zeros and ones, following the
notation used in classical set theory, where one means that the element belongs to a group and
zero means it does not. Hence, we can express the number of parts inherited from one parent,
say the mother, as ΠM = αMP = [1, 0, · · · , 1] [p1, p2, · · · , pN ]T . Notice that vector P de�nes the
hybridization process by specifying which speci�c part we are considering, but the hybridization
ratio r depends uniquely on the membership vectors α. We can rede�ne the hybridization rate as
rM,F =

P
αM,FP

α =
P

αM,F

N .

For a geometrical interpretation of the natural hybridization process, we go back to �gure 2.4.
Now each part can be seen as a feature represented as an independent dimension in an abstract
feature space. Suppose that the original parents (base objects) are the red square and blue circle.
The natural hybridization process can only lead to the red circle (B2) and blue square (B1), apart
from the original base objects.
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Figure 2.4: Geometrical representation of morphing. The �gure illustrates two objects in a feature
space where the axes represent features. The position of the objects in the space depends on the
values of each feature individually. A hybrid object in this space should have values of features
that are a combination of the original base objects, marked B1 and B2.

2.1.2 Arti�cial Hybridization

Following our analogy with the shapes and colors of objects shown in Figure 2.4, another possible
hybrid much more interesting for us inherits body parts that are a combination of the corresponding
parts from both parents. In other words, the eyes are a combination of father's and mother's, the
mouth, etc. This special hybridization process is illustrated in Figure 2.6 and is usually only
possible to implement via arti�cial means such as the digital computer. Here we should notice that
the notion of ratio of parts to describe the hybrid does not apply anymore because each part comes
neither from the mother nor from the father. Actually, the parts found in the hybrid individual
did not exist previously. New parts are created (by means of a special hybridization process we
will later de�ne as morphing) combining the corresponding parts from the parents.

Now we have to rede�ne a way of measuring the degree of similarity between the o�spring
and either parent, hence we introduce the concept of degree of membership from fuzzy set theory.
Now the membership vector α becomes a real-valued membership function in the interval [0, 1] to
express the gradual assessment of elements in a set. In the context of hybridization, α expresses
the degree of combination for each part. For example, αM = [0.25, 1, 0.5, 0.75] means that the
�rst part, say the mouth, is the result of a combination of 25% the mother's mouth and 75% the
father's, etc. Since we can specify a di�erent degree of combination for each part separately, we
can say that the number of parts is the number of degrees of freedom. Notice that, even though the
global appearance of the hybrid individual can be fairly complex because of the number of degrees
of freedom, we expect the appearance of each individual part to respect the degree of combination
speci�ed in α.

A geometrical interpretation of the arti�cial hybridization process can help us gain insight into
this type of transformation. If we consider �gure 2.4, this procedure generates hybrids inside the
shaded region.
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Figure 2.5: Depiction of face hybridization. The �gure illustrates the hybridization case when each
attribute is inherited either from the mother or from the father.

2.1.2.1 Morphing

An interesting special case of the arti�cial hybridization process occurs when all elements of the
membership function α are numerically equal, reducing it to a scalar constant. In this case, one
scalar value and one reference individual/object are enough to describe this speci�c hybridization
process, referred to as morphing throughout this text. This procedure will be formalized later, but
we can always gain some insight now by looking back at �gure 2.4 and realizing that this type of
combination can only lead to hybrids along the solid line.

Next, we will see some theoretical considerations about the general problem of hybridization,
the speci�c procedure that leads to the transformation called morphing in this thesis, and how to
evaluate the results from a technical point of view. The evaluation uses the three conditions that
should be respected to produce a successful morph, inspired by the formalization introduced by
Osaka [Osaka, 1998].

2.2 Theoretical Considerations

Motivated by the geometrical interpretation of morphing, we will see some theoretical considera-
tions using image morphing as examples to illustrate the myriad possibilities and potential pitfalls
of sound morphing. One drawback of this approach is that images are static and as such they fail
to capture the intrinsic temporal nature of sounds. A closer analogy would be movie morphing.
But we have a lot of ground to cover until we get there, so we will use the simpler image morphing
analogy for now to make the more elementary concepts easier to grasp.

2.2.1 Subjectiveness

Conceptually, the main di�culty in morphing is probably the fact that we are usually looking for
a result that only exists as an abstraction. In other words, even though we can compose known
objects as combinations of simpler base objects, like illustrated in �gure 2.1 following the mathe-
matical formalization by Alexa [Alexa and Müller, 1999], the most interesting use of morphing is
to obtain new objects that were previously intangible, only accessible to our imagination. When
morphing basic forms, such as those shown in �gure 2.1, it is di�cult to imagine other hybrid
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Figure 2.6: Depiction of face morphing as a special case of face hybridization. The �gure illustrates
a face whose constituent parts (nose, mouth, etc) are a combination of the corresponding parts
from both parents.

objects with intermediate shapes between the cube and the pyramid. But even for basic shapes we
might encounter cases where there is more than one alternative transformation between two given
shapes. A very simple example can be seen in �gure 2.2, what is the �best� intermediate shape
between the square and the circle?

As we go up the complexity of forms and shapes, adding texture, colors, and other attributes,
a world of possibilities opens up before us and the true creative potential of morphing becomes
clear. The creative potential of morphing will be illustrated with a few graphic examples in the
next paragraphs, notably face morphs. Still, when we want to explore the morphing possibilities
between two objects with complex features (such as shape, texture, etc), we will eventually be
faced with questions such as: �What is the result of the morph between a tiger and a car?�

But we are truly interested in morphing sounds, which can be even more complex and posses
very abstract qualities, so the result of sound morphing can very easily be di�erent depending on
who imagines it. For example, we could try to imagine what the result of a morph between a
dog bark and a trumpet note would sound like, but since this abstraction is often subjective, it
becomes di�cult to objectively evaluate the results. In other words, each individual has their own
idea about how such transformation should be performed and especially about what the result
should be like. This is �ne when we are morphing for artistic purposes, when the artist creates the
morph using their own aesthetic criteria.

However, in a more technical context, this raises the question of how to objectively evaluate
the morphed sounds. What are the qualities that we expect to �nd in a good morph? Listeners are
likely to be disappointed and give a low score when assessing morphed sounds simply because they
do not meet their expectations, independent of the quality of the transformation. Therefore, this
thesis proposes an objective evaluation procedure based on the three independent criteria shown
in �gure 2.3 along with the formalization of morphing. Let us examine each objective evaluation
criterion in turn.

2.2.2 Correspondence

The �rst obstacle we face when morphing between any two objects is correspondence. In its most
general formulation, morphing from one object to the other (be they graphic or sound objects)
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requires two basic steps: a description of the objects followed by the process of establishing corre-
spondences between these descriptions, as depicted in �gure 2.7. According to this viewpoint, the
morphed objects correspond to descriptions whose elements are intermediate between the objects
being combined.

If there are elements in one of the objects that do not have a correspondence in the other(s),
the transformation is not straightforward. One example for faces can be seen in �gure 2.5. If one
of the faces has a feature that does not have a corresponding one on the other (for example one of
the faces has a mole), we will have to decide how we are going to represent intermediate versions
of it. One of the consequences of the lack of correspondence betwen the objects being morphed
is that we can have multiple possible transformations depending on how we decide to deal with
the free feature. Looking back at �gure 2.2, now we can interpret the existence of more than one
possible transformation as a consequence of the lack of one to one correspondence between the
objects.

Usually, we perform the transformation using a map between the objects. In algebra, structure-
preserving maps are called homomorphisms. When the map admits an inverse (such that we obtain
identity when applying the map and its inverse in succession), it is called an isomorphism. Infor-
mally, an isomorphism shows a relationship between two properties or operations. If there exists
an isomorphism between two structures, we call the two structures isomorphic. In a certain sense,
isomorphic structures are structurally similar. Therefore, when morphing between two objects, iso-
morphism should be one of the requirements. This is exactly what Tellman [Tellman et al., 1995]
means by �equal number of features� in his seminal article about sound morphing. We may establish
correspondence between parameters or features associated with the objects.

Figure 2.7: Depiction of the fundamental steps of morphing. The �gure shows two sets of elements
extracted from the objects we want to morph between and the correspondence between these ele-
ments. The mapping with which the transformation is performed depends on the correspondence.

2.2.3 Intermediateness

The morphed objects should be perceived as intermediate between the base objects used. For
example, when transforming between a square and a circle we want to avoid transforming the
square into another recognizable shape �rst (say, a triangle) that is not perceived as intermediate
between the square and the circle and then �nishing the transformation from this shape into the
circle. Intuitively, when transforming between a child's and a man's face like shown in �gure 2.8,
we expect all all the hybrids to be human faces because it would be counterintuitive otherwise.
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Formally, the principle of intermediateness states that the morph must change along dimen-
sions that represent di�erences, preserving the position in all the others. Thus, conceptually, the
transformation between a child's and a man's face should be the face of a person getting older.
In other words, the transformation should happen along the conceptual dimension of age only,
because man and child are conceptually apart only regarding age.

At this point, we should notice that it is always possible to perform the transformation via
another object. For example, we could gradually transform both the child's and the man's face into,
say, a soccer ball. Even though artistically this remains a valid choice, this kind of transformation
is not considered to be proper morphing in this work because it does not respect the principle of
intermediateness we adopted.

Figure 2.8: Depiction of image morphing to illustrate the correspondence between the two objects
that facilitates the warping from one form to the other. After Wolberg [Wolberg, 1998]

When we represent the objects to be morphed as points in a Hilbert space, the requirement
of intermediateness is equivalent to a straight line connecting the points, not another trajectory
�gure 2.9 illustrates this concept. When we go from point A (child's face) to point C (man's face)
we want to pass through point B (teenager's face), not D (soccer ball).

So we see that having the same distance from both base objects is necessary but not su�cient
to satisfy intermediateness. The condition of intermediateness requires that the points lie along
the segment AC, such that the distances from A to B plus the distance from B to C be equal to
the distance from A to C. Notice that in �gure 2.9 point D lies at the same distance from points A
and C, yet, it is not intermediate between them. This is equivalent of saying that the points must
fail the triangle inequality to preserve intermediateness.

In practice, when morphing simple objects, images or even sounds, we make use of the inter-
polation principle to respect the principle of intermediateness. The interpolation principle used
in morphing is actually a convex combination of the parameters of a description of objects (that
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Figure 2.9: Depiction of the concept of intermediatness. The �gure shows point B, intermediate
to points A and C, and point D, which is not intermediate. The idea is that the points must be in
the same line in Hilbert spaces to guarantee intermediateness.

usually comes from a model). A convex combination leads to intermediate representations in the
space of parameters. Next we will expand the interpolation principle to include the morphing by
feature interpolation concept.

2.2.3.1 The Interpolation Principle

The interpolation principle uses combinations of the descriptions of the base objects to obtain
morphed results. The interpolation principle relies on the correspondence between the descriptions
of the objects to be morphed, like shown in �gure 2.7. In abstract terms, each element we obtain
from the description of the base objects can be associated with a dimension of a mathematical
space. Then, the number of elements determines the dimension of this space, and each base
object occupies a point in this space, determined by the speci�c elements used to describe it. It
follows naturally from this interpretation that, if we can describe two (or more) di�erent objects as
distinct points in this multidimensional space, we can always obtain new objects via a simple linear
combination of the original objects. The positions the new objects occupy in space depend on the
coe�cients of the linear combination. We usually call morphing the result of convex combinations,
which will be de�ned next. The term interpolation, in this case, refers to the operation of obtaining
an intermediate object from two (or more) base objects.

2.2.3.2 Convex Combination

A convex combination is a linear combination of points (which can be vectors, scalars, or more
generally points in an a�ne space) where all coe�cients are non-negative and sum up to 1. All
possible convex combinations will be within the convex hull of the given points, as illustrated in
part a) of �gure 2.10. Part a) of Figure 2.10 illustrates that point A can be described as the result
of the convex combination of points σp,σq,σr, while point B cannot. In fact, the collection of all
such convex combinations of points in the set constitutes the set's convex hull, highlighted in part
a) of Figure 2.10. More formally, given a �nite number of points σp,σq, · · · ,σn, in a real vector
space, a convex combination of these points is a point of the form

α1σp + α2σq + ...+ αnσn (2.1)
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where the real numbers αi satisfy ∀αi ≥ 0 and α1 +α2 + ...+αn = 1. As a particular example,
every convex combination of two points lies on the line segment between the points, as illustrated
by the solid line in part b) of Figure 2.10. Alexa et al. [Alexa and Müller, 1999] extend the concept
of morphing for more than two objects, interpreting morphing as a mechanism to describe an object
in terms of a composite (convex combination) of other objects.

When morphing two objects, equation 2.1 reduces to

α1σp + α2σq = ασp + (1− α) σq = σp,q (2.2)

where α is a scalar called interpolation or morphing factor, and σn represents a vector of
parameters. Notice that the condition α1 +α2 = 1 allows us to write the combination as a function
of a single parameter α. Here we should make clear that the vectors σn belong to a vector space
Σ that has dimension N , and can be described in terms of its vector components σn, which are
scalar quantities, as follows

σ =


σ1

σ2

σ3

...
σN

 (2.3)

By the usual de�nition of the vector operations of vector addition and scalar multiplication,
equation 2.2 can be rewritten as

ασp + (1− α)σq = α


σp1

σp2

σp3

...
σpN

+ (1− α)


σq1

σq2

σq3

...
σqN

 =


ασp1

ασp2

ασp3

...
ασpN

+

(1− α)σq1

(1− α)σq2

(1− α)σq3

...
(1− α)σqN

 = σp,q (2.4)

At this point it should be clear that, in order to obtain a point in any of the paths represented
by dashed lines in part b) of Figure 2.10, the coe�cients αj must also be vectors, represented as

ᾱj =

α1

α2

α3

...
αN

.

The morphing factor α varies from 0 to 1, and de�nes a direction of transformation because,
according to equation 2.2, α = 1 gives σp and α = 0 gives σq. The value of the morphing factor
α can be interpreted as the relative distance from the base objects, e.g. α = 0.5 means exactly
halfway between them.

2.2.4 Smoothness

Finally, we need to consider the smoothness of the transformation procedure, which is intrinsically
tied to continuity. Ideally, we want to obtain morphed objects that change gradually from source
to target. Since we control the transformation with the morphing factor α, continuously varying
α should lead to a gradual transformation.

Adding the constraint of smoothness to the simple shape transformation depicted in �gure
2.2 may help us solve the dilemma. Now we can decide which possibility produces a smoother,
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Figure 2.10: Convex combination. In part a) we see that, given three vectors σ̄p, σ̄q, σ̄r in a
plane, vector A is a convex combination of σ̄p, σ̄q, σ̄r, while B is not. Part b) shows that the
convex combinations of points σp andσp de�ne the solid line connecting them, while any other
path depicted as a dashed line between points σp andσp can be obtained as linear combinations of
their components that are not convex combinations.

more gradual transformation. Even though we should probably apply some quantitative measure,
intuitively we can examine the smoothness of the transformations.

When we combine the constraints of intermediateness and smoothness we get linearity. Adding
the same factor to the stimulus should increase the perception by the same amount. In the case
of morphing, we expect a linear variation of the morphing factor α to produce the perception of
a linear, gradual transformation. However, we must take into account the nature of the stimulus
under study. Some stimuli are perceived continuously, others categorically due to their cognitive
representation. When the perception is categorical, even a continuous variation of the stimulus
leads to a discontinuous percept that changes very little inside a category and much more between
categories, as will be clearer next.

2.2.4.1 Categorical Perception

The question of smoothness is related to a much more profound one that is intrinsically tied to
categorical perception. Categorical perception means that a change in some variable (stimulus)
along a continuum is not perceived as gradual, rather as instances of discrete categories, as shown
in �gure 2.11. In other words, discrimination between stimuli is much more accurate between
categories than within them. Ideally, all stimuli in a given category should be perceived as in-
distinguishable, whereas stimuli from di�erent categories, no matter how close on the continuum,
should be perceived as di�erent.

One simple example is color perception. The perception of color stems from the cognitive
representation of di�erent wavelengths (or equivalently frequencies) of light. Light, an electromag-
netic wave, has a continuous range of frequencies, also called spectrum. Color, on the other hand,
is merely a cognitive label associated with certain socially constructed ranges of frequencies, as
represented in �gure 2.12. Figure 2.12 shows the visible spectrum of light with linear variation of
the values of frequency. Our brains interpret this information categorically; that is, even though
the frequency varies continuously, our perception of colors is (more or less) separated into stripes
labeled red, blue, etc.

The German mathematician David Hilbert (1862-1943) coined the term spectrum. In a lecture
he delivered at the University of Göttingen in 1905, Hilbert considered linear operators acting on
certain in�nite-dimensional vector spaces, and it was in this context that Hilbert �rst used the
term spectrum to mean a complete set of eigenvalues. Spectrum is a Latin word meaning �image�.
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Figure 2.11: Continuous vs Categorical perception. The �gure depicts an idealized view of the
di�erence between continuous and categorical perception. In part a) the perception presents an
ideally linear variation as the stimulus varies continuously. In part b), the perception presents an
ideal categorical variation as the stimulus varies continuously because within certain ranges of val-
ues of the stimulus the perception does not change, whereas the perception presents discontinuities
for other speci�c values (representing the transition between categories.)

When atoms vibrate, they emit light. And when light passes through a prism, it spreads out into
a spectrum of light that is emitted from the prism. Thus we can literally see the eigenvalues of the
atom in its spectrum, and for this reason, it is appropriate that the word spectrum has come to
be applied to the set of all eigenvalues of a matrix (or operator). We will explore further the use
of the term spectrum for sounds using this interesting analogy with images later in chapter 6.

Figure 2.12: Visible spectrum of light. The �gure illustrates categorical perception of colors by
showing that a continuous variation of frequencies leads to a discrete perception of colors due to
the cognitive representation of electromagnetic frequency.

The examples of Figures 2.8 and 2.13 imply that it might be possible to obtain a gradual
transition between faces. Naturally, the relevant question in the context of this thesis is whether
we can do the same between musical instrument sounds. The work developed and presented here
would provide a means to study the categorical perception of musical instrument sounds.

Actually, the glue that holds the formalization of morphing together is the assumption that it
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is possible to create objects that do not belong in the same category of either the base objects used
in the morph. So a fundamental question this work raises is whether the perception of musical
instrument sounds is categorical or continuous. If the answer is categorical that means we are
trying to achieve the impossible task of obtaining a sequence of sounds that would be perceived as
continuously changing from the sounds we combine. It is out of the scope of this work to examine
categorical perception of musical instrument sounds. Nevertheless, chapter 14 presents the result of
a listening test that compared the results of two sound morphing techniques aiming at determining
which one produces more perceptually linear (or smoother) transitions.

2.2.5 Conceptual Distance

Finally, the conceptual distance between the objects we want to morph also plays an important
role. Even if the two objects we want to morph between have the same number of elements,
such that it is always possible to �nd correspondences between them, we are bound to encounter
examples that will lead to arti�cial hybrids simply because the objects are conceptually very far
from each other. When we compare the example of �gure 2.8 with that of �gure 2.13, both from
Wolberg [Wolberg, 1998], it becomes clear that even though a cat's face and a man's face have
the same elements (two ears, two eyes, a nose, etc), the hybrid images we obtain when morphing
between them look less natural than between two human faces because of the conceptual distance
between them.

As a general rule of thumb, the naturalness of the hybrid objects is inversely proportional to
the conceptual distance between them. The farther apart the objects are in the conceptual space,
the more challenging it is to obtain convincing hybrid objects between them. Naturally, when we
are aware of this inverse relationship, we can always choose to use it to our advantage, that is, the
consequence of the conceptual distance can be an explicit aesthetic choice.

Figure 2.13: Depiction of image morphing to illustrate the e�ect of the conceptual distance between
the objects on the morphed objects. After Wolberg [Wolberg, 1998]

Even though Wolberg's work [Wolberg, 1998] is restricted to morphing graphic objects (im-
ages), we can pro�t from the examples in �gures 2.8 and 2.13 to learn more about morphing.
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Wolberg states that image morphing involves coupling image warping with color interpolation
[Wolberg, 1998]. Let us examine this statement closely with the aid of �gures 2.8 and 2.13.

Figure 2.14 shows us that in order to establish the correspondence between the sets of elements
extracted from the images, we must �rst and foremost examine both images to �nd the elements.
Naturally, we should know what we are looking for. For faces, we want to identify salient features
such as the eyes and mouth. This is what the grids in �gure 2.8 represent. We need a model to
identify the elements we want to represent. Again, for the faces a simple model would be a general
description of the elements we expect to identify, such as points at the corners of the mouth, the
eyes, the ears, etc. Notice that the relative distances between these points vary depending on the
face and that provides a unique way of describing individual faces.

After adjusting the parameters of the model to the speci�c images we want to morph between,
the next step is to warp the grids so that the points coincide and �nally interpolate the colors.
Warping means that points in the image are mapped to di�erent points without changing the
colors and it can be done mathematically by any function from (part of) the plane to the plane.
Warping is an essential step in the morphing process because it guarantees that we will combine
equivalent elements. For example, if we look at the middle column in �gure 2.13, we see that both
the man's and the cat's face were distorted to align points that correspond to the same elements,
such as nose and mouth.

How do we calculate the �nal position of these points prior to warping? The most straightfor-
ward way of doing it is by interpolating the coordinates of the points. This gives rise to the classic
morphing technique based on the interpolation principle. The idea behind the interpolation prin-
ciple is that we should obtain a somewhat smooth transition between the objects if we interpolate
(convex combination) the parameters of their representation. There is a huge assumption behind
it that there exists a sequence of intermediate images (faces in this case) that will be perceived
as a continuous transition between the two rather than categorically, i.e., with a sharp change of
perception at the position of the parameter continuum where there is identity change.

2.2.6 Morphing Algorithm

Image morphing provides a graphic example of most of the considerations above. For example, we
can easily see how correspondence between elements in the objects we combine a�ects the quality
of the morph. It is easier to morph between two faces than between a face and a hand, for example,
because the faces are isomorphic structures. Figure 2.8 illustrates the correspondence between two
faces followed by the warping of one into the other. At the top of �gure 2.8, we see the boy's face
mapped by a grid that plays the role of description of the elements, and at the bottom of the same
�gure, we see the same for the man. After the description of the elements (that is, the grid) and
the establishment of the correspondence between them (associating points and lines in both grids),
the process of morphing from the boy's into the man's face uses an isomorphism that warps the
grids (to obtain intermediate shapes) and then blends the colors (to obtain intermediate hues).

This thesis discusses the equivalent of this process for sound morphing. It also describes tech-
niques to do the same for acoustic musical instrument sounds both theoretically and technically.
The general morphing process can be described in four steps, as explicitly shown below as a general
algorithm for morphing.

1. Analysis: analyze objects to be morphed (base objects) according to a model. This step �ts
the model parameters to describe the base objects;

2. Correspondence: establish correspondence between parameters of the model for the base ob-
jects. This should somehow re�ect an intrinsic correspondence between elements (or features)
of the objects;
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3. Convex combination: obtain convex combination of values of corresponding parameters. For
two objects this step becomes the interpolation between pairs of corresponding parameters;

4. Resynthesis: resynthesize an object from the values resulting from the convex combination of
parameters of the model. The result of the morphing operation is called morphed (or hybrid)
object.

2.2.7 Morphing Guided by Features

Inspection of �gure 2.13 reveals that the process of warping and color interpolation might still
produce arti�cial hybrid images depending on the source and target. Instead of simple color
interpolation to blend the hues, we need to extract features such as skin and hair texture and
combine them in an e�cient manner. Feature extraction is a crucial step of the morphing process
because of the potential impact on the result.

Figure 2.14 shows a striking example of image morphing to illustrate the impact that the hybrid
images can have when they are perceptually convincing. Notice that, in this case, not only does
the skin color change, but also its texture. The same can be said about the hair and the clothes.
Examine how key features of the faces such as the eyes and nose shape change in the intermediate
images. Note that even the position of the shoulders and the smile change gradually. Figure 2.14
emphasizes the impact of the model in the �nal result. A simple model leads to unnatural results.
When we use a model that represents perceptually relevant features of the objects we want to
morph between, the intermediate representations will correspond to convincingly natural hybrids.

Figure 2.14: Another example of face morphing. In this case, features such as skin texture are
morphed. Original Image from http://i40.tinypic.com/11tqy52.jpg

How do we attain a morph that resembles �gure 2.14? The idea is fairly simple because it
is a straightforward application of the morphing by feature interpolation principle. Instead of
simply interpolating the parameters of the model we use to represent the base images, we are
going to extract features from these parameters, interpolate the feature values, and retrieve the
set of parameter values that correspond to the interpolated feature values. Each set of parameters
σ has a corresponding set of features δ, as seen in �gure 2.15.

Supposing that the features represent information that is more perceptually meaningful, such
as skin texture or shape of the eyes for the faces, we need to interpolate the feature values in
order to obtain hybrid images with intermediate features. There always exists a map ϕ from the
parameter space Σ to the feature space ∆, which is simply how we calculate the features from
the parameters. The question is �Is there an inverse map from the feature space ∆ back to the
parameter space Σ that permits retrieval of parameter values σp that correspond to certain feature
values δp?�

http://i40.tinypic.com/11tqy52.jpg


2.2. THEORETICAL CONSIDERATIONS 61

When the features capture perceptually meaningful information, the answer is generally `no'.
Still, we are faced with the di�cult task of retrieving a set of parameter values that correspond
to the desired feature values. This problem is sometimes called feature-based synthesis and is
notoriously di�cult to solve. When morphing sounds using the morphing by feature interpola-
tion principle, in each step we are faced with choices that might a�ect the quality of the �nal
result, such as what model we use to extract the parameters, how we are going to represent these
parameters, what features we are going to use to extract perceptually relevant information from
the parameters, and a crucial step lies naturally in the retrieval of parameter values from feature
values for resynthesis. The rest of this document is dedicated to describe a model and associated
techniques developed in this thesis to solve this problem.

Figure 2.15: Mathematical interpretation of the morphing by feature interpolation principle.

2.2.8 Intuitive Control of Parameters

When the features we extract represent well perceptually relevant characteristics of the objects
(i.e., the images or sounds), the hybrids will be perceptually convincing. An example of a simple
but powerful feature of faces that has a great impact on the perceived gender of the individual
depicted in the image is facial contrast. Figure 2.16 shows a human face obtained by averaging
the faces of several Caucasian men and women to obtain an androgynous face. Features such as
nose and mouth shape, curvature of the eyebrows, among others that are usually used as cues to
identify gender are the same in the two images. The only di�erence between the two faces shown
is the contrast between adjacent areas, much sharper for the face shown on the right of �gure 2.16.

By isolating the contrast and showing us that the faces are still perceived as male or female,
Russell [Russel, 2009] demonstrates the existence of a sex di�erence in facial contrast. Ideally we
would like to be able to do the same with sounds, that is, to be able to identify perceptually relevant
features of sound and manipulate them independently of the others. Let us not forget that usually
we manipulate the features indirectly by manipulating the parameters. So the question becomes
�What is the most appropriate set of parameters or representation for a given transformation?�
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The answer depends on the nature of the objects we want to transform, the transformation we
want to perform and the features we wish to manipulate.

Figure 2.16: Illustration of perceptually relevant transformations obtained by manipulation of
features that capture symbolic information related to a cognitive representation of the images, in
this case, gender.

2.2.9 Types of Transformation

In this section I will present di�erent types of transformation that respect the interpolation principle
(therefore can be considered morphing) from the theoretical point of view. We have already
discussed how morphing is a transformation that can be applied to either static objects, such as
images, or to dynamic objects, such as sounds or movies. We call them dynamic objects because
of their intrinsic temporal dimension, that is, they evolve in time.

All the examples we have considered so far use static objects and we have concentrated on ob-
taining one hybrid object with intermediate form. This leads us to the �rst type of transformation,
the static transformation. But we also know from �gure 2.14 that it is possible to obtain a series
of di�erent hybrid objects by speci�cation of di�erent values of the morphing factor alone. We can
specify a (discrete) trajectory between the base objects, and obtain several hybrid objects, each
corresponding to a point in this trajectory. This procedure gives rise to the second possible type
of transformation, a dynamic transformation. We �nally have four possibilities when we apply the
two types of transformation to the two types of object.

• Static transformations between static objects generate static objects;

• Dynamic transformations between static objects generate dynamic objects;

• Static transformations between dynamic objects generate dynamic objects;

In this case we usually interpolate the temporal dimension. That is, the duration of the hybrid
object is dictated by the duration of the base objects being combined.

• Dynamic transformations between dynamic objects generate dynamic objects.
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In this case we can decide to either respect the temporal dimension or warp it. In other words,
we can interpolate the duration or simply make it shorter or longer at will, repeating or omitting
hybrids. Finally, it is important to bear in mind that all these possibilities arise uniquely from
the unique nature of morphing. We should be able to specify any such transformation by simply
choosing the base objects and specifying the trajectory de�ned by the values of the morphing
factor.

However, when we want to morph dynamic objects (such as movies or sounds), we need to take
the intrinsically temporal dimension into account. Morphing dynamic objects is much more di�cult
than than static objects because the temporal dimension leads to many di�erent possibilities. How
can we transpose the formalization above to intangible and immaterial things such as sounds, that
are mere cognitive representations of patterns of air pressure that reach our eardrums? Chapter 3
addresses this question.
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Chapter 3

Morphing Sounds

The aim of morphing between di�erent musical instrument sounds across perceptually salient
timbre dimensions is to obtain sounds that would correspond to hybrid instruments. That is,
sounds that seem to come from an instrument that contains characteristics that are intermediate
to the original sounds'. The morphed sound must be perceived as one single sound and it must
not contain characteristics of either sounds used to create it. Rather, it must have its own features
derived by combining those of the original sounds. We can identify two major di�culties when
morphing between musical instrument sounds. The �rst is directly related to the relationship
between timbre and sound source in the context of musical instrument sounds. The second is more
subtle and is related to the perceptual attributes of musical instrument sounds.

This chapter explores how the conceptual and theoretical considerations about morphing in
general presented in the previous chapter apply speci�cally to sounds. Morphing sounds is much
more complicated than morphing static objects such as images because of the intrinsic temporal
nature of sounds. Now the time dimension makes the image morphing analogy imperfect and
calls for more appropriate imagery. This chapter addresses theoretical aspects of sound morphing
aiming at formalization of the problem and homogenization of nomenclature. More importantly,
this chapter reviews the types of sound transformation that can be considered morphing according
to this formalization. Special attention is given to the cyclostationary morph, the aim of this thesis,
and how to evaluate it under the criteria presented in the previous chapter, namely, correspondence,
intermediateness, and smoothness.

3.1 From Image Morphing to Sound Morphing: Conceptual
Considerations

The previous chapter explained how morphing is intrinsically associated with objects, which, in
turn, shows that use of the word morph is tied to form in a tangible way. On a more abstract
plane, we can extend the concept of form and associate it to sound objects [Schae�er, 1966] and
their characteristics, which Smalley [Smalley, 1997, Smalley, 1986] calls sound shape.

3.1.1 Sound Object

Pierre Schae�er introduced the concept of sound object in his monumental study entitled �Traité
des Objets Musicaux [Schae�er, 1966].� Much of his text is a philosophical defense of an attitude
toward sonic experience that derives from the musique concrète tradition. In the core of the study,

65
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Schae�er describes an ambitious research program whose aim is nothing less than the classi�cation
of all sound and a pedagogy to train musicians in the musical use of the classi�cation scheme.

Essential to Schae�er's approach is the development of the concept of reduced hearing. The
common mode of listening, in which we respond to a sound stimulus by identifying its source
- the sound �is� an oboe, a jet plane, etc - must be distinguished, according to Schae�er, from
another mode, in which we purposely - perhaps in some sense automatically - divorce what we
hear from its source, concentrating instead on the properties of the sound itself. This kind of
objecti�cation or reduction of sound is required for a sonic event to be heard as a �sound object.�
Slawson [Slawson, 1985] remarks that �reduced hearing seems a prerequisite for the abstract mode
of listening that hears timbre as a dimension of sound.� In other words, the concept of sound object
and the reduced hearing process involved challenge the simplistic view of timbre as sound source
identi�cation. It fully supports the notion of timbre space, timbre perception as multidimensional,
dimensions of timbre perception, correlates of timbre dimensions, sonic continuum, etc. I will delve
deeper into the discussion of timbre perception in chapter 5.

3.1.2 Sound Shape

The composer Denis Smalley complements the concept of sound object with that of sound shape,
explored in his theory of spectromorphology [Smalley, 1997, Smalley, 1986]. A key element in his
theory of spectromorphology is the rupture between the perception of sounds and musical instru-
ment identi�cation so deeply rooted in our listening tradition. Smalley de�nes the concepts and
terminology of spectromorphology as tools for describing and analyzing the listening experience,
and states that the two parts of the term refer to the interaction between sound spectra and the
ways they change and are shaped through time. According to Smalley, a spectromorphological
approach sets out spectral and morphological models and processes, and provides a framework for
understanding structural relations and behaviors as experienced in the temporal �ux of the music.

The concept of sound shape is directly related to the problem of graphic representation of
electroacoustic music. In other words, the traditional score based on the grid criticized by Wishart
[Wishart, 1996] needs to be adapted to represent the temporal �ow, hierarchical structures, and
organization of sonic material in electroacoustic pieces. One possible solution is to use shapes to
represent di�erent sonic events according to certain criteria. One problem we are faced with is
the lack of homogeneity of notation, which was already a concern when Schae�er �rst introduced
the concept of sound object. Smalley explains how the concept of sound shape can be applied
to traditional instrumental music and the spectral �ux resulting from the associated gestures.
Concepts such as attack, sustain and release appear throughout, together with the concept of
spectral shape and the �ux of spectral information in time, which are central in the formalization
of sound morphing presented in the next pages.

3.1.3 Sound Morphing

With the previous notions clari�ed, we are ready to apply the general concept of object morphing
to sounds. In very broad terms, the sound object imagery combined with the object morphing
analogy lead us to think of sound morphing as a gradual change of shape from one sound object to
another. This gradual shape transformation would naturally involve the attack, sustain and release
characteristics of sounds, as well as the spectral shape and the spectro-temporal �ux intrinsic to
sounds.

In the light of the spectromorphological formalization put forward by Smalley, the global tempo-
ral and spectral dimensions of musical instrument sound perception will be treated independently.
In this thesis, the focus of interest is to morph between musical instrument sounds across di-
mensions of timbre perception using perceptually motivated features as guides. We will consider
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global temporal features of sounds such as attack time, sustain and release separately from features
strictly related to spectral shape, such as spectral centroid, spread, skewness and kurtosis. The
obvious link between the two is the temporal �ux of spectral shapes that constitutes the basis of
perception of global temporal features as a succession of events (attack, sustain, release).

The basic proposal of this work is to objectively measure the sound shape of musical instrument
sounds with sonic features and use them to guide the morphing process. Conceptually, we could
imagine that intermediate values of features imply intermediate shape, and use the same evaluation
criteria for general object shape morphing. This approach becomes more relevant to the problem at
hand when the features we use to guide the morphing transformation are correlated with musical
instrument sound perception, such that intermediate values of features would imply perceptual
intermediateness. Intermediateness is one of the three requirements in morphing presented in
chapter 2, and it was adopted in the evaluation procedure used in this work. The feature values
are the basis of the objective measures used here.

Chapter 5 explains the link between the sonic features we chose to guide the transformation
and musical instrument sound perception. However, we still need to clearly visualize how the tem-
poral �ow of spectral information in�uences morphing from a conceptual, aesthetic and practical
perspectives.

3.2 The Image Morphing Analogy Revisited

Images are static (or stationary) objects. Due to the intrinsic temporal nature of sounds, we need
a better analogy that captures the dynamic evolution of sounds and allows us to better understand
the technical requirements of sound morphing.

3.2.1 An Even Better Analogy: Movie Morphing

Due to the intrinsic temporal nature of sounds, a better analogy would be that of movie morphing
[Slaney et al., 1996], where the aim must be reviewed to better �t the dynamic nature of the media,
depicted in �gure 3.1. This is a somewhat trickier problem than image morphing because of the
added temporal dimension. In short, we are going to treat sound morphing as if it were movie
morphing.

Now our sound morphing analogy has closer correspondences. For example, each movie frame
could correspond to an STFT frame resulting from the analysis of the sounds we intend to morph
between. Also, we can imagine that each frame's visual features have a corresponding set of sonic
features that also evolve in time and that this evolution in time itself carries important information
about how we perceive the movie (sound).

Notice that �gure 3.1 depicts movies (or sounds, as in the case of this thesis) with di�erent
numbers of frames, therefore, di�erent lengths (supposing the same frame rate). In other words,
we view each frame of the STFT as a static �image� or snapshot, such that each frame has a set of
features associated. But the frames are not independent, they are perceived as a sequence in time,
and the evolution of the features is important.

The sound morphing problem starts with �nding the correspondence between the frames of the
sounds we are going to morph between, addressed theoretically in chapter 8 and in practical terms
in chapter 12. But we also have to consider how we are going to morph between frames, because
the correspondence problem, which Osaka [Osaka, 2005] calls the matching problem, is essential in
morphing. Chapter 13 deals with the spectral correspondence problem, among others concerning
morphing the spectral shape guided by perceptually correlated features.

The result depends on several aspects, such as:

• What type of transformation we want to perform;
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Figure 3.1: Depiction of two movies shown frame by frame

• What features we focus on;

• The sound model or representation that we use to perform the morph;

• The sound material we use as source and target.

Each of these issues will be considered in the next pages. However, before we delve into the
technical details of morphing, we need to take care of the formalization of some theoretical aspects
of sound morphing, such as terminology and de�nitions. Indeed, these have become issues due to
the lack of formalism in the literature.

3.3 Formalization

This section is devoted primarily to the formalization of the terminology associated with sound
morphing, such as tentative de�nitions that appear in the literature, and a careful revision of
whether sound transformations that are commonly referred to as morphing �t the formalization of
morphing presented in chapter 2.

3.3.1 Terminology

After a thorough review of the literature on the hybridization of sounds, it appears that there is
much confusion in terminology. One of the aims of this work is to clarify a little bit the techniques
referred to as morphing and the terminology itself. Apart from sound morphing, some authors refer
to this transformation as audio morphing [Slaney et al., 1996], while others prefer timbre morph-
ing [Tellman et al., 1995, Osaka, 1995] or even timbre interpolation [Hikichi, 2001, Osaka, 1995]
to refer to similar goals, and some choose to use these terms interchangeably. The result of
such transformations has been called hybrid [Fitz et al., 2003, Haken et al., 2006], intermediate
[Caetano and Rodet, 2009, Caetano and Rodet, 2010c], interpolated [Hikichi, 2001] or even mon-
grel sound [Hope and Furlong, 1998].

In this work, we reserve the term sound for the auditory impression or the sensation perceived
by the sense of hearing, whereas audio refers more speci�cally to the signal. Moreover, we make a
distinction between interpolation and morphing. Interpolation acts on the parameters of a model,
being restricted to the signal level, whereas we reserve morphing for the blending of perceptual
qualities. So I propose sound morphing as the most appropriate term to meet the requirements of
this work, and and to call �morphed sounds� the intermediate states of a sound morphing process.
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3.3.2 Tentative De�nitions

There seems to be no widely accepted de�nition of morphing in the literature. Instead, most au-
thors either attempt to provide a de�nition of their own or simply explain what the aim of their work
was. Some de�nitions are too system dependent to be useful, Fitz et al. [Fitz and Haken, 1996] de-
�ne morphing as �the process of combining two or more Lemur �les to create a new Lemur �le with
an intermediate timbre�. Others are too general, such as Boccardi's [Boccardi and Drioli, 2001]
�modifying the time-varying spectrum of a source sound to match the time-varying spectrum of a
given number of target sounds�.

De�nitions based on the concept of timbre are common [Hikichi, 2001, Tellman et al., 1995,
Fitz et al., 2003, Osaka, 2005]. Usually, these authors de�ne timbre morphing as �the pro-
cess of combining two or more sounds to create a new sound with intermediate tim-
bre� [Tellman et al., 1995] or �to achieve a smooth transition from one timbre to another�
[Hikichi, 2001]. We should notice that these refer to di�erent goals. All in all, we prefer to avoid
any de�nition that relies heavily on a concept as loosely de�ned and misunderstood as timbre, that
can encompass many di�erent perceptual dimensions of sounds [Letowski, 1992]. Although these
authors usually do not de�ne what they mean by timbre, most seem to refer to timbre as the set
of attributes that allow sound source identi�cation. In musical instrument contexts, this usually
means that timbre becomes a synonym of musical instrument and thus timbre morphing reduces
to hybrid musical instrument sounds. It is possible, though, to morph between sounds from the
same instrument (di�erent loudness or even di�erent temporal features) [Tellman et al., 1995].

Slaney et al. [Slaney et al., 1996], on the other hand, prefer to avoid a direct de�nition al-
together and explains the concept by analogy with image morphing instead, where the aim is
to gradually change from one image (the source) to the other (the target) producing convinc-
ing intermediates (or hybrids) along the way. Other authors have proposed the same analogy
[Fitz et al., 2003]. Nonetheless, they rely on the concept of sound object especially because they
do not restrict their goal to musical instrument sounds.

Instead, this thesis de�nes the aim of sound morphing as obtaining a sound that is perceptually
intermediate between two (or more). When morphing musical instrument sounds, the focus is
on timbral qualities independent from loudness and pitch (LP-timbre, as de�ned by Letowski
[Letowski, 1992]), especially those related to the spectral shape [Caetano and Rodet, 2010b], which
Slawson [Slawson, 1985] termed sound color.

3.3.3 What Sound Morphing is Not

Thus far, we are already aware that a morphed object is expected to present intermediate charac-
teristics inherited from the base objects that compose it. For faces, for example, it is not enough
to compose a hybrid face from two using elements from either one. That is, if we compose a new
face using the eyes from one face, the ears from the other, and so forth, we will indeed end up with
a hybrid face, but the result of this operation does not �t into our de�nition of morphing.

The same goes for sounds. We can think of musical instrument sounds that possess charac-
teristics of two others, such as the xaphoon, whose attack qualities resemble the saxophone's, but
the more sustained portion of the sounds have a clarinet quality to them. A classic example is
the guitarpschord, a hybrid acoustic musical instrument constructed by replacing the strings of a
harpschord with a guitar's, giving the instrument a somewhat hybrid quality.

Nevertheless, the sound quality of the guitarpschord cannot be considered as morphing because
some of its qualities come uniquely from the guitar (notably those associated with the material
the strings are made of), while others come uniquely from the harpsichord (the hammers hitting
the strings). After a while, the listener is able to say that the sounds heard are guitar strings
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struck by hammers. 1 In the present document, we are more interested in obtaining sounds whose
qualities are intermediate between two (or even more) other sound's, and specially on how to do
it. The blending of perceptually relevant/related features of musical instrument sounds and the
model developed to do it are the subject of this thesis.

3.3.3.1 Mixing Vs Morphing

The �rst thing we might be tempted to do when trying to blend perceptual qualities of sounds is to
play them together. It does not take a lot of experience to be convinced that playing sounds at the
same time (the signal processing counterpart of which is called mixing) will not give us the desired
result. In fact, in our everyday experience, we are surrounded by counter examples. We know that
the environment is constantly presenting us with a rich sonic experience (sometimes called sonic
landscape or soundscape), with sounds coming from di�erent sources, at di�erent locations, and
usually we can identify the di�erent sources and spatial location even when the sound waves reach
our ears concomitantly (i.e, a bird singing while an airplane �ies by).

In fact, an even better example would be most music we hear. Usually there are several
musical instruments playing at the same time and our brain is capable of keeping track of all of
them separately. That is, the sounds of the instruments playing together do not blend, fusing into
an amorphous mass of sound. This is mostly due to the way in which we hear sounds, keeping
track of common relationships presented by partials produced by one instrument. For example,
the attack of a plucked string imprints a unique quality to all the partials resulting from this sonic
event, and our brains use this information to group them together. Spatialization cues resulting
mostly from reverberation and a�ecting specially phase relationships between the partials are also
used to group them together under a single sonic event.

In his classic �Computer study of trumpet Sounds [Risset, 1966]�, Jean-Claude Risset discovered
that the partials of trumpet sounds are slightly mistuned (i.e., they are not perfectly harmonic, or
they are quasi-harmonic). He also veri�ed that the partials present onset asynchrony, that is, each
partial attacks at slightly di�erent times, with higher partials tending to attack later than lower
ones. Finally, he also described how the partials tend to �uctuate about a frequency in an erratic
way. Risset postulated that the brain uses these factors as cues to group the partials produced
by one instrument together. The same phenomenon was later veri�ed for other acoustic musical
instruments as well [Risset and Mathews, 1969].

In conclusion, simply mixing or cross-fading is not enough to obtain a result that can be de�ned
as morphing according to the formal requirements we established earlier. The partials would have
to be carefully aligned to fool our ears (and our brains). There are some interesting examples
of morphed sounds obtained by studio techniques that include careful mixing and cross-fading,
notably Trevor Wishart's �Red Bird� [Wishart, 1996]. However, as a general rule, we need to
extract parameters from an analysis of the sounds according to a model, and somehow combine
the parameters from both sounds to obtain a hybrid sound that contains intermediate qualities.

3.3.3.2 Cross-Synthesis Vs Morphing

It is very common to �nd authors who refer to cross-synthesis as sound morphing
[Wen and Sandler, 2010]. We should keep in mind that the morphed sound should have char-
acteristics that are perceptually intermediate between those associated with the sounds used in
the morph.

The di�erence between sound morphing and cross-synthesis can be understood in an analogy
with the problem of voice conversion as opposed to voice morphing. Stylianou [Stylianou, 2008]

1The interested reader can �nd out more about hybrid musical instruments on
http://www.oddmusic.com/gallery/.
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remarks that voice morphing is a type of transformation where the same sentence is uttered by
two speakers and we want to generate a third speaker by combining the characteristics from the
utterances of the original speakers. In voice conversion, on the other hand, the sentence to be
converted, uttered by the source speaker, has never been uttered by the target speaker.

However, in voice morphing, there are two speakers that generate a new voice that utters the
same sentence as the original speakers. In voice conversion there is only one source utterance and
a target speaker. Here the aim is to transform the source utterance so as to imprint the voice
characteristics of the target speaker on it, that is, we want to convert the utterance like it was
spoken by the target speaker instead of generating a new speaker.

In cross-synthesis we have two sounds, the modulated or carrier sound and the modulator. In
other words, a sound obtained by traditional cross-synthesis techniques (imprinting the spectral
envelope of one sound onto the other) will produce a sound whose features are either from one or
from the other sound. Notably, features associated with the source (the partials) will come from
the modulated sound (or carrier), while those associated with the �lter (the spectral envelope,
responsible for sounds color) will come from the modulating sound.

Still, many di�erent types of transformation are referred to as morphing in the literature. In
the next section, we will review them using the movie morphing analogy.

3.3.4 Sound Transformations that can be Described as Morphing

We need to choose what kind of transformation we intend to do. Coming back to �gure 3.1 and
the movie morphing analogy, we could simply make a movie that contains an intermediate number
of frames, but we need to account for important temporal information to make it more convincing.
If the �rst movie shows an explosion at the beginning (similarly to the abrupt attack of a plucked
string or a percussive sound) and the other a butter�y gently �apping its wings and then �ying
away, we might need to align relevant temporal cues to produce an interesting morph.

Moreover, there are a number of possible transitions between the two. Do we want an interme-
diate movie that contains morphed images of each frame (here called static or stationary morphing
because the morphing factor α is constant), or are we going for a movie that starts as the �rst and
dynamically changes into the other (here called dynamic morphing because α varies in time)? We
could choose to run the �rst frames of the �rst movie until we stop at a selected frame, gradually
morph it into another selected frame of the second, and then proceed by showing the rest of it
(warped dynamic morphing), choosing to somehow warp the length of the result in order to achieve
a given e�ect.

Finally, another possibility would be to produce several morphed movies in di�erent interme-
diate points (i.e., di�erent values of α) of the path between source and target (cyclostationary
morphing). The di�erent morphing processes are presented in order of increasing complexity from
a purely procedural point of view. That is, the �rst process is the simplest to implement, indepen-
dently of the impact of the result.

3.3.4.1 Warped Dynamic Morphing

As explained earlier, the transformation dubbed warped dynamic morphing consists of running the
frames of the �rst sound up to a certain point, stopping at a selected frame, morphing smoothly
from this selected frame to a selected frame of the second sound, and playing rest of second sound.
The process is illustrated with movies in �gure 3.2.

This transformation is very simple to perform and usually leads to remarkably impressive
results. Notice that in this case we only morph one frame of each sound gradually to achieve
the result, such that the hybrid sound preserves most of the original frames from either source or
target sounds. We do not even need to concern ourselves with temporal issues like the duration
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of the result because the transformation is usually performed using frames from the middle of the
sounds (usually called steady-state or sustain, we will come back to this later in chapter 8), more
spectrally stable than frames from the beginning (attack) or from the end section (release).

In fact, in this case we do not need to concern ourselves with the temporal evolution of features
at all because we just use one isolated frame from each sound to perform the transformation.
Temporal features such as duration of the attack and release of both sounds are not meddled with,
so they are preserved.

This transformation warps the temporal dimension, which is not explicitly represented in timbre
space, such that it is di�cult to imagine its graphic representation. All the others have easier
visualizations, as will be clearer later on.

x
Figure 3.2: Depiction of Warped Dynamic Morphing Using Movie Frames

3.3.4.2 Static or Stationary Morphing

In the case of static or stationary morphing the picture changes radically. This transformation
consists in establishing a correspondence between every single frame of both sounds and morphing
between them with the same interpolation factor α, such that the hybrid sound has only morphed
frames, like shown in �gure 3.3.

This is a much more challenging transformation to perform because we need to take care of the
temporal aspects as well as spectral aspects. That is, if the sounds do not have the same duration
(therefore di�erent number of frames), the the �rst decision is how we are going to associate frames
from the �rst with frames from the second sound. Naturally, we could simply time-compress the
longer sound (or equivalently time-stretch the shorter one) to guarantee that they have the same
number of frames or a one-to-one correspondence.

Alternatively, we could compromise and obtain a hybrid sound whose duration corresponds
to the interpolation of the durations of the sounds used in the transformation (perhaps obtained
with the same interpolation factor α to be more consistent), but time stretching or compressing
all the sounds with the same factor is hardly a good strategy because it does not take into account
the temporal evolution of the features of the sounds. That is, a sound whose attack has been
time-stretched to double the length, for example, is usually considered perceptually di�erent from
a sound played by the same instrument that is twice as long. Playing a longer sound in acoustical
instruments usually does not a�ect the attack characteristics. This calls for strategies to align
perceptually similar regions in time before trying to make a correspondence between the frames.
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Automatically detecting these regions is an important contribution of this work and it is described
in chapter 12.

Static or stationary morphing corresponds to a single point between source and target sounds
in timbre space. The challenging aspect of stationary morphing is how accurately the morphing
factor controls the intermediateness of the result. This is very di�cult to evaluate perceptually,
thus in this work we will use the values of the features in the evaluation.

x
x

Figure 3.3: Depiction of static or stationary morphing using movie frames

3.3.4.3 Dynamic Morphing

Dynamic morphing is equivalent to static morphing in practical terms, the only conceptual di�er-
ence being the dynamically changing morphing factor, as shown in �gure 3.4.

In other words, we also need to concern ourselves with temporal considerations before estab-
lishing the correspondence between the frames, but once this step is behind us, we morph each
pair of frames with a di�erent interpolation factor. The result of this transformation is a morphed
sound that gradually morphs from source into target sound along the course of the sound.

Naturally the result has almost only morphed frames (except for the �rst and last frames,
maybe), and the same considerations about the duration of the hybrid sound apply here. Notice
that in this case it is not obvious to interpolate the duration because we do not have only one
value of interpolation factor, rather, we have as many as we have frames.

This transformation corresponds to a (sampled) continuous trajectory going from source to
target in a projection of the dimensions of timbre space that do not depend on the attack. Chal-
lenging aspects of dynamic morphing are related to the smoothness and intermediateness of the
transformation, which are intrinsically intertwined in a dynamic transformation.

This type of dynamic transformation is what most people expect to hear when they imagine
the result of the morph between two sounds. However, dynamic morphing can only be e�ectively
applied when the sonic material being morphed consists of a single event. When the sounds we want
to morph between contain a sequence of events, cyclostationary morphing is a more interesting
and appropriate way of doing it, as we will see next.

3.3.4.4 Cyclostationary Morphing

Finally, the cyclostationary morphing is achieved by simply repeating the static morphing N times
with a morphing factor varying from 0 to 1 in 1

N−1 steps, as shown in �gure 3.5. The result of this
transformation is N sounds (including source and target) that, when played sequentially, represent
a cyclic sequence of morphed sounds, each corresponding to a point in a discrete path going from
source to target in timbre space.
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x
x

Figure 3.4: Depiction of dynamic morphing using movie frames.

Cyclostationary morphing is by far the most challenging morphing transformation. Just like
stationary morphing, cyclostationary morphing also involves morphing temporal and spectral fea-
tures of musical instrument sounds, so intermediateness is always an issue. But the added di�culty
here involves the control of the smoothness of the transformation by the morphing factor α. For
cyclostationary morphing, we need to have accurate control of the perceptual distance across steps
of the morph to achieve a gradual morph.

In this thesis, the criteria of intermediateness and smoothness will be used to evaluate cyclo-
stationary morphs between musical instrument sounds. Therefore, the next section will address
theoretical and practical aspects of this particular choice of morph.

x
x

Figure 3.5: Depiction of cyclostationary morphing using movie frames

3.3.5 Practical Aspects

This section analyzes practical aspects of the theoretical consideration raised in section 2.2 when
morphing isolated musical instrument sounds.

In this work, we present models and techniques developed to automatically morph between
isolated quasi-harmonic acoustic musical instrumental sounds. As will be clear throughout the
text, this choice has determined several technical aspects, such as the choice of the sound model
used to describe the sounds, among others.

Even though the focus is very speci�c, this does not mean that the techniques described here
are restricted to the class of sounds they were originally developed for. We can easily think of ways
to extend most of them because they obey the general principles presented in section 2.2.
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3.3.5.1 Correspondence

A direct consequence of the principles of correspondence and conceptual distance presented earlier
in chapter 2 is that the choice of sound material has great impact on the quality of the results.
Naturally, it would be easier to morph between two quasi-harmonic musical instrument notes than
between the singing voice and drums because of the conceptual distance. When the sounds being
morphed are quasi-harmonic, both can be described by partials, so the correspondence between
the partials could use the partial number.

Another important factor that a�ects the quality of the morph is the number of events. When
each sound is one single event (note), it is easier to �nd correspondences between them. When
one sound has multiple events (beats) and is highly inharmonic (percussion) and the other is one
single quasi-harmonic event, it demands more re�ned techniques to �nd correspondences between
them.

The techniques applied to achieve the results vary according to the sounds we choose to morph
between. Also, the features we focus on depend on the sound material. For instance, pitch is a
salient attribute of quasi-harmonic musical instrument sounds, such that we need to consider it
very carefully when morphing between pitched sounds. Inharmonic environmental sounds would
probably require that we focus on di�erent features to obtain perceptually convincing morphs.

3.3.5.2 Hybrid Musical Instruments

In the context of musical instruments, the concept of timbre is intimately linked to sound source
identi�cation. The term timbre is sometimes applied to refer to di�erent concepts, and some
authors prefer to avoid using the word timbre altogether and propose alternatives, such as sound
quality or color. In simplistic terms, we could say that timbre is what allows us to identify the
source of the sound we hear, or the instrument that played the sound, even though we know that
the same instrument might possess multiple registers corresponding to timbral variations. For
example, the clarinet has three distinct registers, each of which has its own characteristics and
sounds di�erent from the others. A brassy trumpet sound is very di�erent from a softer one, but
we are still able to recognize the source of both as being the same instrument.

We will elaborate on these matters later in chapter 5, but it is important to remember that
musical instrument/sound source recognition is part of the musical education and, as such, has to
be practiced. This means that musical instrument recognition is a cognitive task that we train our
brains to perform, so it might be more intrinsically connected with our musical system than with
the sound features themselves. We should not be surprised by the conclusion that the result of
using of a brassy trumpet sound or a softer one in a morphing would lead to perceptually di�erent
results.

The consequence for sound morphing is that it might not be enough to obtain morphed sounds
that are recognized as hybrid instruments, we might have to control how we blend the perceptual
features of the original sounds in order to attain a perceptually convincing morph. In the next
chapter the state of the art of sound morphing will be thoroughly reviewed. The main objective of
this review of the literature is to evaluate whether these sound morphing techniques meet the three
evaluation criteria of a good morph: correspondence, intermediateness and smoothness. Chapter
5, right after that, will come back to the question of perception of hybrid musical instruments
using timbre spaces as guides.
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Chapter 4

State of the Art

This chapter is entirely dedicated to present the state-of-the-art sound morphing techniques. The
information presented here is the result of an extensive and thorough review of the literature, and
it is organized as follows. Firstly we will succinctly review additive sound models, which led to
the development of sinusoidal modeling by Smith and Serra [Smith and Serra, 1985] and McAuley
and Quatieri [McAulay and Quatieri, 1986, McAuley, 1984] independently.

Sinusoidal modeling stands out as one of the most popular models used in sound transforma-
tions in general [Serra and Bonada, 1998, Amatriain et al., 2003, Amatriain et al., 2002]. Sound
morphing �gures prominently as one of the most successful transformations attained with sinu-
soidal models. Thus we will discuss how to obtain morphed sounds with sinusoidal models by
following the interpolation principle presented in chapter 1.

Finally, we conclude this chapter by brie�y reviewing other sound morphing techniques proposed
in the literature. This chapter is intended primarily to position this thesis in the context of the
existing sound morphing techniques. Interestingly, we will also �nd in this chapter the motivation
behind the development of new sound morphing techniques, such as those proposed here.

This chapter should be read with the perceptual characteristic of the sound morphing problem
in mind. This will be the background against which we will compare the adoption of the source-
�lter model and the development of the temporal segmentation, temporal alignment, and spectral
envelope morphing techniques developed in the course of this thesis and presented in later chapters.

4.1 Sound Signal Models

Sinusoids are the cornerstone of sound signal analysis. On the one hand, Fourier's theorem
states that any periodic signal can be decomposed into a sum of harmonically related sinusoids
[Hartmann, 2007, Hartmann, 1998]. On the other hand, sinusoids emerge in acoustic models of
sound production as the elementary solutions (modes of vibration) to a large variety of oscillating
systems [Hartmann, 2007, Fletcher and Rossing, 1998]. As a result, the representation of sound
signals by a sum of amplitude-frequency modulated sine waves and analysis/synthesis techniques
based on this representation have become essential tools in music and speech sound processing.

The physical generation of music signals is in part similar to the generation of speech signals,
and thus it is not surprising that sinusoidal-based processing, useful in one area, is also useful in the
other. In certain wind instruments, for example, a vibrating reed excites the instrument's cavity,
while in speech the vibrating vocal cords excite the vocal tract. There are common signal classes
in the two domains, all of which can be represented to a certain degree by a sum of amplitude and
frequency modulated sinusoids.
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Quasi-periodic signals, such as steady speech vowels and the sustained region of certain musical
instrument sounds, can be accurately represented as a �nite sum of harmonically related sinusoids
with slowly time-varying amplitudes and frequencies. Noise-like signals, such as speech fricatives
and musical instrument turbulence, have no clear harmonic structure and transients, such as speech
plosives and musical instrument attacks and decays, may be neither harmonic nor noise-like, con-
sisting of short acoustic events that occur prior, during, or after steady regions. Noise-like and
transient sounds can be represented approximately by a sum of inharmonically related sinusoidal
partials, generally without coherent phase structure.

A typical sound is often a mixture of these components whose relative weights, timing, and
duration can be key to accurate modeling. Early approaches to music analysis relied on a running
Fourier transform to measure sine-wave amplitude and frequency trajectories. This technique
evolved into a �lter bank-based processor and ultimately to signal analysis/synthesis referred to
as the phase vocoder [Flanagan and Golden, 1966]. The phase vocoder is at the core of sinusoidal
modeling, one of the most popular sound signal models due to the accuracy and �exibility of
representation and manipulation of parameters.

4.1.1 Additive Synthesis

Additive synthesis is the oldest, conceptually simplest, and perhaps most widely used sound signal
model. It relies on the assumption that any sound may be modeled as the sum of a number of sinu-
soids with time-varying parameters, also called partials (or harmonics when they are harmonically
related).

There are a great number of variations and extensions to this model, all of which maintain in
some fashion the basic principle of partial summation. Several of these variations will be discussed
later in this chapter.

In general, the series of partials which may be used to represent any sound is given by

x (t) =
K∑

k=1

Ak cosφk (t) (4.1)

where Ak is the instantaneous amplitude of the kth sinusoid, φk is its phase, andK is the number
of partials we include. Equation 4.1 is used to de�ne the value of the time-domain waveform x (t)
at time t. Each of the parameters is continually evolving. Successive phase and amplitude values
are used to describe the evolution of each sinusoid, the summation of which can create complex
wave shapes and rich timbres. The evolution of the phase may be better de�ned as follows

φ (t) =

t∫
0

ω (τ) dτ (4.2)

where ω is the frequency in radians. The frequency f in Hertz is equal to ω
2π and may be

determined from the evolution, or rate of change, of the phase

f =
1
2π

dφ

dt
(4.3)

There is a close relationship between the concept of additive synthesis and Fourier analysis,
the most widely used method for converting a sound into its spectral representation. As we saw in
chapter 2, the word spectrum was coined by the German mathematician David Hilbert in reference
to the set of all eigenvalues of a linear operator. Sinusoids are eigenfunctions of linear shift-invariant
(LSI) systems, and as such form the basis of Fourier analysis. Therefore, understanding the Fourier
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transform is a necessary �rst step to understanding additive synthesis as it allows the parameter
values for each partial in an additive synthesis representation to be determined.

The Fourier series is the starting point for all of the representational techniques to be described
herein. The Fourier transform and its inverse allows for a lossless transformation of a signal into
the spectral domain and back. Fourier's theorem can be expressed mathematically as

x (t) =
K∑

k=1

Ak cos (2πfkt+ φk) (4.4)

where x (t) is a periodic signal, Ak and fk are the amplitude and frequency, respectively, of the
kth sinusoidal component at time t, and φk is its initial phase. Equation 4.4 serves not only as a
model to analyze musical instrument sounds and speech, but also as a model for sound synthesis.
In synthesis, the control functions Ak and ωk = 2πfkt + φk were initially set manually based on
knowledge of the sound we wish to synthesize, such as a musical instrument sound.

One of the �rst attempts to estimate the control functions is perhaps due to Moorer
[Moorer, 1977]. Assuming the presence of one periodic sound in a measurement x (n), the length
of the signal is set equal to the waveform's pitch period N . The real and imaginary components
are then given by

ck (n) =
n+N−1∑

r=n

x (r) cos (rkω0) (4.5)

dk (n) =
n+N−1∑

r=n

x (r) sin (rkω0) (4.6)

where ω0 = 2π/N and from which we can obtain the estimates of the slowly time-varying
amplitude âk (n) and phase θ̂k (n) of each harmonic

âk (n) =
√
c2k (n) + d2

k (n) (4.7)

θ̂k (n) = arctan
[
dk (n)
ck (n)

]
(4.8)

The frequency of each harmonic is given approximately by the derivative of the unwrapped
version of the phase θ̂k (n). A limitation of this method is that the pitch period must be known
exactly to obtain reliable estimates.

The Fourier series supposes that the signal x (t) being analyzed is periodic. To investigate the
frequency components present in any signal, we use the Fourier transform instead, as shown in
equation 4.9.

X (f) =

∞∫
−∞

x (t) exp (−j2πft) dt (4.9)

where X (f) is the frequency spectrum of the input signal x (t). The Fourier transform assumes
that the period of repetition of the signal is in�nite, as expressed by the limits of integration
from−∞ to ∞ . The continuous-time Fourier transform in equation 4.9 models the signal as a
distribution of a continuous variable t, but in practice its implementation is not feasible given the
discrete nature of the digital computer. The equation must thus be modi�ed to re�ect sampled
data such as digital sound signals and discrete spectra. The discrete Fourier transform (DFT) is
the standard way of representing the discrete-time signal x (n) as a spectrum X (k) with N discrete
frequency bins.
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4.1.2 Discrete Fourier Transform

The sequence of N real or complex numbers x0...xN−1 is transformed into the sequence of N
complex numbers X0...XN−1 by the discrete Fourier transform (DFT) according to the formula

X (k) ,
N−1∑
n=0

x (n) e
−j2π

N kn (4.10)

for k = 0...N − 1. The original sequence can be recovered through the inverse transform, de�ned
as

x (n) ,
1
N

N−1∑
n=0

X (k) e
j2π
N kn (4.11)

for n = 0...N − 1.
In practice, we use an algorithm introduced by Cooley and Tukey [Cooley and Tukey, 1965]

known as the fast Fourier transform (FFT).
The Fourier transform considers the signal as a whole and does not permit the identi�cation

of events in time. One way to get past this drawback is to break the input signal into a series of
very small segments evenly distributed in time. This leads us to the short-time Fourier transform
(STFT). There are two immediate bene�ts to this process. First, it allows a time-localized repre-
sentation of the spectrum. That is, it is possible to see which frequencies are present in the signal
at a speci�c point in time (i.e. over a period of a few milliseconds). Second, it is computationally
much more e�cient to compute the transform for each segment than for the entire signal.

4.1.3 Short-Time Fourier Transform

In order to extract many short segments from the sound signal, a clever trick is to zero-out data
outside of our consideration, leaving only a small segment of data. This technique is known as
windowing, as it is akin to viewing only a small window of the data. Really, it is nothing more
than a speci�c type of temporal envelope designed for spectral analysis.

Then, by performing Fourier analysis on each windowed segment, a sequence of measurements
that constitute a time-varying spectrum is obtained. Together with the windowing function, this
is given by

X (k, n) =
∞∑

m=−∞
w (n−m)x (m) exp

[
−j
(

2π
N

)
km

]
, k = 0, 1, · · · , N − 1 (4.12)

where X (k, n) is the amount of spectral activity at the kth frequency bin, as determined by
data centered around sample n, and w (m) is the window of length M that selectively determines
the portion of x (m) being analyzed.

For a real signal, the STFT yields a sampled complex spectrum with N/2 + 1 complex values,
where N is the number of samples used in the analysis. There are two equivalent but distinct
interpretations to equation 4.12, the Fourier transform and the �lter bank formulations. Figure
4.1 illustrates both complementary views of the STFT.

The Fourier transform interpretation views X (k, n) as the Fourier transform of of the modi�ed
sequence

yn (m) = x (m)w (n−m) (4.13)

.



4.1. SOUND SIGNAL MODELS 81

For this case, we interpret X (k, n) as a function of the frequency index k for a �xed value of
the time shift n.

In the Fourier interpretation, the number of �lters is simply the number of points in the Fourier
transform. Similarly, the equal spacing in frequency of the individual �lters can be recognized as a
fundamental feature of the Fourier transform. On the other hand, the shape of the �lter passbands
is determined by the shape of the window function applied before calculating the Fourier transform.
Equation 4.13 shows that, for n constant, yn (m) is a product of x and w. Thus the Fourier
transform of yn is the complex convolution of the Fourier transforms of x and w. As such, the
details of the resulting short-time Fourier transform are greatly in�uenced by the choice of the
window w. Thus it is important to use a window that features the desired time and frequency
resolution of the STFT.

The �lter-bank interpretation of equation 4.12, usually called phase vocoder, is that of a �lter
bank analysis in which X (k, n) is viewed as a function of the time index n for a �xed frequency
k. In this case, the window w (m) is seen a low-pass �lter that determines all of the properties of
the �lter-bank. The design of the �lter w is dominated by an important consideration, the sharper
the �lter frequency response cuts-o� at the band edges, the longer its impulse response will be. In
other words, to get sharp cut-o�s with minimal overlap, we must use �lters whose time response
is very slow.

Historically, the phase vocoder comes from a long line of voice coding techniques which were
developed primarily for speech processing [Dolson, 1986]. Indeed, the word �vocoder� is simply
a contraction of the term �voice coder�. There are many di�erent types of vocoders. The phase
vocoder was �rst described by Flanagan and Golden [Flanagan and Golden, 1966] in what is now
a landmark in speech processing.

Figure 4.1: Filter-bank interpretation vs. Fourier transform interpretation. Adapted from Dolson
[Dolson, 1986]

4.1.4 Phase Vocoder

The STFT provides information about a sound signal's spectral content at discrete time intervals.
However, an equivalent way of viewing this information would be to consider each analysis bin
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as the output of a band-pass �lter. In this case X (k, n) can be written as the linear convolution
(denoted by *) of the signal x (n) exp

[
−j
(

2π
N

)
km
]
with the impulse response w (n), i.e.,

X (k, n) =
[
x (n) exp

[
−j
(

2π
N

)
km

]]
∗ w (n) (4.14)

where w (n) is a low-pass �lter being applied to the signal x (n) exp
[
−j
(

2π
N

)
km
]
. The mod-

ulation of x (n) by exp
[
−j
(

2π
N

)
km
]
serves to shift the frequency spectrum of x (n) at frequency

ωk = 2πk/N down to 0 frequency. This operation is called heterodyning. Thus the STFT can be
thought of as �ltering the shifted spectrum of x (n) in the region of frequency ωk by the low-pass
�lter w (n), usually called heterodyne �ltering.

Yet another alternative way of viewing the phase vocoder as a �lter bank is as follows. In
equation 4.12, we change the variables to n−m = l and get

X (k, n) = e−jωn
∑

l

w (l)x (n− l) ejωl = e−jωn
[
x (n) ∗ w (n) ejωn

]
(4.15)

Now equation 4.15 can be viewed as �rst a modulation of the window to frequency ω, pro-
ducing a band-pass �lter w (n) ejωn followed by the �ltering of x (n) through this band-pass �lter.
The output of the �ltering operation is then modulated back down to baseband by the complex
exponential e−jωn. Since each �lter response is complex, the amplitude and phase of the output
of each channel can be viewed as an amplitude and phase modulated complex sinusoidal

x (n) =
K∑

k=1

âk (n) ejθ̂k(n) (4.16)

where âk (n) and θ̂k (n) are calculated as in equations 4.7 and 4.8 respectively. In this case, ck
and dk are the real and imaginary parts of the output of each �lter.

Each �lter, then, represents the time-varying energy in that particular frequency region, as
de�ned by the operation of the heterodyne �ltering technique. The use of the STFT in this fashion
as an analysis/synthesis technique is called the phase-vocoder. The phase vocoder models a given
signal as the sum of K sine waves, the parameters of which are determined by the STFT. These
parameters include the time-varying amplitude, and phase of each sine wave, as calculated in
equations 4.7 and 4.8.

The di�erence between the phase vocoder and the conventional channel vocoder is that the
phase information is preserved in each channel and that we can guarantee that the output is exactly
identical to the input [Moorer, 1979]. Mathematically, the phase vocoder is just an alternative
representation of the STFT.

Flanagan and Golden [Flanagan and Golden, 1966] state that the conventional channel vocoder
separates vocal excitation and envelope functions. The envelope functions are essentially the same
as each âk (n) as in equation 4.16 and they are band-limited because within any given �lter band,
the result of heterodyning and low-pass �ltering is a signal whose highest frequency is equal to the
cut-o� frequency of the �lter. In the phase vocoder, however, information about the excitation is
mostly encoded in the phase derivative signals because the phase functions θ̂k (n) are generally not
bounded.

Moorer [Moorer, 1979] remarks that the formulas used to convert the real and imaginary part
of the output of the �lters into the amplitude and phase representation are nonlinear and are thus
non-band-limited. The phase derivative signal is given by

θ̇ =
ckḋk− − dk ċk
c2k + d2

k

(4.17)
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Flanagan and Golden [Flanagan and Golden, 1966] remark that when the number of channels
is su�ciently large, the information about excitation is conveyed primarily by the phase derivative
signals, while a small number of broad analyzing channels results in amplitude signals that contain
more information about the excitation and phase signals that contain more information about the
envelopes. Qualitatively, therefore, the number of channels determines the relative amounts of
excitation and spectral information carried by the amplitude and phase signals.

4.1.4.1 Phase unwrapping

A direct consequence of using equation 4.8 to estimate the phase signal is that the arc tangent
function gives a discontinuous result everytime it �wraps around� 2π (that is, at each complete
cycle). Since the frequency values are calculated directly from the phase values using equation
4.17, we nee to �rst add 2π everytime the phase completes a full cycle. This is usually termed
�phase unwrapping� and there are many proposals in the literature of how to do it e�ciently. See
for example [Kaplan and Ulrych, 2007] for a review.

4.1.4.2 Resynthesis

If the center frequencies of the individual band-pass �lters happen to align with the partials (which
would probably have to be near harmonic because of the DFT), then the outputs of the phase
vocoder analysis are essentially the time-varying amplitudes and frequencies of each partial. The
�lter-bank itself has three constraints. First the frequency response characteristics of the individual
band-pass �lters are identical (they are the same window w), except that each �lter is centered
at a di�erent frequency. Second, these center frequencies are equally spaced across the entire
spectrum from 0 Hz to half the sampling rate. Third, the individual band-pass frequency response
is such that the combined frequency response of all �lters in parallel is essentially �at across the
entire spectrum. This ensures that no frequency component is given disproportionate weight in
the analysis and that the phase vocoder is in fact an analysis-synthesis identity.

The number of �lters must be su�ciently large to guarantee that there is never more than one
partial within the passband of any single �lter. For near harmonic sounds, this amounts to saying
that the number of �lters must be greater than the sampling rate divided by the fundamental
frequency [Dolson, 1986]. For inharmonic and polyphonic sounds, the number of �lters may need
to be much greater. If this condition is not satis�ed, the partials within a single �lter will con-
structively and destructively interfere with one another, and the information about their individual
frequencies will be coded as an unintended temporal variation in a single composite signal. In fact,
several other problems might arise.

The detected partials are not allowed to vary outside the bandwidth of a given channel, oth-
erwise they would be detected by more than one �lter at the same time. This would certainly
obscure the representation, and undermine the clarity of each component. Conversely, sometimes
a partial can fall between the cracks of two analysis bins where it is not well-represented by either
�lter. This gives rise to representational di�culties: any sonic inputs that have a continuous spec-
trum or noisy components cannot be clearly represented or easily modi�ed because they are not
well-represented by a summation of sinusoids. Instrumental onsets or vocal fricatives, for example,
fall into this category. Thus, while it is possible to perfectly reconstruct the input waveform, we
are left with a model that presents a confusing representation of components which vary more than
the bandwidth of one channel.

Yet another problem is that of phase dispersion, In time-scale modi�cation, for example, the
integration of the phase derivative and scaling of the unwrapped phase results in a loss of the
original phase relation among sine waves, thus giving an objectionable �reverberant� quality char-
acteristic of this method. Finally, the phase vocoder was formulated in the context of discrete sine
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waves and hence was not designed for the representation of noise components of a sound.
The analysis stage of the original phase vocoder and its re�nements views sine-wave components

as outputs of a bank of uniformly-spaced bandpass �lters. Rather than relying on a �lter bank
to extract the underlying sine-wave parameters, an alternate approach is to explicitly model and
estimate time-varying parameters of sine-wave components by way of spectral peaks in the short-
time Fourier transform [McAulay and Quatieri, 1986, Smith and Serra, 1985]. This approach lends
itself to sinewave tracking through frequency matching, phase coherence through a source/�lter
phase model, and estimation of a stochastic component by use of an additive model of deterministic
and stochastic signal components. As a consequence, the resulting sine-wave analysis/synthesis
scheme resolves many of the problems encountered by the phase vocoder, and provides a useful
framework for a large range of speech and music signal processing applications.

4.1.5 Classical Sinusoidal Modeling

The problem in analysis/synthesis is to take a waveform, extract parameters that represent a
quasi-stationary portion of that waveform, and use those parameters or modi�ed versions of them
to reconstruct an approximation that is �as close as possible� to a desired signal. Furthermore,
it is desirable to have a robust parameter extraction algorithm since the signal in many cases
presents acoustic noise. The general identi�cation problem in which the signal is to be represented
by multiple sine waves is a di�cult one to solve analytically [McAulay and Quatieri, 1986].

In the mid-1980s two independent solutions to the shortcomings of the phase vocoder were
proposed. PARSHL by Julius Smith and Xavier Serra [Smith and Serra, 1985], and a sinusoidal
model by McAulay and Quatieri [McAulay and Quatieri, 1986] are both intuitively-simple repre-
sentations whereby the sound is modeled as the sum of a number of sinusoids. Both systems
escape the band-limited nature of the phase-vocoder's time-varying �lters, as the partials of the
input sound are no longer bounded to a particular analysis channel and are free to vary across
channels.

The input sound at time t is modeled as

x (t) =
K∑

k=1

Ak cos (2πfkt+ φk) (4.18)

where Ak is the instantaneous amplitude of the kth sinusoid, and φk and fk are its initial phase
and frequency, respectively. Whereas the phase-vocoder had a representation consisting of a �xed
number of �lters, the sinusoidal model can track an arbitrary number of partials, each of which is
not constrained or obscured by the limits of a particular �lter channel. The �rst step to obtain this
representation is to detect any peaks or local maxima in the frequency spectrum, and to organize
them into some number of time-frequency tracks. The detection of peaks is usually referred to as
peak-picking while the process of de�ning sets of sine waves that will be continuously evolving in
time is called peak matching.

4.1.5.1 Peak Picking

A peak is not always nicely resolved or clearly de�ned in the spectrum. This is especially true
during onsets or with noisy signals. Therefore, in order to correctly identify and track prominent
spectral peaks in the signal, the analysis depends more heavily on proper parameter settings than
in the regular STFT. Additionally, due to the sampled nature of the spectrum, it may be di�cult
to determine the precise frequency location of a detected peak. The estimate will only be accurate
to within 1/2 of the spectral sampling period. Therefore, it may not always be so simple as to just
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pick out the K greatest points in the spectrum; other techniques should be used to ensure proper
(and accurate) selection.

In the peak identi�cation process, there are several parameters used to control the operation of
the algorithm, the most basic of which is a simple peak-height threshold, which is determined in
relation to the relative power of nearby frequency components. This allows only the most prominent
peaks to remain while others are removed. The location (frequency bin) of all remaining maxima
in the frequency spectrum are recorded. Next, in order to determine the precise frequency of each
detected peak, there are two di�erent ways to proceed. The �rst utilizes the corresponding phase
value of the located peak. The instantaneous frequency is ascertained by taking the derivative
of the instantaneous phase value (unwrapping the phase as necessary) and adding it to the bin
frequency. These extracted frequencies represent the precise location of each partial, which are
then organized into each frequency track.

The other method involves a combination of zero padding and parabolic interpolation. Zero
padding a windowed segment before Fourier analysis provides greater spectral resolution, which in
turn minimizes the error in the estimate of a peak's spectral location. In this case, it also increases
the resolution of the spectrum su�ciently to get a reasonable distance between the points required
for parabolic interpolation. Parabolic interpolation, then, is used in order to re�ne the initial
estimate and calculate the precise location of each peak. Interpolation such as this requires three
points to identify each peak, and can give an estimate to within 0.1% accuracy. This method is
usually preferred as it gives more robust results.

4.1.5.2 Peak Matching

If the number of peaks were constant from frame to frame, the problem of matching the parameters
estimated on one frame with those on a successive frame would simply require a frequency-ordered
assignment of peaks. In practice, however, the locations of the peaks will change as the pitch
changes, and there will be rapid changes in both the location and the number of peaks corresponding
to rapidly varying signal regions, such as at harmonic to noise-like transitions. In order to account
for such rapid movements in the spectral peaks, the concept of �birth� and �death� of sinusoidal
components is introduced.

The problem of matching spectral peaks in some �optimal� sense while allowing for this birth-
death process is generally a di�cult problem. One method that has proved to be successful is
to de�ne sine-wave tracks for frequencies that are successively �nearest-neighbors�. The matching
procedure is made dynamic by allowing for tracks to begin at any frame (a �birth�) and to terminate
at any frame (a �death�), events which are determined when successive frequencies do not fall within
some �matching interval�.

Once peaks from each frame have been identi�ed and recorded, and their instantaneous fre-
quency and phase determined, the algorithm attempts to place them into a number of frequency
tracks. Essentially, each track works by �nding the peak in the next frame that is closest to its
current value. In this way, the track is updated at each time interval and can show each partial's
trajectory. If a partial in the current frame is not found to be a continuation of any partial in the
previous frame, a new track is created. Likewise, if a partial cannot be found to continue a certain
track after several frames, the track is killed. This is better illustrated in �gure 4.2.

Peak trajectories are determined from both noisy and harmonic components of the waveform,
to give a sinusoidal representation for the entire sound. Therefore, the model makes no distinction
between harmonic and non-harmonic components. Also, when there are large changes in frequency
between frames, the tracks may be confused and could jump to following other peaks that are now
closer in frequency. As Serra [Serra and Smith, 1990] points out, this would be unsuitable when
we want the trajectories to follow just the harmonic part of the sound, but as there is only one
component type used (that of the time varying sinusoid) to represent the given input, this is the
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Figure 4.2: Depiction of the peak matching algorithm. The tracking of each sinusoidal partial is
based on frequency-matching. Adapted from Quatieri and McAuley [Quatieri and McAuley, 2002].

only solution.

The result of the sinusoidal analysis for each spectral frame is a set of values that describe the
partials contained in that frame. Each partial has a partial number, amplitude, frequency and
phase value associated. For example, a frame where N partials are detected would contain the
following.

partial number amplitude frequency phase
1 a1 f1 φ1

2 a2 f2 φ2

...
...

...
...

N aN fN φN

(4.19)

where the �rst column contains the partial number, an is the amplitude of the nth partial, fn

the frequency value, and φn the phase.

The sinusoidal model is useful as a starting point because it allows the extraction of several
important characteristics of the input sound. Spectral shape, harmonicity and loudness are all
easily identi�ed in this representation, and the manipulation of these features is easily accomplished
given a sinusoidal framework. But, while this model may be an improvement over the phase
vocoder, it is still susceptible to some of the same shortcomings. For instance, it makes the
assumption that every sound it models is composed of a number of (slowly-varying) sinusoids, each
of which will vary no more than some given amount between frames. This is certainly not the case.

Many sounds have components that cannot be well-accounted for with sinusoids, with noise
being one example. Attempting to model a sound which contains noise with a limited number
of sinusoids sacri�ces the �delity of the sound. This is the major setback of this model. While
it is possible to model noise components with a tracking vocoder using an unlimited number of
sinusoids, the use of any su�ciently large number will require an even larger number of parameters
to control them, which quickly makes this approach unwieldy.

Using fewer partials favors computation time and memory requirements, but it will introduce
distortion and onset artifacts as non-harmonic components will not be well-represented. Spectral
modeling synthesis proposes to solve this problem by representing the stable sinusoidal and noisy
residual components independently.
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4.1.6 Spectral Modeling Synthesis

Spectral modeling synthesis [Serra and Smith, 1990], hereafter referred to as SMS, was �rst pro-
posed in the mid-eighties by Xavier Serra and Julius Smith. It grew out of the need for something
more robust and �exible than previous systems such as PARSHL [Smith and Serra, 1985] could
provide. Speci�cally, it addresses the need for a more robust representation of noisy components.
The basic principle in SMS is that any sound may be said to be comprised of two components, a
deterministic and a stochastic part.

By separating a sound into deterministic and stochastic components, a more �exible represen-
tation of the sound is created, which in turn facilitates modi�cations and changes to the sound
itself. The SMS model closely mimics what is produced in a musical instrument or any other
physical system. For instance, to produce pitched sounds, there must be some mode of vibration
occurring. The deterministic or we could say harmonic and predictable component corresponds
closely to this. Any other sound which is not accounted for by these primary vibrations, such as
bow noise/breath noise, onset transients, etc, are modeled as residual data.

The �exibility this system a�ords is what attracts us to it. The deterministic component of
SMS is based on a type of additive synthesis, where a number of time-varying sinusoids are used
to model the harmonic spectrum of a given sound, as in PARSHL [Smith and Serra, 1985] and
McAulay and Quatieri's model [McAulay and Quatieri, 1986] (see Section 4.1.5) and the stochastic
part is modeled as �ltered white noise.

In mathematical terms, this is expressed as

x (t) =
K∑

k=1

Ak (t) cosφk (t) + e (t) (4.20)

where Ak (t) and φk (t) are the instantaneous amplitude and phase of the kth sinusoid, respec-
tively, and e (t) is the noise component [Serra and Smith, 1990]. The system then identi�es peaks
in the spectrum and places them into some number of trajectory-tracks as described in Section
4.1.5.2. In the context of SMS, these trajectories are referred to as guides and, as before, are used
simply to organize partials in the input sound.

The main di�erence between this implementation and earlier systems is that it does not incor-
porate all of the selected peaks into guide layers. Doing so would attempt to �t spurious peaks
resulting from noise data into the deterministic part of the model. However, SMS needs to separate
these two components. It is for this reason that the peak-continuation algorithm in SMS is more
sophisticated and geared solely to the deterministic part of the sound.

It is assumed that in a given input sound, the harmonic component is composed of quasi-stable,
time-varying sinusoids. That is, partials which vary in frequency less than some user-prede�ned or
expected amount. The peak-continuation algorithm places only these partials into guides, leaving
unselected ones as part of the residual. Each guide is initialized by using the harmonic series of
the detected pitch. This means that a partial is assumed to be close by to an integer multiple of
the fundamental frequency.

In cases where no pitch can be detected, as with noisy inputs, guides are created dynamically
when new peaks become available. As the guides progress forwards in time, the way each peak is
assigned to them is determined by several factors. In harmonic sounds, since all the partials will
evolve together, the fundamental frequency acts as the main control. In noisier signals, the system
cannot rely on the fundamental for control, so the memory of each peak's trajectory is used to
in�uence which partial provides the best �t to a given guide.

Depending on the signal's harmonicity, a combination of the previous trajectory and the current
fundamental frequency is used to organize the peaks into guide layers. These guides then advance
in time and look for the next set of partials to form trajectories. This provides a robust, yet
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relatively simple representation of the deterministic component of the sound. What remains is
to subtract this from the original input, and whatever remains can be deemed the residual, or
stochastic component.

To perform the subtraction, we must �rst generate the deterministic component of the sound.
Since the phase of each extracted partial is preserved, it is possible to simply add every sinusoid to-
gether and perform the subtraction from the original signal in the time-domain. However, this type
of additive synthesis is computationally expensive. An e�cient alternative would be to perform
the subtraction in the spectral-domain using inverse-Fourier techniques [Rodet and Depalle, 1992].
In either case, the residual component must be characterized in the spectral domain.

The residual component can be approximated using the output of a time-varying �lter, with
white noise as the input. There are several ways in which one may characterize the �lter. Perhaps
the simplest, and certainly the most memory-e�cient is with linear-predictive coding (LPC) anal-
ysis [Makhoul, 1975, Markel and Gray, 1976]. However, as the �exibility of the representation is
forefront in design choices, another possibility is to approximate the spectrum using line segments.
Here, the spectrum is divided up into a number of logarithmically-spaced sections, and the maxima
in each is identi�ed and connected. Using more points will increase the accuracy of the result, but
is not strictly necessary as the gains in perceptual quality are minimal. Due to the �exibility of
using line-segments to estimate the residual component, this method is often used over others such
as LPC in this context.

SMS is a very good, robust, and general model that provides high-�delity reproduction for a
wide range of input sounds. Much work has been done with it in the area of sound morphing.
However, the fact that it utilizes both a deterministic and a stochastic part makes the representation
unwieldy. Components must be interpolated separately, and while this provides more possibilities
for di�erent, unusual types of interpolation, the simplicity of a single component type outweighs
this novelty. Furthermore, the representation itself is far from perfect. As Serra himself points
out [Serra and Smith, 1990], this model has problems with sounds that include noisy partials (for
example, produced by a modulation). It would seem that, in practice, the assumed separation of
the deterministic and stochastic components of a sound is rarely simple or clearly de�ned.

4.2 Interpolation of Sinusoidal Models

Most perceptually interesting sound transformations require processing techniques in the frequency
domain rather than in the time domain because the ear is more sensitive to changes in the frequency
domain. Serra states [Serra and Bonada, 1998] that an e�ective spectral representation should,
ideally, provide high sound �delity and �exibility, while minimizing memory consumption and
computational requirements.

It should be noted that, among the many spectral models, variations in performance and the
ability to accurately represent a given input can be attributed to how well the assumed model
matches the process being analyzed. Therefore, to achieve good performance, we must carefully
choose the appropriate analysis method and parameters to match.

Robust models can provide good performance for the generalized case. Therefore we need a
representation of the sound in the spectral domain that is accurate, �exible, and robust to allow
us to perform a wide variety of transformations. When the transformation in question is sound
morphing, we must bear in mind that the interpolation principle dictates that we combine the
parameters of the representation of the sounds used in the morph to obtain the representation
of the morphed sound. The rest of this section is dedicated to the interpolation of sinusoidal
models, while the rest of the chapter presents alternative models proposed in the literature to
morph sounds.
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4.2.1 Interpolation Procedure

When using sinusoidal analysis, the interpolation procedure consists in establishing correspondence
between the two sets of partials and interpolating the amplitudes and frequencies of each pair
using equation 2.1 or equivalently 2.4. The interpolated values constitute a new set of partials that
de�ne a frame of the morphed sound. After all the frames are processed, we simply resynthesize
the morphed sound using the interpolated set of parameters.

The interpolation of frequency and amplitude values resulting from the sinusoidal analysis
according to the interpolation principle introduced in chapter 1 implicitly assumes that, to be
perceptually intermediate, the partials of the morphed sound should contain intermediate values
of frequencies and amplitudes. Here we should notice that the phase value cannot be interpolated
because it is not reasonable to expect a perceptually intermediate sound to have intermediate
phase values. In other words, phase relations are nonlinear. Therefore, instead of interpolating the
phase, we retrieve the phase values from the interpolated frequencies using equation 4.2.

In theory, we can achieve any of the transformations explained in chapter 3 with this rather
straightforward interpolation procedure. The results can be perceptually convincing, as long as we
take care of the temporal correspondence of frames before interpolating. Although the temporal
correspondence problem is very important to achieve perceptually relevant results, establishing
the correspondence between partials once two frames have been matched can be a surprisingly
complicated problem, depending on the type of sound used in the morph. As we will see next,
for harmonic sounds, correspondence is straightforward. For inharmonic sounds, however, the
correspondence between partials can become a di�cult problem to solve. Let us see why.

In part a) of �gure 4.3 we see two sets of 4 partials and their partial numbers. One straight-
forward way of matching the partials one by one is by their partial numbers. In this case we could
simply fade out (interpolate with zero) all higher partial numbers that �nd no match (if we suppose
no correspondence between the number of partials). However, this simple algorithm does not take
the values of the frequencies into account.

Using the partial number works if both sets of partials are (quasi-)harmonic and their funda-
mental frequencies are not too far apart (in terms of musical interval). The consequence can be a
sweep in frequency when this is not the case. Let us imagine that one of the sounds being morphed
is neatly harmonic (like a musical instrument sound), while the other is not, like a baby's cry. In
this case, it might be perceptually more consistent to match partials whose frequency values are
very close and fade all the others out, like illustrated by the dash-dot lines in part a) of �gure 4.3.

Osaka [Osaka, 2005] dubbed this the optimal partner search problem and proposed an algo-
rithm whose aim is to �nd the optimal solution to the problem of correspondence between two sets
of partials derived from sinusoidal analysis with sound morphing in mind. The algorithm �nds
the optimal solution by minimizing the distance between the frequency intervals for all possible
matches of partials (one-by-one). It is also possible to take the amplitudes of the partials into
consideration. However, part b) of �gure 4.3 shows that the solution can quickly become compu-
tationally intractable depending on the number of partials and on their positions on the frequency
grid because of the combinatorial nature of the problem.

In part c) of �gure 4.3 we see an alternative solution to the matching problem that avoids the
combinatorial explosion. The idea is to divide the frequency grid into frequency bands and solve
the problem inside each band. Part c) of �gure 4.3 supposes that the bands are linearly spaced
and that one of the sets of partials is harmonic, while the other is not. However, this solution
can be successfully applied (and lead to more interesting results) when the frequency bands are
perceptually related, such as the mel scale [Stevens et al., 1937], the bark scale or ERB.

Interpolation of sinusoidal modelling is amongst the most common approaches in the lit-
erature of sound morphing [Fitz et al., 2003, Fitz and Haken, 1996, Boccardi and Drioli, 2001,
Hatch, 2004, Osaka, 2005, Osaka, 1995, Tellman et al., 1995, Williams and Brookes, 2007,
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Williams and Brookes, 2009, Haken et al., 2006]. Tellman et al. [Tellman et al., 1995]. o�er us
one of the earliest descriptions of a morphing technique, which is based on a sinusoidal representa-
tion. The morphing scheme consists of interpolating the result of the Lemur [Fitz and Haken, 1996]
analysis and involves time-scale modi�cation to morph between di�erent attack and vibrato rates.

More recently, Fitz [Fitz et al., 2003] presented a morphing technique also using a sinusoidal
representation, and morphing is achieved again by simply interpolating the parameters of the
model. Osaka [Osaka, 1995] also proposes to interpolate the parameters of sinusoidal analysis
to morph between the sounds of musical instruments. Even though interpolation of sinusoidal
models is a very popular approach to sound morphing, it is de�nitely not the only one found in
the literature. Let us review some of them in the next sections.

Figure 4.3: Optimal partner search problem. The �gure illustrates di�erent possible matches
between pairs of partials in three situations. In part a) we suppose both sets of partials are
harmonic, in part b) we suppose they are both inharmonic, and in part c) we suppose one of the
sets is harmonic and the other inharmonic. Notice that this algorithm does not require one to one
correspondence.

4.3 Other Approaches

I will brie�y present alternative approaches to sound morphing that were proposed in the literature.
Some of these approaches use a classic sound model and the novelty is restricted to the method
for achieving the transformation. Others propose to model the sounds using a novel technique and
morphing is achieved by simply interpolating the parameters of the proposed model.

4.3.1 Magnitude Spectrograms

Even though most previous work in sound morphing has used sinusoidal analysis, Malcolm Slaney
and colleagues [Slaney et al., 1996] describe a creative approach to morphing in which they pro-
pose their own dedicated sound model and then they describe techniques based on magnitude
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spectrograms. In this approach, sound morphing is accomplished by representing the sound in a
multi-dimensional space that can be warped or modi�ed to produce a desired result. After match-
ing components of the sound, a morph smoothly interpolates the sound amplitudes to describe
a new sound in the same perceptual space. Finally, the representation is inverted to produce a
sound.

Figure 4.4 shows a block diagram of the approach proposed by Slaney et al. [Slaney et al., 1996].
It can be shown that this approach is similar to the source-�lter model formalization of sound
morphing, where the �lter is the MFCC based spectral envelope, and the source is the residual.

Slaney states that, unlike image morphing, time is an important dimension of sound and it can
be considered independently of the other sound dimensions. The morphs described here consider
time separately from the other dimensions of the auditory signal. As will be shown, the separability
of the temporal dimension simpli�es all aspects of audio morphing.

Figure 4.4: The three stages of audio morphing, representation, matching, and interpolation, are.
shown. The signal path for representing sound 2 is not shown to simplify the drawing. After Slaney
[Slaney et al., 1996]

4.3.1.1 Mel-Frequency Cepstral Coe�cients

Conventional spectrograms can represent any sound, but cross-fading spectrograms does not pro-
duce convincing morphs when there are pitch changes because formants move with the harmonics
and therefore simple scaling does not work [Slaney et al., 1996]. Slaney uses mel-frequency cep-
stral coe�cients (MFCC) to separate the broad spectral characteristics of the sound from the pitch
and voicing information. The MFCC coe�cients are used in the initial temporal matching and
to compute the smooth spectrogram. MFCC is computed by resampling a conventional magni-
tude spectrogram to match critical bands as measured by auditory perception experiments. After
computing logarithms of the �lter-bank outputs a low-dimensional cosine transform is computed.

In the approach proposed by Slaney et al. [Slaney et al., 1996], the MFCC representation is
inverted to generate a smooth spectrogram for the sound. After applying the cosine transform again
and undoing the logarithm we have a smooth estimate of the �lter-bank output. The �lter-bank
output is then reinterpolated to get a spectrogram. The logarithmic transform and low quefrency
cosine transform serve to �lter out the pitch information in the spectrogram.

MFCC is good at modeling the overall spectral shape, but it doesn't include pitch. When we
invert MFCC we get a rough approximation of the spectrogram, but without the pitch information.
It would be nice if we could summarize all the information about pitch with a small number of
scalars and then smoothly vary these numbers to get intermediate excitations. For example, we
might use one number for the pitch and one to indicate the amount of voicing.

Unfortunately, this type of summarization is not su�cient as is seen in speech compression
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systems. Simple LPC systems su�er from objectionable inaccuracies in the excitation. To provide
acceptable reconstructions, a large codebook is needed to summarize the possible residues.

In sound morphing we use a spectrogram of the residue to code the pitch and voicing in the
acoustic signal. A conventional shorttime spectrogram S (ω, t) encodes all the information in the
signal and the smooth spectrogram Ss (ω, t) describes the overall spectral shape. Dividing the short-
time spectrogram, S, by the smooth spectrogram, Ss, gives us a �pitch� or residual spectrogram,
Sp (ω, t), which describes the pitch and voicing information in the sound. The smooth and pitch
spectrograms form the basis of their morphing technique. They recover the original spectrogram
by multiplying the pitch and smooth spectrograms together.

4.3.1.2 Temporal Matching

Temporal matching is the requirement of correspondence in time domain. Matching is necessary so
that we know which features of the �rst sound correspond to any particular feature of the second.
Often a feature has moved and to a�ect a morph we need to slowly move the feature from where
it is in the �rst sound to its position in the second.

There are many ways to perform the matching. Dynamic time warping and harmonic alignment
are used to match features in audio morphing. Dynamic Time Warping (DTW) is used to �nd the
best temporal match between the two sounds. Over the course of the morph, we want features
that are common to both sounds to remain relatively �xed in time.

MFCC is often used in modern speech recognition systems as a distance metric and is used by
Slaney et al. [Slaney et al., 1996] for the same purpose. Using DTW allows us to calculate the
match between the two sounds so that later spectral stages have correspondence.

Sound morphs with di�erent properties are created with di�erent matching functions. In mor-
phing between two versions of the same song, the melody is important. The temporal matching is
done with a distance metric based on the dominant pitch. For other music (i.e. rap) we will want
to consider the underlying rhythm.

4.3.2 Physical Models

Hikichi et al. [Hikichi, 2001] propose to use physical modeling to obtain morphed sounds between
two di�erent instruments. The approach is very straightforward because it simply proposes to
interpolate the parameters of the two di�erent physical models of the instruments.

Hikichi et al. state that, since the arti�cial instrument can have the same control parameters
as the real one, the user can control its timbre more intuitively. They also say that most sound
morphing proposals in the literature attack the problem from a signal processing point of view,
especially using sinusoidal models. However, they conclude that the linear interpolation of the
parameters of their physical model does not lead to perceptually linear morphed sounds. So they
propose to construct MDS spaces using the source, target and morphed sounds to study how to
warp the interpolation factor to obtain perceptually linear morphed sounds.

Naturally, this approach renders the results very di�cult to obtain and to evaluate. Also, the
warping function is model dependent and propably user dependent too, since it is subjective.

4.3.3 Gaussian Mixture Models

Boccardi et al. [Boccardi and Drioli, 2001] use Gaussian mixture models (GMM) to build the
acoustic model of the source sound and then applies a set of conversion functions to transform
from source to target sounds.

First they present how to use GMM to model musical instrument sounds. They state that when
used to model the spectrum of a musical instrument sound such as a single sustained note, we may
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say that the components of the GMM represent di�erent portions of the sound (e.g., frames from
the attack, the sustain, or the release portion).

However, depending on the data the model is trained with, it may represent the notes from the
same instrument played with di�erent intensities, or notes from di�erent instruments, and so on.
In other words, a conversion function which relies on this model is in principle able to classify the
input sound frame to be transformed and to perform the transformation required for that frame.

Boccardi et al. use a sinusoidal plus residual model to represent the sounds, and focus on
the transformation of the magnitude of the partials only. In other words, they do not model the
di�erences of frequency and phase among the partials of the source and target sounds.

For this assumption to be considered reasonable, they also restrict the choice of the source
and the target sounds to a set of compatible signals (e.g., morphing among piano notes with
di�erent spectral characteristics, morphing among sustained notes of wind or string instruments,
etc.). Morphing is simply an interpolation of the parameters of the GMM representation of source
and target sounds. They do not report on the perceptual impact of their method.

4.3.4 Wigner Distribution Analysis

Hope et al. [Hope and Furlong, 1997] propose a morphing algorithm based on the Wigner distri-
bution analysis of the time-frequency contents of the sound instead of the traditional short-time
Fourier transform (STFT). By basing such morphing tools on Wigner distributions of musical tones,
rather than spectrograms, representational distortions would be minimized and detailed spectral
and temporal features of real instrument tones would be made much clearer for the purposes of
computational analysis and synthesis.

When attempting to develop a morphing algorithm, the intrinsic problems involved in the
analysis of timbre must �rst be considered. That is, the sounds to be morphed must �rst be
analyzed to determine those spectral and temporal features which characterize timbre. They make
a good point about the representation, it is important to have a good representation of the sounds
to be morphed in order to be able to blend the features encoded in this representation. Nonetheless,
they compare representations of synthetic sounds using both transforms, and even hint at how this
would impact when morphing musical instrument sounds.

Unfortunately, though, they do not present morphing results. It is not even clear if they
suggest interpolating the parameters of the Wigner analysis of the sounds being morphed. Their
main point is the comparison between the spectral resolution of both transforms. Due to the
preliminary character of this work, the perceptual impact of such procedure would have to be
investigated.

4.3.5 Neural Networks

Röbel [Röbel, 1998] describes a sound morphing technique that uses radial basis function (RBF)
neural networks to model the sounds as dynamical systems and the morphing procedure consists
in interpolating the attractors. He states that if the dynamical system, or the musical instrument,
is observed by means of an output signal, the characteristics of this signal, or the sound, are closely
related to the topology of the attractor.

In the context of real world sound signals the underlying system is always stable and, therefore,
a stationary sound signal is always related to an attractor. The type of attractor depends on
the musical instrument and its excitation. In most cases sounds obtained from chaotic attractors
are considered noise and, therefore, are not used by classical musicians. Therefore, the use of
musical instruments is often con�ned to periodic or quasi periodic attractors. However, musical
instruments are not used with a stationary excitation. For slowly varying dynamics this situation
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can be described by a system undergoing a parameter variation and, therefore, following a sequence
of attractors.

He describes how to synthesize sounds from attractors and how to morph sounds based on
homotopic mixing of dynamical systems [Röbel, 1998]. He presents morphing results using arti�cial
synthetic sounds and two saxophone signals that have been played by a professional player with
similar excitation and pitch di�erence of one half tone. Therefore he presents results of morphing
across the pitch instead of timbre related dimensions of musical instrument sounds.

The morphing algorithm is then applied to obtain morphed saxophone signals for the set of
�xed values of the interpolation factor α equally spaced between zero and one. He states that the
results presented con�rm that the attractors of the saxophone signals are smoothly transformed,
while their topology is preserved. He does not comment on the perceptual impact of the method,
though.

Finally, he ponders that if the model is operated in this regime, the large distance to the other
units leads to a prediction function that is locally constant, which in turn produces the undesirable
distortion. The problem has been addressed by formulating an additional constraint for the training
algorithm, such that the width parameters of the RBF units are kept above a �xed value. With
this constraint, he says, the distortions in the synthesized signals are no longer audible.

4.3.6 Wavelet Analysis

Ahmad et al. [Ahmad et al., 2009] propose to analyze the sounds with the discrete wavelet trans-
form (DWT) and to further reduce the dimensionality of the representation by singular value
decomposition (SVD). The morphing procedure is done by interpolation on the reduced SVD
domain and synthesizing. They state that the perceptual impact is yet to be investigated.



Chapter 5

Hybrid Musical Instruments

The aim of this work is to morph musical instrument sounds across timbre dimensions to create the
auditory illusion of hybrid musical instruments. We must understand the mechanisms underlying
musical instrument sound perception to manipulate the features of musical instrument sounds that
would create the desired e�ect. Therefore, this chapter revolves around the central concept of musi-
cal instrument sound perception, namely timbre. The concept of timbre is related to the subjective
response to the perceptual qualities of sound objects and events [Handel, 1995]. The association
between the term timbre and auditory object identi�cation can be traced back to the origins of the
word. In musical contexts, timbre is intrinsically associated with musical instrument identi�cation
[Fletcher, 1934]. Handel wrote that �we know that sound source identi�cation is not reduced to
waveform memorization because the intrinsic dynamic nature of the sources produces variations
[Handel, 1995].� Nevertheless, the relationship between timbre and sound source identi�cation is
obscured by the myriad perceptual phenomena encompassed by the term timbre.

Timbre perception is very complex and not very well understood. In 1960, the American
National Standards Institute � ANSI published a standard de�nition of timbre that was broadly
accepted and adopted: �Timbre is that attribute of auditory sensation in terms of which a listener
can judge that two sounds similarly presented and having the same loudness and pitch are dissimilar
[ANSI, 1960].� This de�nition implies that timbre, pitch and loudness are independent dimensions
of sound perception. However, the perceptual dependence between timbre and those parameters
is evident in some cases.

Timbre perception is inherently multidimensional, involving features such as the attack, spec-
tral shape, and harmonic content. The recognition of musical instruments, for example, depends
quite strongly on attack transients and on the temporal structure of the spectral envelope. The
characteristic tone of a piano depends upon the fact that the notes have a rapid onset and a grad-
ual decay. If a recording of a piano is reversed in time, the timbre is completely di�erent. It now
resembles that of a harmonium or accordion, in spite of the fact that the long-term magnitude
spectrum is unchanged by time reversal.

The multidimensional nature of timbre perception makes it very di�cult to isolate dimen-
sions, associate verbal labels and �nd physical variables associated to these dimensions. A
signi�cant breakthrough in timbre research is due to the application of multidimensional scal-
ing (MDS) techniques in musical instrument (dis)similarity experiments [Grey and Gordon, 1977,
Krimpho� et al., 1994, Krumhansl, 1989, Handel, 1995, McAdams et al., 2005]. MDS techniques
allow the investigator to propose a low dimensional space where the distances represent the percep-
tual (dis)similarity judgments. Figure 5.1 shows an example of such a space, usually referred to as
timbre space. A consequence of the representation of musical instrument sound perception as tim-
bre spaces is the possibility to associate acoustic correlates to each dimension. Physical variables
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that present signi�cantly high correlation with dimensions of timbre spaces are thought to capture
the physical cues used in the mental representation of musical instruments. The features used in
this thesis to guide the morphing transformation are acoustic correlates of salient dimensions of
timbre spaces obtained in psychoacoustic studies.

One interesting characteristic of timbre spaces derives from the property of MDS techniques.
MDS spaces can be chosen to be metric and orthogonal. The dimensions in orthogonal spaces are
independent and the notion of distance is de�ned in metric spaces. A metric orthogonal timbre
space would give independent acoustic correlates related to musical instrument timbre perception.

Figure 5.1: Example of multidimensional timbre spaces. After Grey [Grey and Gordon, 1977]

5.1 Timbre Perception

The classical model of musical sound proposed by the German physicist Hermann von Helmholtz
in 1885 [Helmholtz, 1885] postulates that the amplitude of the vibration determines the force or
loudness, and the period of vibration the pitch. Helmholtz concluded that quality of tone can
therefore depend upon neither of these. The only possible hypothesis, therefore, according to
Helmholtz, is that the quality of tone should depend upon the manner in which the motion is
performed within the period of each single vibration. However, Helmholtz wondered to what
extent the di�erences of musical quality can be reduced to the combination of di�erent partial
tones with di�erent intensities in di�erent musical tones. According to Helmholtz, in his time
there was a general inclination to credit quality with all possible peculiarities of musical tones that
were not evidently due to loudness and pitch. This was correct to the extent that quality of tone
was merely a negative conception. What Helmholtz means by negative conception is that timbre
was de�ned as what it is not, the qualities other than pitch, loudness, and duration. However,
later studies [Seashore, 1938] showed that the picture was not so simple and that there are timbral
variations associated with pitch changes (such as the registers of the clarinet) and loudness (such
as brassy trumpet sounds).

If timbre is the characteristic of perception that allows the listener to identify the instrument
that played the sound, how can there be timbral variations in one instrument due to, for example,
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Figure 5.2: Timbre, tone color, and sound quality. The �gure shows the hierarchical classi�cation
of sound quality that includes sound color and timbre as subsets. Adapted from [Letowski, 1992]

loudness? These variations exist, so in 1938 Carl Seashore says that the term must be re�ned.
Seashore [Seashore, 1938] conjectures that tone quality has two fundamental aspects, timbre and
sonance. Physically the timbre of the tone is a cross section of the tone quality, while sonance is
the pattern of change in timbre. This implies that in order for sonance to exist, a sound must last
long enough for patterns of change to be established.

Bregman [Bregman, 1990], on the other hand, states that the ANSI de�nition of timbre

"... is, of course, no de�nition at all. For example, it implies that there are some
sounds for which we cannot decide whether they possess the quality of timbre or not.
In order for the de�nition to apply, two sounds need to be able to be presented at
the same pitch, but there are some sounds, such as the scarping of a shovel in a pile
of gravel, that have no pitch at all. We obviously have a problem: Either we must
assert that only sounds with pitch can have timbre, meaning that we cannot discuss
the timbre of a tambourine or of the musical sounds of many African cultures, or there
is something terribly wrong with the de�nition."

Krumhansl [Krumhansl, 1989] points out that one of the major di�culties in �nding a de�nition
of timbre is generalizing the notion of timbre beyond the set of traditional orchestral instruments.
Pratt and Doak [Pratt and Doak, 1976] re�ne the ANSI de�nition of timbre, proposing that

"Timbre is that attribute of auditory sensation whereby a listener can judge that
two sounds are dissimilar using any criteria other than pitch, loudness or duration."

Many authors advocate to abandon the term timbre since the classical de�nition is inadequate, yet
widely accepted. Slawson [Slawson, 1985] proposes the term sound color to refer to a speci�c subset
of sound qualities of musical instrument sounds and speech vowels. In the light of the source-�lter
model of sound production, sound color is associated with the �lter. Letowski [Letowski, 1992],
on the other hand, proposes a hierarchical classi�cation of sound quality that includes timbre as
subsets of sound qualities. Figure 5.2 shows a schematic of sound quality assessment according to
Letowski.

Letowski proposes to di�erentiate between the terms timbre and sound quality using a the
X-timbre system of timbre subspaces based on the concept of �residual dimension�. The concept
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Figure 5.3: Basic elements of a hierarchical model of the auditory image based on the concept of
�residual dimensions� called X-timbre. Adapted from [Letowski, 1992]

of �residual dimension� can be understood as follows. If di�erences along one dimension of timbre,
such as loudness, dominate overall perception perception of sound and are not a desired object of
assessment, such di�erences can be equalized, i.e., the said dimension can be excluded from assess-
ment. After such a dimension is excluded from consideration, the auditory images are projected to
(N − 1)-dimensional space, and the di�erences among the images along the remaining dimensions
of perceptual space become more pronounced. Letowski states that this operation can be extended
on more than one dimension. The resulting N − k-dimensional space, where k is the number of
dimensions removed from consideration, is called �residual space�.

A basic descriptive model of an auditory image that utilizes the X-timbre system of labels is
shown in �gure 5.3. Letowski states that �the X-timbre method of labeling the timbral subspaces
is very �exible and cannot be outgrown. He says it constitutes a solid frame of reference needed
for the future development of more speci�c attributes of auditory image which are necessary for
parametric sound assessment� [Letowski, 1992].

5.1.1 Timbre Revisited

The Helmholtz model of musical sound represents the most signi�cant research work in musical
acoustics in the XIX century. Since then, researchers have determined a more detailed model of
musical instrument sounds. Digital recording allowed the investigators to show that the waveform,
and hence the spectrum, change radically during the course of a sound.

In his �Computer study of trumpet tones [Risset, 1966]� Jean-Claude Risset discovered that
each partial of a sound possesses a unique temporal amplitude envelope. This clearly contrasts
with the Helmholtz model, where all partials present the same temporal envelope. Risset concluded
the following regarding his studies: the spectrum of trumpet sounds is close to, but not perfectly
harmonic. The higher harmonics become richer as we go up the intensity scale (dynamics). There
is a rapid low amplitude quasi-random �uctuation in frequency. Higher partials attack later and
take longer to reach maximum amplitude during attack. Finally, Risset detected a formant peak
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around 1500 Hz. In subsequent studies Risset observed that the temporal evolution of the spectrum
of trumpet sounds plays a fundamental role on the characteristic sound quality of the instrument.

Other researchers, following Risset's steps, systematically used the computer to analyze the
temporal evolution of the spectrum of a variety of instrumental sounds. James Moorer and
John Grey published computer analyses showing the temporal evolution of the spectrum of
several instruments, including the violin [Moorer and Grey, 1977a], the clarinet and the oboe
[Moorer and Grey, 1977b], and the trumpet [Moorer and Grey, 1977c]. Apart from the amplitude
progression, the analyses determined the frequency variation of each partial. The frequency of
each partial �uctuates during the course of the sound. This variation can be rather erratic during
the attack portion. Resynthesis of the sound without the �uctuations in frequency produced a
perceived di�erence in sound quality.

Grey [Grey and Gordon, 1978] investigated if simpli�cations/alterations of the temporal pro-
gression of the spectrum are perceptually detectable. Grey approximated the amplitude envelope
of the partials of musical instrument sounds by straight line segments, and resynthesized trumpet
sounds using the simpli�ed data which were judged virtually identical to the original sounds. Grey
concluded that these slight variations in the amplitude envelope of the partials do not contribute
signi�cantly to the perception of timbre.

When a a set of spectral components is presented to a listener, they might fuse into a single
percept. One of the determinant factors is the onset asynchrony, which refers to the di�erences in
onset times of partials. Fluctuations in the frequency of the partials are also necessary to give the
perception of fusion. The perception of timbre involves correlating a number of factors, including
the nature of the attack, the harmonic contents, and the tuning of the partials. To a certain
extent, the loudness, pitch, and temporal aspects contribute to timbral characterization. Di�erent
researchers have suggested sets of independent dimensions for timbre classi�cation. John Grey
[Grey, 1975, Grey and Gordon, 1977] studied timbre using a set of 14 sounds from di�erent musical
instruments equalized in pitch, loudness, and duration, isolating the perception of dissimilarity
to dimensions of sounds independent of pitch and loudness according to the classical de�nition of
timbre. Then he presented the possible pairs of tones to listeners, asking them to rate the perceived
dissimilarity between each pair. Finally, he applied a multidimensional scaling (MDS) technique
to construct a three dimensional space that maps the dissimilarity judgment into distances. The
result, shown in �gure 5.1, is that sounds that are close in this space are perceived as similar in
timbre.

5.1.2 Timbre Spaces

Since the pioneering work of Helmholtz [Helmholtz, 1885], MDS techniques �gure among the most
prominent when trying to quantitatively describe timbre. McAdams [McAdams et al., 2005] and
Handel [Handel, 1995] independently propose comprehensive reviews of the early timbre space
studies. Grey [Grey, 1975, Grey and Gordon, 1977] investigated the multidimensional nature of the
perception of musical instrument timbre, constructed the three-dimensional timbre space shown
in �gure 5.1, and proposed acoustic correlates for each dimension. He concluded that the �rst
dimension corresponded to spectral energy distribution (spectral centroid), the second and third
dimensions were related to the temporal variation of the notes (onset synchronicity).

Krumhansl [Krumhansl, 1989] conducted a similar study using synthesized sounds and
also found three dimensions related to attack, synchronicity and brightness. Krimpho�
[Krimpho� et al., 1994] studied acoustic correlates of timbre dimensions and concluded that bright-
ness is correlated with the spectral centroid and rapidity of attack with rise time in a logarithmic
scale. McAdams [McAdams et al., 2005] conducted similar experiments with synthesized musical
instrument timbres and concluded that the most salient dimensions were log rise time, spectral
centroid and degree of spectral variation.
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More recently, Caclin [Caclin et al., 2005] studied the perceptual relevance of a number of
acoustic correlates of timbre-space dimensions with MDS techniques and concluded that listeners
use attack time, spectral centroid and spectrum �ne structure in dissimilarity rating experiments.
McAdams [McAdams et al., 2005] and Caclin [Caclin et al., 2005] proposed acoustic correlates for
each dimension they found in their timbre spaces, which capture perceptual aspects of musical
instrument sounds.

5.1.2.1 Acoustic Correlates of Timbre Dimensions

Therefore, the features used to guide the morphing transformation are important because of their
perceptual correlation. The acoustic correlates of timbre dimensions presented above used as fea-
tures allow to monitor the perceptual impact of the manipulation of sounds. For example, the
spectral envelope is important in timbre perception [Slawson, 1985]. LPCs are parameters that
describe the spectral envelope but carry little information about how a sound whose envelope
is described by them is perceived. The spectral centroid of the same spectral envelope, on the
other hand, carries important perceptual information about the sound because it is directly re-
lated to one of the three most salient dimensions of timbre spaces. The spectral centroid is said
to capture the perceptual dimension usually labeled brightness [Schubert and Wolfe, 2006]. Schu-
bert [Schubert and Wolfe, 2006] compared two models that predict perceived timbral brightness
in terms of the centroid of the frequency spectrum and concluded that brightness is much better
correlated with frequency spectrum centroid than with the ratio of the centroid of the frequency
spectrum to the fundamental frequency.

We should point out that most timbre spaces obtained with MDS techniques posses two im-
portant properties, they are orthogonal and metric. Orthogonality means that the dimensions
are independent, i.e., the perception of attack-time, for example, is independent from the spectral
centroid. In a metric space the notion of distance between elements is de�ned. This means that a
sound that is perceived as twice as bright as another one will be twice as far from the reference.

Figure 5.4: Orthogonal metric space. The �gure illustrates an orthogonal metric space and shows
two di�erent sound objects as distinct points in this space. The projections of these sound objects
on the axes represent the values of their features.

Figure 5.4 illustrates this idea with a two-dimensional abstraction of an orthogonal metric
timbre space. Each dimension of this space would correspond to a dimension of timbre perception.
Sonic features that are correlated to these dimensions capture aspects of timbre perception related
to this abstract timbre space. Two perceptually di�erent sound objects (the circle and the square)
are represented in this space as two distinct points, as shown in �gure 5.4 . The projections of
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the points onto the axes of the space represent the di�erent values of the features associated with
each sound object. The sound object represented by the square with rounded corners is supposed
to be perceptually intermediate between the circle and the square. Perceptually intermediate
objects should occupy intermediate positions in this space, and therefore have intermediate values
of features. Because the space is metric, if the intermediate sound is perceived as exactly halfway
between the other two with respect to a dimension, its corresponding feature value will also be
halfway between the other sounds'. A direct consequence is that sounds that are positioned linearly
between two in such space have linearly varying feature values.

When morphing sounds, a perceptually intermediate sound should be positioned between source
and target in the underlying timbre space, such that it has intermediate values of features. A
morphed sound whose descriptors are halfway between source and target should be perceived in the
middle of the two regarding the features captured by the descriptors. This thesis uses temporal and
spectral features to guide the morphing transformation. The temporal features used in this work
are log attack time, transition time, sustain time, release time, temporal centroid. The spectral
features are the spectral shape descriptors, namely spectral centroid, spectral spread, spectral
skewness, and spectral kurtosis. The spectral shape features are a measure of the distribution of
spectral energy. The next section introduces the features used as guides in this work and presents
how to calculate them.

5.2 Features

Many di�erent types of acoustic signal features have been proposed for the task of sound
description [Herrera et al., 1999]. Some of them come from the speech recognition com-
munity [Rabiner, 1993]. Others derive from previous studies on musical instrument sound
classi�cation [Foote, 1997, Scheirer and Slaney, 1997, Brown, 1998, Serra and Bonada, 1998,
Brown, 1999, Jensen, 2001, Peeters and Rodet, 2002, Peeters and Rodet, 2003, Peeters, 2003,
Martin and Kim, 1998, Wold et al., 1996] and from the results of psychoacoustical studies
[Krimpho� et al., 1994, Misdariis et al., 1998, Peeters et al., 2000]. A systematic taxonomy is out-
side of the scope of this work, nevertheless, we can distinguish features according to four di�erent
points of view, the time scale, the time extent, the perceptual relevance, and the extraction process.

1. The time scale re�ects how long the time support of the feature is. In other words, it says
if the feature is an instantaneous value because it was calculated on a frame of the STFT,
or a global value for the whole sound, such as the average of instantaneous features or a
description of some global attribute like total duration or attack time. Global descriptors
are computed once for the whole signal because they describe a feature related to an event
that only happens once or their meaning is associated with the entire duration of the signal.
Examples are attack time, temporal centroid, total duration, among others. Instantaneous
descriptors are computed for each frame of the STFT, therefore they are time-localized and
their values are considered relatively stable during the duration of the frame. An example
would be spectral features such as the spectral centroid, that can vary between frames.
The description of the variation of the values of the instantaneous descriptors itself can be
considered a spectro-temporal descriptor.

2. The time extent re�ects the fact that some descriptions apply only to part of the signal, for
example the attack time, while others apply to the whole signal, like the loudness of a sound.

3. The perceptual relevance re�ects the correlation between the feature value and a dimension
of sound perception. For example, the fundamental frequency is highly correlated to pitch
perception.
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4. The extraction process of the feature basically describes where in the feature extraction
�owchart shown in 5.5 the feature is calculated. The calculation of most features is rarely
done on the sound signal and usually depends on the estimation of parameters of a model of
the sound signal, such as temporal envelope, spectral envelope, sinusoidal modeling, and even
more complicated perceptual models [Peeters, 2004]. So we can further distinguish among
temporal, spectral, energy, harmonic or perceptual features.

Figure 5.5: Descriptor extraction �owchart depicting the general descriptor extraction scheme.

Temporal features are usually calculated directly on the sound signal, such as the attack time
or e�ective duration, but some temporal shape features might need some pre-processing, like the
estimation of the temporal envelope. Temporal features are usually global because they apply to
the whole sound signal. Spectral features are calculated on the spectrum of each frame of the
STFT, and as such are usually instantaneous.

An example would be the spectral shape features used in this work. Perceptual features, on
the other hand, may be either global or instantaneous because they are computed on a model of
the human hearing process, such as a loudness model or a �lter that mimics the response of the
middle ear.

As 5.5 shows, most features need some estimation of parameters of the sound, such as the
temporal or spectral envelope, or sinusoidal modeling for harmonic features. Most importantly,
some features depend on a model such as the mel scale or the frequency response of the middle
ear, explained in more detail in the next section.

5.2.1 Temporal Features

Here we estimate features related to the temporal evolution of spectral events. In other words,
we are interested in characterizing the evolution of the spectral features of the sound in time, and
estimate parameters that describe them. Usually, we segment the temporal evolution of musical
instrument sounds into regions such as attack, steady state or sustain, decay, and release. The
boundaries between these regions is blurred and not all sounds present all of them at the same
time.
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5.2.1.1 Temporal Centroid

The temporal centroid is the measure of the balance of energy distribution along the course of a
tone and is calculated as follows

τ =
∑

tta(t)P
t a(t) (5.1)

where τ represents the temporal centroid, t is time, and a (t) is the value of the amplitude
envelope for time t. The temporal centroid has been shown [Skowronek and McKinney, 2006] to
be especially important when comparing percussive and sustained sounds because that is when it
varies more signi�cantly, allowing us to distinguish between the two classes. Still, in the context
of strictly sustained sounds, the attack times and temporal centroids vary signi�cantly enough to
be relevant

5.2.1.2 Log Attack Time

The attack is present in all sounds and psychoacoustic (dis)similarity studies discovered
that it is one the most perceptually salient features of musical instrument sounds. Sev-
eral studies [Caclin et al., 2005, Krimpho� et al., 1994, Krumhansl, 1989, Grey and Gordon, 1977,
Handel, 1995, McAdams et al., 2006, McAdams et al., 2005] have shown that the attack time is
perceived roughly on a logarithmic scale, like pitch and its counterpart fundamental frequency.
This means that in order for a listener to perceive linear increments, the stimulus must be multi-
plied by the same factor. The log attack time (lat) is calculated as shown in 5.2, where at1 stands
for the beginning of the attack and at2 for the end.

lat = log (at2 − at1) (5.2)

5.2.1.3 Length of Other Segments

I propose to estimate the length of all the other segments considered, namely, transition, sustain,
decay, and release, without any warping. Caclin et al [Caclin et al., 2005] propose di�erent warping
formulas for each perceptually salient region considered in their study. The warpings used by Caclin
et al. were derived by calibrating a perceptual experiment using synthetic tones. This work morphs
recordings of acoustic musical instruments, which are much more complex than synthetic sounds,
thus there is no reason to apply the warping functions proposed by Caclin et al. for synthetic
sounds. Chapters 8 and 12 present respectively the model of the temporal events used in this
work, and how to estimate the duration of each one of them.

5.2.2 Spectral Features

The spectral shape features are calculated on every frame, which permits to follow their temporal
variation. Chapter 11 will show plots of the waveforms of musical instrument sounds used in this
thesis along with the temporal variation of the spectral shape features.

5.2.2.1 Spectral Shape Descriptors

Spectral shape features measure the balance of the distribution of spectral energy. The spectral
centroid is correlated with dimensions of timbre space obtained with MDS. Spectral skewness and
kurtosis were shown to be signi�cantly correlated with 2 out of 27 dimensions of 10 timbre spaces
tested in a study of acoustic correlates of timbre dimensions [McAdams et al., 2006]. Among the
many spectral features used in audio retrieval and classi�cation , the spectral shape descriptors that
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stand out among the most relevant are the standardized moments, calculated as if the magnitude
spectrum were a probability distribution. So we de�ne the frequencies k as the possible outcomes
and the probabilities to observe them are given by

p (k) =
|X (k)|∑
k |X (k)|

(5.3)

which is the normalized magnitude spectrum, such that the spectral moments become

µ′m = E [(p (k))m] =
∑

k

kmp (k) (5.4)

Following this de�nition [Peeters, 2004], the spectral shape descriptors are de�ned as the �rst four
standardized moments of p (k)

5.2.2.2 Spectral Centroid

Spectral Centroid: it is the �center of mass� or barycenter of the spectrum and is related to the
�brightness� of a sound. It is de�ned as the mean of p (k).

µ =
∑

k

kp (k) (5.5)

Notice that when we substitute p (k) given in equation 5.3 into equation 5.5, this is equivalent
to the de�nition in equation 8.2.

5.2.2.3 Spectral Spread

The spectral spread measures the spread of the spectrum around its mean value and is de�ned as
the variance of p (k).

σ2 =
∑

k

(k − µ)2 p (k) (5.6)

The description of the magnitude spectrum with the spectral centroid and spread are analogous
to using the center frequency and bandwidth to describe a formant peak of the spectrum (the
obvious di�erence is that the spectral shape features are calculated on the whole range of frequencies
of the magnitude spectrum).

5.2.2.4 Spectral Skewness

The spectral skewness measures the asymmetry of a distribution around its mean value. It is
de�ned as the third standardized moment.

γ3 =
∑

k (k − µ)3 p (k)
σ3

(5.7)

As shown in �gure 5.6, zero skewness indicates a symmetric distribution, positive skewness
indicates more energy on the left, and negative skewness indicates more energy on the right.
Naturally, the spectral distribution of most natural sounds tends to have positive skewness to
re�ect the fact that the spectral energy is concentrated on the lower frequency end of the spectrum.
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Figure 5.6: Skewness. The �gure shows three distributions and their associated values of skewness.

5.2.2.5 Spectral Kurtosis

The spectral kurtosis gives a measure of the �peakdness� of p (k). It is measured as the fourth
standardized moment.

γ4 =
∑

k (k − µ)4 p (k)
σ4

(5.8)

The kurtosis of the Gaussian distribution is equal to 3 and is the reference value. So a normal
distribution has kurtosis 3, a distribution �atter than the normal distribution has kurtosis smaller
than 3, and a more �peaky� distribution has kurtosis greater than 3, as illustrated in �gure 5.7.

Figure 5.7: Kurtosis. The �gure illustrates distributions with di�erent values of kurtosis.

5.2.3 Calculation of Features

The spectral shape features can be calculated on di�erent frequency and amplitude scales. Particu-
larly, we know that the logarithmic frequency and amplitudes in dB (decibels, also logarithmic) are
scales that are somewhat related to the perception of frequencies and their respective amplitudes.
Thus we note that the spectral shape features can be calculated on the �perceptual spectrum� as
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shown in �gure 5.8. Figure 5.8 shows the magnitude spectrum expressed in linear amplitude and
frequency scales on the left, the �lter that simulates the response of the middle ear in the middle,
and the �perceptual spectrum� on the right. The �perceptual spectrum� is calculated as follows.

1. The frequency and amplitude scales of the magnitude spectrum are warped;

2. The �mid ear �lter� is applied to the warped magnitude spectrum.

The result of the operations described above is the perceptual magnitude spectrum shown in the
�gure. The amplitude is expressed in decibels (dB). The map from linear frequency in Hertz to
mel frequency in Hertz is the following

fm = fl

fbC fl < fb

fm = C
[
1 + log

(
fl

fb

)]
fl > fb

(5.9)

where fm is the frequency in mel, fl is linear frequency, fb is the linear breakpoint of the mel
frequency, and C is the scaling factor of the normalized mel scale. The breakpoint of the mel
frequency fb is a parameter of the conversion. Usually 1000 Hz is considered reasonable. C is
selected such that the center bin of the linear frequency vector translates into the center bin of the
normalized mel scale. This gives

C =
N/2(

1 + log
(

SRN2

2fb

)) (5.10)

where SR is the sampling rate, and N is the number of frequency bins.
Finally, the spectral shape descriptors are calculated using the mel frequencies and amplitude

values in dB. The result is the distribution of spectral energy calculated on the perceptual spectrum.
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Figure 5.8: Perceptual Spectral Shape Descriptors

We should notice that the widely used mel frequency cepstral coe�cients (MFCC)
[Davis and Mermelstein, 1980] are calculated in a similar way, using perceptually motivated mod-
els. But the coe�cients encode information about the spectral envelope without explicitly using the
actual curve, which we need to calculate the spectral shape descriptors. In their approach to sound
morphing, Slaney et al. [Slaney et al., 1996] use an MFCC based spectral envelope to describe the
overall shape of the spectrum, without pitch information. Terasawa [Terasawa et al., 2005] pro-
poses to use 13 MFCCs to describe the color of a spectrum, or its spectral shape, instead of spectral
shape descriptors. Chapter 13 presents a derivation of the analytic relationship between cepstral
coe�cients and the spectral shape descriptors developed in the context of this thesis.
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5.2.3.1 The Mel Scale

Stevens, Volkmann and Newman [Stevens et al., 1937] and later Stevens and Volkmann
[Stevens and Volkman, 1940] established a scale relating perceived pitch to frequency that they
called the mel scale (short for melody scale). The mel scale encompasses the entire range of au-
dible frequencies and it is neither strictly logarithmic as the musical-pitch scale, nor is it linear.
Interestingly, it correlates well with a variety of other psychophysical and some physiological mea-
sures, including the relation of frequency to the distance of the point of maximum excitation along
the basilar membrane. Among the methods used to derive the mel scale was the �fractionation�
method, in which the listeners were asked to set the frequency of one sinusoid to a pitch that
was some prescribed fraction of the pitch of another standard tone. The tone under the listener's
control was to be set to one-third of the pitch of the standard, for example. Musicians, used to
think in terms of octave equivalence and musical intervals, are usually hard-pressed to imagine how
they might respond to such a task; however, the results from the few musicians who participated
in the experiments did not di�er signi�cantly from those of non-musicians.

The mel scale was said [Stevens et al., 1937] to pertain to one aspect of musical pitch, its height,
as distinguished from its pitch class or chroma. The distinction between these two aspects of pitch is
common in Western music, and it seems to hold cross-culturally. It is perhaps clearest in the theory
of atonal and dodecaphonic music. The 12-tone row or a smaller pitch set controls the chroma,
whereas the height - the register - is chosen according to other considerations. A provocative and
di�cult question is whether composer's registral choices have in some fashion re�ected the mel
scale instead of the more obvious log-frequency scale. The interest is to investigate whether the
mel scale serves as a measure of perceptual distance in pitch.

An alternative interpretation of the mel scale follows from the possibility that listeners in the
original mel scale experiments were not judging a dimension of ordinary auditory sensation at all.
Sine waves, after all, do not occur in nature, and the simplicity of their mathematical speci�cation
is not re�ected in the sensations to which they give rise. Listeners in the mel-scale experiment may
have been forced by the poverty of the acoustical stimulus to listen in a �reduced� manner. When
faced with a sound that had neither genuine pitch nor color, listeners gave responses that, in e�ect,
directly re�ected some measure of distance along the basilar membrane and not the higher levels
of auditory analysis that must underlie both pitch and color determinations in natural sounds.
According to Slawson [Slawson, 1985], if this interpretation is correct, the mel scale pertains to an
auditory process in the cochlea that underlies both pitch and sound color.
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Chapter 6

The Source-Filter Model

In this chapter the source-�lter model of sound production will be presented. Historically,
the source-�lter model was developed to explain the mechanisms of speech production. The
source��lter model of speech production models speech as a combination of a sound source, the
vocal cords, and a linear acoustic �lter, the vocal tract (and radiation characteristic). According
to this model, speech is viewed as the result of passing a glottal excitation signal (source) through
a time-varying linear �lter that models the resonant characteristics of the vocal tract.

The development of the model is due, in large part, to the early work of Gunnar Fant
[Fant, 1960]. While only an approximation, the model is widely used in a number of applica-
tions because of its relative simplicity. An important assumption that is often made in the use
of the source-�lter model is the independence of source and �lter. Thus speech production is the
result of a special interaction between source and �lter in which the �lter changes the source im-
printing its resonant characteristics on its spectrum, but the frequencies of the partials are not
a�ected by the interaction.

The assumption of independence between source and �lter partially explains why the source-
�lter model is more rarely applied to model acoustic musical instruments, whose source and �lter
are strongly coupled. The coupling between source and �lter for musical instruments can be
easily understood as and interaction between source and �lter in which the �lter drives the source.
In other words, the �lter imposes not only its resonant characteristics to the source, but also
the frequencies at which the source will resonate. In more musical terms the �lter tunes the
fundamental frequency or the pitch of the source.

Nevertheless, there are some special conditions under which the source-�lter model can be
applied to model the production of acoustic musical instrument sounds. Notably, when the sounds
we are interested in have the same pitch (or fundamental frequency), to eliminate the dependency
of the pitch from the model. These conditions will be presented in depth in this chapter, but
we will �rst review the original source-�lter model of speech production and adapt it to acoustic
musical instruments.

The approach adopted in this chapter draws parallels between speech and musical instrument
sounds, adopting techniques speci�cally developed for speech in a musical instrument sound model
that can be used in morphing. For instance, the production of sound by the vibrating lips inside a
mouthpiece is a very complex problem that is, in practice, closely analogous to the production of
sounds by the vocal folds. So, this chapter presents the basic aspects of the source-�lter model of
speech production and explains how we can apply it to musical instrument sounds.
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Figure 6.1: Schematized diagram of the vocal apparatus. After Rabiner
[Rabiner and Schafer, 1978]

6.1 The Source-Filter Model for Speech

In studying the speech production process, it is helpful to abstract the important features of the
physical system in a manner which ultimately leads to a realistic yet tractable mathematical model.
Figure 6.1 shows a physically related schematic diagram of the vocal system. For completeness the
diagram includes the sub-glottal system composed of the lungs, bronchi and trachea, a mechanical
model of the vocal cords, including mass, spring and damping components, and a variable area
set of tubes that model the vocal tract con�guration. The sub-glottal system serves as a source
of energy for the production of speech. The mechanical model of the vocal cords provides the
excitation signal for the vocal tract. The resulting speech signal is simply the acoustic wave that
is radiated from this system when air is expelled from the lungs and the resulting �ow of air is
shaped accordingly by the (time varying) vocal tract.

The vocal tract and nasal tract are shown in �gure 6.1 as tubes of nonuniform cross-sectional
area. As sound, generated as discussed above, propagates down these tubes, the frequency spectrum
is shaped by the frequency selectivity of the tube. This e�ect is very similar to the resonance e�ects
observed with organ pipes or wind instruments. In the context of speech production, the resonance
frequencies of the vocal tract tube are called formant frequencies or simply formants. The formant
frequencies depend upon the shape and dimensions of the vocal tract; each shape is characterized
by a set of formant frequencies. Di�erent sounds are formed by varying the shape of the vocal
tract. Thus, the spectral properties of the speech signal vary with time as the vocal tract shape
varies.

Based on the discussion of the mechanisms for speech production/generation by humans, a
simple linear model has evolved for characterizing speech signals. If we assume that the excitation
signal is represented as e (t), with Fourier transform E (ω), and the vocal tract transfer function is
called v (t), with Fourier transform V (ω), then the resulting speech waveform is the convolution
of e (t) and v (t), i.e.,

s (t) = e (t) ∗ v (t) (6.1)

or, in the frequency domain

S (ω) = E (ω)V (ω) (6.2)
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Figure 6.2: Linear model of speech production showing temporal and spectral representations of
the source, vocal tract and resulting speech signal. After Rabiner [Rabiner and Schafer, 1978]

Figure 6.2 shows this linear model of speech production with plots of the temporal and spectral
representations of the source, vocal tract and the resulting speech signal for a voiced section of
speech. The excitation signal is represented as a periodic train of very short pulses with pulse
spacing τ and with a �at frequency spectrum consisting of periodic impulses with spacing 1/τ
(Strictly speaking, the frequency spectrum of a periodic train of (�nite width) pulses is not �at
but has a spectral fallo� beginning at a frequency related inversely to the width of the pulses.
We will not be concerned with this e�ect at this time.) The vocal tract impulse response has
a continuous Fourier transform that peaks at the resonances (formants) of the particular vocal
tract con�guration, as seen in the middle part of �gure 6.2. The resulting speech waveform is also
periodic, with period τ , and with a Fourier transform that is the product of the Fourier transforms
of the excitation and the vocal tract impulse response; i.e., a line spectrum (with frequency spacing
of 1/τ and a shape that is representative of the vocal tract spectral shape, as shown in �gure 6.2).
The next section investigates how we can adapt the source-�lter model to explain the production
of acoustic musical instrument sounds from a theoretical point of view.

6.2 The Source-Filter Model for Acoustic Musical Instru-
ment Sounds

Slawson [Slawson, 1985] proposes a theory of sound color and argues that it is associated with
the �lter in the source-�lter model of sound production, which he states can be used to analyze a
broad class of sounds. Slawson explains that, according to this model, a sound is produced when
an object is struck, or excited, by some kind of mechanical energy and the object in turn changes
the excitation in some manner. The mechanical excitation is called the source and the object itself
is the �lter. The independence of source and �lter and, at the same time, their interaction or the
modi�cation of the source by the �lter are the essential features of the source-�lter model.

Slawson states that �Sound color is associated with the �lter, not the source. To keep sound
color constant, keep the �lter constant.� Since the theory of sound color is a general theory of
the perception of sounds, Slawson also draws a parallel between the source-�lter model and speech
production. Accordingly, the main source in vowels is the action of the vocal chords and the main
�lter is the vocal tract, the cavity formed by the throat and mouth. In speech, the vocal chords
(source) carry information related to intonation, while the vocal tract (�lter) is responsible for
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the resonant modes (used in speaker identi�cation and voice conversion systems). For musical
instrument sounds, the source is responsible for the pitch and is related to expressivity and e�ects
such as vibrato, while the �lter is the resonant cavity, usually the body of the instrument.

One important signal processing aspect of the source-�lter model is how we represent the
source and the �lter mathematically and how we interpret this representation under the light of
the theory of sound color. In this respect, the e�ect of the interaction between source and �lter
is modeled by the spectral envelope of the resultant sound, like shown in the middle of Figure 6.2
where it is represented by |V (ω)|. Now, Slawson rephrases the previous statement as �To keep
the color of a sound constant, keep its spectrum envelope constant.� He interprets it as a more
precise version of his previous rule because it says that, when using signal processing methods to
transform audio signals, in order to keep the �lter constant we should keep the e�ect of the �lter
constant [Slawson, 1985]. Let us see next under what conditions we can apply the source-�lter
model to acoustic musical instruments sounds

6.2.1 Acoustic Musical Instruments and Strong Coupling

The instruments of the orchestra produce sounds in a variety of ways. With the exception of some
percussion instruments, however, they all share a mode of action which contrasts with that of the
vocal tract being excited by the vocal chords and which fail to meet one of the requirements of
the source-�lter model. All the string and wind instruments have a source (the bow or a buzzing
reed), and all have a �lter (the string and resonant body or the horn). Theoretically, the model
does not apply because of the way the source interacts with the �lter in those instruments. The
source-�lter model supposes that the source and the �lter are independent, but in most musical
instruments the source is coupled to the �lter.

Let us consider the clarinet, for example. We can buzz at any pitch on the mouthpiece alone.
However, when the mouthpiece is inserted into the horn, only the pitch that has been �ngered
can be played (without extra e�ort). When playing in the standard way, if we attempt to buzz
at A below middle C (220 Hz), but we have covered the holes in the instrument in such a way
to produce G a whole step below, the G will sound rather than the A. The source may start the
sound at its own frequency but immediately the �lter, at its favored frequency, begins to act on
the source, forcing a change.

This feedback from the �lter to the source changes the picture of the source-�lter model. The
source is strongly coupled to the �lter in the clarinet, which means that the clarinet source is not
independent like the model assumes originally, it is driven by the �lter. In vowel production the
�lter changes the amplitudes of the source components but does little else to the source. In other
words, source and �lter are weakly coupled. Therefore, to change the pitch of the voice, we change
the pitch of the source. In the clarinet and most other musical instruments, the �lter a�ects the
source as well. In fact, the usual method of changing the pitch of a musical instrument is not to
alter its source characteristics, but rather to change the �lter (the e�ective length of the horn or
of the string).

Figure 6.3 illustrates one possible di�erence between weakly and strongly coupled systems
under a change of pitch of an octave. First we suppose that both systems happen to have the same
original spectrum when they are playing the same pitch. We want to investigate the e�ect on the
spectrum of playing a pitch an octave higher.

In the weakly coupled case, the �lter - thus the spectral envelope - stays the same, emphasizing
and attenuating a set of more sparsely distributed partials of the source that results in a pattern
of relative amplitudes of the same partials quite di�erent from the pattern at the lower pitch. In
strongly coupled systems, on the other hand, the �lter causes changes in pitch, so the �lter itself
must change. One possibility is for the spectral envelope to stretch out to higher frequencies, with
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Figure 6.3: Changing pitch under weak and strong coupling. If the original spectrum is produced
by a source-�lter system that is weakly coupled, raising the pitch by an octave will result in the
spectrum shown in the middle. If, on the other hand, the original spectrum is produced by a
system with strong coupling, the �lter itself changes with the change in pitch. If we assume that
the only change in this �lter is a proportional stretching, then raising the pitch by an octave results
in the alternative spectrum shown on the right. Adapted from Slawson [Slawson, 1985].

the result that the partial amplitudes remain the same as they were at the lower fundamental
frequency.

In this case, Slawson says that for strongly coupled systems we need a new rule concerning sound
color. He proposes the following �to keep sound color constant, keep the relative intensities of the
partials constant.� This new statement about sound color and the original rule about the �lter
(spectral envelope) are contradictory, so Slawson proposes to investigate whether human listeners
favor the �rst or second alternative by carrying out psychoacoustic experiments and suggests that
the preponderance of the evidence favors the previous rule that says that to keep sound color
constant we must keep the spectral envelope constant [Slawson, 1985].

It is hard, however, to simply reject evidence about the way musical instruments work and the
term color has been used in reference to the sounds of musical instruments. So Slawson proposes
to resolve the dilemma by closer analysis of the characteristics of musical instruments that do not
change with pitch. In other words, we should look for subsystems of a musical instrument that are
weakly coupled to the rest of the instrument and that may be largely responsible for the sound
color of the instrument.

Let us suppose for a moment that we can represent the strongly coupled and weakly coupled
components of musical instruments separately. Now we suppose that we can represent the strongly
and the weakly coupled components of the source-�lter model for musical instruments in cascade,
like shown in �gure 6.4. In this model, the source e (t) corresponds to the blowing into the
mouthpiece or the bowing of the strings. The highly nonlinear system Sc models the strongly
coupled component, responsible for the pitch of the sound emitted by the instrument, such as the
�ngering for the clarinet. The periodic signal x (t) is the result of the interaction between e (t) and
the Sc. The pitched signal x (t) is fed into the weakly coupled component of the system, the linear
shift-invariant (LSI) �lter Wc that represents the resonator.

Let us see examples of what these separate strongly and weakly coupled components correspond
to for acoustic musical instruments. Figure 6.5 illustrates the construction of the violin. When
the violinist draws the hair of the bow across the strings, these are set in motion by the energy
applied by the friction between the bow and the string. When the strings are bowed, they are
set to vibrate with a fundamental frequency given by the length of the string (which may depend
on the �ngering). The strongly coupled component of the model corresponds to this part. The
vibration of the strings containing the fundamental frequency and its overtones (harmonics) are
modeled by the signal x (t). The bridge, shown in �gure 6.5, is responsible for transmitting the
vibration of the strings to the body of the instrument, which is modeled as the weakly coupled
component of the system Wc. We suppose that the modes of vibration (resonances) of the body
of the instrument are independent (decoupled) from the rest of the system and that the �lter Wc

models its in�uence on the sounds produced by the instrument.
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Figure 6.4: Independent representation of the strongly and weakly coupled components of the
source-�lter model. The �gure illustrates the supposition that musical instruments can be repre-
sented as two separate components, the �rst highly nonlinear component accounts for the strongly
coupled e�ect while the second linear component models the weakly coupled response.

There remain acoustic systems that do not �t the source-�lter model very well and some
perceptual regularity holds for sounds produced in those systems, so Slawson proposes to �nd
another term, such as instrumental quality, for this possible psychological attribute and reserve
sound color for cases in which the source and the �lter are weakly coupled. So the conclusion is
that musical instruments are devices in which sound color cannot be held invariant as the pitch
changes. In this work, in order to respect the assumptions about decoupling of source and �lter, I
propose to morph musical instrument sounds with the same pitch.

6.3 Resonances and the Spectral Envelope

It is important to investigate the relationship between the spectral envelope and the physical
properties of the �lter, the resonant cavity or the body of the instrument. To characterize the
resonances of tubes and cavities that can be used to approximate the body of musical instruments
(and even the vocal tract) we would need the its impulse response. According to �gure 6.4, the
spectrum of the sound s (t) is the result of the interaction between the pitched source x (t) and
the �lter Wc. The spectral envelope curve models the result of this interaction when the source is
not impulsive. Therefore, the formant peaks of the spectral envelope, the regions of higher energy
content in the resultant spectrum, are only an approximation of the resonant modes when the
instrument is excited by a periodic signal.

In our source-�lter model depicted in �gure 6.4, we suppose that the �lter Wc is responsible for
sound color, and thus the spectral envelope models its in�uence rather than that from Sc. Taking
one step further, we will assume that the source e (t) has a �at spectrum (such as white noise)
and the in�uence of the system Sc changes only the frequency values of the partials, such that the
e�ect of Sc on the amplitudes is negligible. This means that we assume the signal x (t) has a �at
magnitude spectrum and is periodic, with period de�ned by the system Sc.

When morphing musical instrument sounds, we are mainly interested in the relationship be-
tween the signals x (t) and the resulting sound s (t), so that we will model x (t) as the source that
drives the resonant �lter Wc. The musical instrument sound s (t) is separated into a sinusoidal
component ss (t) plus a residual component sr (t) as follows

s (t) = ss (t) + sr (t) (6.3)

where sr (t) can be seen resulting from the subtraction of the purely sinusoidal component
ss (t) from the original sound s (t) as follows sr (t) = s (t)− ss (t). Both the sinusoidal component
ss (t) and the residual component sr (t) are modeled as source and �lter. The �lter component
of both is modeled via spectral envelope estimation, while the sources are modeled separately.
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Figure 6.5: The construction of the violin. The �gure names each part of the violin.

The source part of the sinusoidal component is modeled as sinusoids using sinusoidal analysis
[McAulay and Quatieri, 1986, Serra and Smith, 1990], and the source part of the residual compo-
nent is modeled as white noise. When we impose some constraints on the signal s (t), the resonant
�lter Wc can be considered as an LSI system, such that linearity guarantees that the source signal
x (t) can also be decomposed into a sum of a sinusoidal plus a residual parts as follows

x (t) = xs (t) + xr (t) (6.4)

When the �lter Wc meets the conditions to be modeled as an LSI system, the following relation
holds

s (t) = x (t)∗Wc (t) = [xs (t) + xr (t)]∗Wc (t) = xs (t)∗Wc (t)+xr (t)∗Wc (t) = ss (t)+sr (t) (6.5)

As will be clear later in section 6.5, the source xs (t) is modeled as a sum of sinusoidal partials
and the e�ect of the resonant �lterWc on the sinusoidal component hs (t) is modeled as the spectral
envelope of ys (t). For the residual component, the e�ect of the resonant �lter Wc is modeled as
the spectral envelope of yr (t), while the residual source xr (t) that drives it is considered white
noise.

It is important to notice that only when we interpolate both source and �lter is the result
morphing according to the formalization in section 3.3.3. Stylianou [Stylianou, 2008] gives a clear
example for voice transformations. Still, there are authors that do not draw a line between sound
morphing and cross-synthesis [Wen and Sandler, 2010], specially when using a source-�lter model.

It is very easy to fall into the trap of confusing cross-synthesis and sound morphing. Using the
formalization from chapter 3, we can view the di�erence between cross-synthesis and morphing
more clearly using the vocabulary employed in the source-�lter model. In cross-synthesis, the
sources and �lters are not changed in any way, they are estimated for both sounds and exchanged
upon resynthesis. Morphing, on the other hand, requires an additional step (usually achieved by
means of interpolation) to obtain a morphed version of the source and of the �lter. The morphed
source and �lter are then used to resynthesize the result.
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6.4 The Source-Filter Model from a Temporal Perspective

It is clearly not enough to only take spectral characteristics of the sounds into account when
modeling the sounds of musical instruments. Contrary to the Helmholtz model, we know that
musical instrument sounds have dynamic varying spectral features and that this temporal variation
plays an important part in the perception of these sounds. One illustrative example would be
playing a recorded piano note forward and backward. We know that the spectral contents are
exactly the same, but due to the reversed order, they are perceived as two completely di�erent
sounds.

In the example of the reversed piano note, the major change between both sounds we hear
can be explained by the temporal envelope. The temporal envelope describes how the energy (or
amplitude in some instances) of the sounds evolves in time. This distribution of energy in time
is a major factor in (dis)similarity judgments and it has been shown to a�ect the perception of
�percussiveness� [Skowronek and McKinney, 2006]. Chapter 9 is dedicated to the estimation of the
temporal envelope. In this section we will consider the temporal evolution of the source and �lter
components, while chapter 8 will present considerations on how the interaction between source and
�lter from a strictly temporal perspective a�ects the resulting sound, and specially how it can be
used to include perceptually salient features of musical instrument sounds in our model

Even though there are other temporal factors that a�ect our perception of sounds (such as
attack time, for instance), the temporal envelope remains among the most perceptually relevant.
It can be said that the temporal envelope of a sound depends primarily on that of the excitation.
In other words, the temporal evolution of the energy depends on how energy is supplied to the
system (musical instrument).

Figure 6.6 shows a simpli�ed schematic view of the temporal evolution of the excitation (dotted
line) and the resulting temporal envelope followed by the sound (solid line) for two markedly
distinct classes of excitation methods, namely step-like (part a) and impulse-like (part b). Step-
like excitation corresponds to playing modes whose energy is supplied for some length of time
before being interrupted, while impulse-like is when energy is supplied in a short burst. The
former typically applies to sustained sounds resulting from bowed strings and blown instruments,
and the latter to percussive excitations such as plucked strings or struck instruments, although
blown or bowed staccato notes would probably be better described by it. The beginning and end
of the energy supply for each excitation mode are highlighted by long arrows and the short arrow
marks the maximum amplitude attained by the sound.

In chapter 8, we make a connection between the mainly physical events such as onset, attack,
decay, sustain, release and o�set and its model counterparts in connection with the excitation and
resulting temporal evolution presented earlier. The idea is to �nd signal level manifestations of the
physical gestures. Our main goal is to show that these events cannot be solely described by the
amplitude envelope of most sounds, such that we need a more complete model to appropriately
segment them.

6.5 Mathematical Modeling of Source and Filter

All musical instruments produce sound via the excitation of a vibrating structure. Woodwind, brass
and percussion instruments radiate sound directly. However, stringed instruments radiate sound
indirectly because the vibrating string itself radiates an insigni�cant amount of energy. Energy
from the vibrating string therefore has to be transferred to the much larger area, acoustically
e�cient, radiating surfaces of the body of the instrument. The resultant modes of vibration are
complex and involve the interactions and vibrations of all the component parts, such as strings,
bridge, front and back plates, sound post, neck, and even the air inside the volume of the violin
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Figure 6.6: Simpli�ed temporal evolution of the excitation (dotted line) and resulting amplitude
envelope (solid line) for two distinct classes of excitation modes. In a) we see the typical excitation
and amplitude envelope resulting from the step-like excitation (e.g., blown/bowed) and in b) for
impulse-like excitation (e.g., plucked/struck). The beginning and end of the excitation are marked
with long arrows, while the short arrow shows the maximum amplitude attained by the resulting
amplitude envelope.

body.
Any vibrating structure presents a number of normal modes of vibration. Damping plays a

major role on the nature of the normal modes and the normal modes can be described by the same
equations of motion as a simple damped mass-spring resonator.

mn
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Qn

∂ξn
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+ ω2
nξn

)
= F (t) (6.6)

where the e�ective massmn at the point p is de�ned in terms of the kinetic energy of the excited
mode 1

2mn (∂ξn/∂t)2p , ωn = 2πfn is the eigenfrequency of free vibration of the excited mode in
the absence of damping and Qn is the quality factor describing its damping. We consider a local
driving force F (t) at point p, although it can be applied at any chosen point on the structure or
distributed over the whole surface.

Typical driving forces are those acting on the bridge of a bowed or plucked string instrument
and the pressure �uctuations at the input end of the air column of a blown woodwind or brass
instrument. Such forces are generated by highly nonlinear excitation mechanisms. In contrast, the
vibrations of the vibrating structure are generally linear with displacements proportional to the
driving force. However, there are important exceptions for almost all types of instruments, when
nonlinearity becomes signi�cant at su�ciently strong excitation.

In any continuously bowed or blown musical instrument, feedback from the vibrating system
results in a periodic driving force, which will not in general be sinusoidal. Nevertheless, by the
Fourier theorem, any periodic force can always be represented as a superposition of sinusoidally
varying, harmonically related partials, with frequencies that are integer multiples of the periodic
repetition frequency. We can therefore consider the induced vibrations of any musical instrument
in terms of the induced response of its vibrational modes to a harmonic series of sinusoidal driving
forces.
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6.5.1 Signal Processing Modeling of Source and Filter

The source-�lter model of speech production views speech as the result of passing a glottal exci-
tation signal through a time-varying linear �lter that models the resonant characteristics of the
vocal tract. A well known source-�lter system is that based on linear prediction (LP) of speech,
explained in detail in chapter 7. In its simplest form, a time-varying �lter modeled as an au-
toregressive (AR) �lter is excited by either quasi-periodic pulses (during voiced speech) or noise
(during unvoiced speech). A more �exible representation of the excitation signal has been proposed
for speech [McAulay and Quatieri, 1986] and musical instrument sounds [Serra and Smith, 1990]
independently and is referred to as sinusoidal models (SM). In sinusoidal modeling, the excitation
signal xs (t) is represented by a sum of sinusoids

xs (t) =
K(t)∑
k=0

ak (t) exp [jφk (t)] (6.7)

where ak (t) and φk (t) are the instantaneous excitation amplitude and phase of the kth sinusoid,
respectively, and K (t) is the number of sinusoids, which may vary in time. For speech and musical
instrument sounds, a model where the sinusoids are harmonically related is a good approximation
(even though they are quasi-harmonic), which leads to

d

dt
φk (t) = 2πktf0 (t) (6.8)

where f0 (t) is the instantaneous fundamental frequency (which is the closest known acoustic
correlate of pitch perception, discussed brie�y in chapter 5. For both speech and musical instrument
sounds, a further simpli�cation of the excitation signal is convenient, assuming that the amplitude
of the excitation signal ak (t) is constant over time (and equal to unity, i.e., ak (t) = 1). Based
on these simpli�cations, the time-varying linear �lter that models the resonant characteristics of
the vocal tract for speech and of the vibrating structure of the body of the musical instrument
approximates the e�ects of the shape of the excitation and of the transmission characteristics of the
resonant body. For example, for speech sounds, the �lter accumulates the e�ects of superglottal
cavities including radiation at the mouth opening and of the glottal pulse shape. The time-varying
transfer function of the �lter can be written as

Hs (f, t) = |Hs (f, t) | exp [jψs (f, t)] (6.9)

where |Hs (f, t) | and ψs (f, t) are respectively the amplitude and phase of the system. The
processing of speech and musical instrument sounds is usually done on a frame-by-frame basis,
where each frame typically containing three periods of the waveform can be considered a stationary
process [Stylianou, 2008]. In this case, inside a frame, the �lter Hs (f, t) is considered LSI. Then
the output of the system can be viewed as the convolution of the impulse response of the LTI �lter,
hs (t), and of the excitation signal xs (t)

ss (t) =
∫ t

0

xs (τ)hs (t− τ) dτ (6.10)

Recognizing then that the excitation signal is just the sum of K (t) eigenfunctions of the �lter
Hs (f, t), the following model is obtained

ss (t) =
K(t)∑
k=0

|Hs [fk (t)] | exp [j (φk (t) + ψs (fk (t)))] =
K(t)∑
k=0

Ak (t) exp [jθk (t)] (6.11)
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Figure 6.7: Spectral representation of partials. The �gure shows the traditional sinusoidal repre-
sentation with the frequency values and amplitudes tied to each other in part a). Part b) depicts
our representation, where the amplitudes of the partials are represented independently with a
spectral envelope model.

where fk (t) ≈ kf0 (t), which are the eigenfrequencies of the �lter |H (f, t) |. The amplitude
Ak (t) of the k-th harmonic is the system amplitude |H [fk (t)] |, which is the eigenvalue. The phase
θk (t) of the k-th harmonic is the sum of the excitation phase φk (t) and the system phase ψs [fk (t)]
and is often referred to as the instantaneous phase of the k-th harmonic.

In our model, the �lter is considered an LSI system and it is modeled as the spectral envelope
of each frame, such that the amplitudes of the partials Ak (t) are given by the spectral envelope
curve, as shown in part b) of �gure 6.7. Figure 6.7 compares the spectral representation of partials
for the traditional sinusoidal modeling approach in part a), and for the source-�lter model in part
b). In sinusoidal modeling, each partial is assigned an amplitude and frequency values, while the
source-�lter modeling represents them intrinsically independently.

6.5.2 Estimation of Source and Filter

The estimation of the source and �lter parts for both the sinusoidal and residual components is
a key aspect of the method. The quality of the results depends largely on the accuracy of the
representation. As mentioned earlier, the musical instrument sounds are �rst decomposed into
a sinusoidal ss (t) and a residual component sr (t). Each component is modeled (and processed)
separately as follows.

6.5.2.1 Sinusoidal Component

As stated earlier, the sinusoidal part is decomposed into a sinusoidal source xs (t) and the re-
sponse of the resonance cavity Wc when excited by xs (t), hs (t) for each frame. The frequen-
cies of the sinusoids fk (t) are estimated from the Fourier spectrum using quadratic interpolation
[McAulay and Quatieri, 1986]. The �lter response hs (t) is estimated as the spectral envelope of the
Fourier spectrum Hs (ω). The spectral envelope estimation method used is extremely important.
Wen and Sandler [Wen and Sandler, 2010] propose an algorithm based on the channel vocoder to
model the �lter part. However, for voice conversion tasks, Villavicencio [Villavicencio et al., 2006]
showed that �true envelope� (TE) [Röbel and Rodet, 2005] outperformed the other spectral enve-
lope estimation methods tested. TE can be interpreted as the best bandlimited interpolation of
the spectral peaks [Villavicencio et al., 2007], minimizing the estimation error for the peaks of the
spectrum. Thus �true envelope� was chosen to estimate the spectral envelope curve Hs (ω). Figure
6.8 shows the source-�lter modeling from a spectro-temporal perspective.
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Figure 6.8: Spectro-temporal illustration of the source-�lter model. In part a) we see the spectral
representation of source and �lter for one frame, while part b) represents the temporal view, where
the frames are arranged in temporal succession.

6.5.2.2 Residual Component

The residual signal sr (t) is modeled as white noise driving the response of the system Wc. Thus,
the source part xr (t) is white noise, and the response of the resonant cavity to the excitation xr (t)
is modeled as the spectral envelope of sr (t). The spectral envelope of the residual component
is calculated using linear prediction because it provides a better estimate for noise. In this case,
the source part is modeled using a spectral envelope curve that follows the average energy of the
magnitude spectrum rather than �t the amplitudes of the spectral peaks.

6.5.3 Filter Modi�cations

By �lter modi�cation we mean modi�cation of the magnitude spectrum of the frequency response
of the system H (f, t) . In this work, I propose to do this by modifying the spectral envelope of
each frame because the �lter is modeled as the spectral envelope. Modi�cation of the spectral
envelope is achieved by simply varying the parameters of the spectral envelope representation, as
explained in chapter 13. Perceptually, the spectral envelope is usually associated with timbre, but
since timbre is such multidimensional phenomenon and it is so complex to characterize, Slawson
narrows down the perceptual relevance of the spectral envelope to what he calls sound color. So,
for musical instrument sounds, manipulation of the spectral envelope corresponds to changing the
sound color.

Since timbre is an important factor in sound source identi�cation, radical changes in the spec-
tral envelope parameters can lead to the sound resulting from the modi�ed envelope not being
recognized as the original musical instrument anymore. Sometimes this is the e�ect we want to
achieve, but most of the time we want to be able to change the spectral envelope slightly in order
to manipulate perceptual features of sounds that depend on the spectral envelope. In this case, we
need to know the relation between the parameters of the spectral envelope and the corresponding
features. Ideally, we want to be able to manipulate the features independently.

So, a key aspect of spectral envelope manipulation is what representation of the spectral en-
velope we will use and how the parameters of this representation relate to the spectral envelope
curve. For example, the cepstral coe�cients represent the amount of energy in each frequency
band associated with the spectral envelope curve and its oscillations, while the line spectral fre-
quencies [Itakura and Saito, 1970, Itakura, 1975, McLoughlin, 2008, Morris and Clements, 2002]
are directly related to the peaks of the spectral envelope, as will be clearer in chapter 7. In con-
clusion, depending on what we want to manipulate, one representation might be more appropriate
than the others.



Chapter 7

Spectral Envelope Estimation

This chapter is dedicated to spectral envelope estimation. This chapter reviews the most popular
techniques of spectral envelope estimation based on linear prediction and cepstral smoothing. The
spectral envelope is among the most important characteristics of musical instrument sounds because
it is perceptually related to musical instrument identi�cation [Brown, 1999] and timbre perception
[Krumhansl, 1989, Krimpho� et al., 1994, Caclin et al., 2005, McAdams et al., 2005]. Helmholtz
[Helmholtz, 1885] was among the �rst to investigate the relationship between the relative ampli-
tudes of the partials and timbre perception for musical instrument tones (pitched sounds or notes).
According to Slawson [Slawson, 1985], the spectral envelope of weakly coupled systems corresponds
to the aspect of sound perception referred to as sound color. Terasawa [Terasawa et al., 2005] even
proposed that MFCCs model well sound color, suggesting that there are 13 colors (or dimensions)
of timbre perception related to the spectral envelope.

Spectral envelope estimation is a very important part of the morphing algorithm because it
models the �lter in the SF model. The next section presents a formalization of spectral envelopes,
intended to make the presentation of the estimation techniques clearer and more readily compa-
rable. First, the estimation of spectral envelopes is addressed, followed by the conversion between
di�erent spectral envelope models, and the manipulation of spectral envelopes.

Next, spectral envelope estimation techniques based on linear prediction are presented. The
estimation of traditional linear prediction coe�cients (LPC) is explained, together with the discrete
version of the technique, discrete all-pole (DAP). Then, spectral envelope estimation techniques
based on cepstral smoothing are discussed. The basic cepstral smoothing technique is explained,
which is based on the cepstrum and homomorphic systems. The discrete cepstrum (DC) and
the so called �true envelope� (TE) estimation techniques are also presented. The chapter ends
with a discussion of some of the alternative spectral envelope representations, such as line spectral
frequencies (LSF), and the conversion from cepstral to linear prediction based representations.

One example where model conversion is desireable is the transmission of speech using codings
where the linear prediction coe�cients (LPCs) obtained from the estimation of the spectral enve-
lope are usually transmitted as line spectral frequencies (LSFs) because LPCs do not quantize well
[Soong and Juang, 1984]. Finally, when the intention is to manipulate the parameters of a given
spectral envelope representation to obtain a desired transformation, we should keep in mind what
kind of information the parameters of a given spectral envelope representation encode and how
changes in the values of these parameters re�ect on the spectral envelope curve they represent.
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7.1 Formalization of Spectral Envelopes

Generally, when we talk about estimating spectral envelopes we mean estimating the values of
the parameters of a spectral envelope model that lead to a spectral envelope curve that �ts the
magnitude spectrum optimally according to some criterion. Before discussing techniques to do
it, it is useful to de�ne spectral envelope curves, spectral envelope models and spectral envelope
model parameters. Spectral envelope curves are functions of frequency like the Fourier spectrum.
A spectral envelope model consists of a set of parameters and a spectral envelope map that gives
the spectral envelope curve when applied to the parameters. More formally,

S (σ) = H (ω) (7.1)

where S is the spectral envelope map applied to the vector of parameters σ, and H (ω) is the
resulting spectral envelope, a function of angular frequency ω. The spectral envelope curve |H (ω)|
is then the absolute value of H (ω). We should notice that the parameters of a given spectral
envelope model are not necessarily frequency values.

Some spectral envelope maps are invertible, such that we can recover the parameters from
the spectral envelope with the application of its inverse S−1. This operation can be de�ned
as σ = S−1 (H (ω)). There is an analogy between spectral envelopes and �lters. The spectral
envelope curve |H (ω)| corresponds to the magnitude frequency response of the �lter, and σ to the
parameters that specify the frequency response, also called �lter coe�cients. The map S is simply
the mathematical operations needed to obtain the spectral envelope from the parameters, such as
the inverse Fourier transform to obtain the frequency response of the �lter from its coe�cients.

Each spectral envelope model or representation requires a particular map, which, in turn, acts
on a given set of parameters whose range and characteristics (real, nonnegative integer, complex)
depend on the model adopted.

7.1.1 Estimation of the Spectral Envelope

Herman von Helmholtz [Helmholtz, 1885] is among the �rst to speculate that timbre perception
depends on the relative amplitudes of the partials. This provides us with a �rst de�nition of the
spectral envelope curve, that is, a curve that connects the peaks of the magnitude spectrum.

Early attempts to estimate the spectral envelope rely on this de�nition and use a simple piece-
wise linear approximation connecting the prominent peaks of the spectrum [Burred et al., 2010].
The parameters of this representation of the spectral envelope are the parameters of each straight
line �tted to connect two spectral peaks. Even though a piecewise-linear approximation does not
give a smooth spectral envelope curve, it has proved to be accurate enough in musical instrument
recognition tasks [Burred et al., 2010]. Another possible piecewise approximation that generates a
smooth spectral envelope curve is obtained by polynomial splines [Hahn et al., 2010], where now
the parameters are naturally the coe�cients that de�ne the splines.

D'haes [D'haes and Rodet, 2003] de�nes the spectral envelope as �a function of frequency that
matches the amplitudes of the individual partials in the spectrum�. Burred [Burred et al., 2010], on
the other hand, prefers the de�nition �a smooth curve that approximately matches the peaks of the
spectrum.� From this perspective, spectral envelope estimation can be considered an interpolation
of the amplitudes of the spectral peaks. The discrete all-pole (DAP) and discrete cepstrum (DC)
estimation methods are based on this principle.

The estimation of the spectral envelope is intimately linked to the source-�lter model
[Hahn et al., 2010, Klapuri et al., 2010, Laroche and Meillier, 1998, Wen and Sandler, 2010] be-
cause it corresponds to the identi�cation of the parameters of the �lter via deconvolution. The
main goal of this deconvolution between source and �lter by means of spectral envelope estima-
tion is to eliminate the harmonic structure of the spectrum, which is associated with the source.
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There are two main classes of deconvolution methods, linear prediction (also called auto-regressive)
[Markel and Gray, 1976, Makhoul, 1975] and cepstral smoothing (also called homomorphic decon-
volution) [Oppenheim and Schafer, 1968, Oppenheim, 1964]. Each of these deconvolution classes
unfolds in a number of spectral envelope estimation techniques, some of which will be reviewed in
this chapter such as �true envelope.�

Perhaps the most important aspect of any spectral envelope estimation technique is the ac-
curacy with which the spectral envelope curve represents the magnitude spectrum. Among the
possible ways of measuring the accuracy of estimation, a simple error measure between the peaks
of the magnitude spectrum and the spectral envelope curve at those points is enough for many
applications [Villavicencio et al., 2006]. However, the parameters of the most accurate spectral
envelope estimation might not be the most suitable representation when we want to manipulate
the spectral envelope to perform transformations. In this case, we require an additional step to
perform the conversion of spectral envelope representation.

7.1.1.1 Conversion Between Spectral Envelope Representations

When we choose to use an alternative representation of a spectral envelope to manipulate it, we
need to convert the parameters of the current model into the equivalent set of parameters of the
target representation. This operation is the spectral envelope model conversion. The conversion
can be done directly between the parameters of two representations or using the spectral envelope
curve to perform the operation.

Some conversion techniques can be regarded simply as a di�erent representation of the param-
eters in the same domain, linear prediction or cepstral, for example. Line spectral frequencies
(LSF) are just a more convenient way of representing linear prediction coe�cients (LPC) for some
applications [McLoughlin, 2008, Morris and Clements, 2002, Itakura and Saito, 1970]. The same
can be said of re�ection coe�cients (RC), among many other possibilities.

A challenging conversion is between cepstral and linear prediction representations of spectral
envelopes. At the end of this chapter we will review some alternative spectral envelope represen-
tations, along with techniques to convert between linear prediction and cepstral based spectral
representations directly between the coe�cients and via the spectral envelope curve.

Supposing we have two sets of parameters σ1 and σ2 corresponding to two di�erent spectral
envelope models with maps S1 and S2. The conversion between the coe�cients uses a map T
between the coe�cients σ1 and σ2 as follows

σ2 = T (σ1) (7.2)

The conversion operation via the spectral envelope curve is de�ned next. When we estimate
the spectral envelope curve |H (ω)| with the �rst model, we obtain a set of parameters σ1 for which
the following relationship holds

S1 (σ1) = H (ω) (7.3)

Using the property of invertibility of some spectral envelope representations, we can always
recover the set of parameters σ2 that correspond to a spectral envelope function H (ω) via the
inverse operator S−1

2 , which gives us S−1
2 (H (ω)) = σ2.

Spectral envelope model conversion can be considered as a spectral envelope manipulation
technique whose main requirement is to preserve the spectral envelope curve as accurately as pos-
sible. Naturally there have been proposals to measure spectral distortion or spectral distance
[Itakura and Saito, 1968]. Among the measures of spectral distortion, the Itakura-Saito (IS) dis-
tance [Itakura and Saito, 1968] stands out as a very popular choice mainly because it is said to
capture perceptually related information from the magnitude spectrum (related to the spectral
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envelope curve and to the balance of spectral energy as measured by the spectral shape features).
Chapter 13 makes use of the IS distance to evaluate the result of the spectral envelope conversion
technique used in this work, which uses the spectral envelope curve to perform the conversion.

7.1.1.2 Manipulation of Spectral Envelopes

The manipulation of spectral envelopes is usually intended to change the spectral envelope curve as-
sociated with a given model. These manipulation techniques are sometimes called spectral envelope
transformation and spectral envelope morphing is one of them. Spectral envelope transformations
are usually attained by changes in the values of the parameters of a given spectral envelope model
rather than changes in the values of the spectral envelope curve, such that the transformed spectral
envelope curve is smooth.

This procedure usually assumes that S is a continuous map between the space of parameters
σ and the space of spectral envelopes functions H (ω) associated. Intuitively, small changes in the
input values (the parameters) of a continuous map (such as the addition of a small perturbation
vector) result in small changes in the output. More formally,

S (σp) ≈ S (σp + δp) (7.4)

where δp represents a small perturbation vector around point σp. There are many possible
ways of performing such changes and it usually depends on the type of information encoded in
the parameters and the intention of the transformation. In this work we are interested in spectral
envelope morphing, which involves �nding intermediate representations between spectral envelopes.
We are interested in the spectral envelope curve associated with this intermediate representation.
But �rst, let us see how to estimate spectral envelopes in this chapter. Chapter 13 is dedicated to
morphing spectral envelopes.

7.2 Linear Prediction

The roots of linear prediction lie in the analysis of the outputs of dynamic systems regarded as
time series, and treated mostly from a statistical approach [Makhoul, 1975]. In linear prediction
the signal is modeled as a linear combination of its past values and present and past values of a
hypothetical input to a system whose output is the given signal. In the frequency domain, this is
equivalent to modeling the signal spectrum by a pole-zero spectrum [Makhoul, 1975].

Linear prediction is used to �nd a parametric model of a system in terms of a signal it is
supposedly the output of. The general linear prediction model states that a signal s (n) can be
considered to be the output of a system with some unknown input u (n) such that the following
relation holds

s (n) = −
p∑

k=1

a (k) s (n− k) +G

q∑
l=0

b (l)u (n− l) (7.5)

where b (0) = 1 and a (k), 1 6 k 6 p, b (l), 1 6 l 6 q, and the gain G are the parameters of the
hypothesized system. Equation (7.5) says that the �output� s (n) is a linear function of past outputs
and present and past inputs. That is, the signal s (n) is predictable from linear combinations of
past outputs and inputs. Equation (7.5) can also be speci�ed in the frequency domain by taking
the z transform on both sides of (7.5). If H (z) is the transfer function of the system. Then we
have

H (z) =
S (z)
U (z)

= G
1 +

∑q
l=1 b (l) z−l

1 +
∑p

k=1 a (k) z−k
(7.6)
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where the z transform of the sequence s (n) is de�ned as

S (z) ,
∞∑

n=−∞
s (n) z−n (7.7)

such that H (z) is the z transform of u (n). H (z) in equation (7.6) is the general zero-pole model.
The roots of the numerator and denominator polynomials are respectively the zeros and poles of
the model. There are two special cases of the model that are of interest

• all-zero model: a (k) = 0, 1 6 k 6 p

• all-pole model: b (l) = 0, 1 6 l 6 q

The all-zero model is known in the statistical literature as the moving average (MA) model,
and the all-pole model is known as the autoregressive (AR) model. The pole-zero model is
then known as the autoregressive moving average (ARMA) model [Makhoul, 1975]. In speech
processing, we generally use a source-�lter model to represent the way speech sounds are pro-
duced [Rabiner and Schafer, 1978, Rabiner, 1993]. The source-�lter model can use an all-pole
system derived from linear prediction to analyze discrete signals. The model can also be ex-
tended to musical instruments [Klapuri et al., 2010, Laroche and Meillier, 1998, Hahn et al., 2010,
Wen and Sandler, 2010].

7.2.1 Parameter Estimation

Here we will review the methods to �t the parameters of of the linear prediction model, namely,
the autocorrelation and covariance methods, for a deterministic and random signals.

7.2.1.1 All-Pole Model

In the all-pole model, we assume that the signal s (n) is given as a linear combination of past values
and some input u (n)

s (n) = −
p∑

k=1

a (k) s (n− k) +Gu (n) (7.8)

where G is a scalar gain. The transfer function H (z) in equation (7.6) now reduces to

H (z) =
G

1 +
∑p

k=1 a (k) z−k
(7.9)

Given a particular signal s (n), the problem is to determine the predictor coe�cients a (k) and the
gain G in some manner.

7.2.1.2 Method of Least Squares

Here we will present the derivation using the least squares approach assuming �rst that s (n) is a
deterministic signal and then that s (n) is a sample from a stochastic process, following the standard
derivation as presented by Makhoul [Makhoul, 1975]. Firstly, we assume that the input u (n) is
totally unknown, which is the case in many applications [Rabiner and Schafer, 1978]. Therefore,
the signal s (n) can be predicted only approximately from a linearly weighted summation of past
samples. Let this approximation of s (n) be s̃ (n), where

s̃ (n) = −
p∑

k=1

a (k) s (n− k) (7.10)
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Then the error between the actual value s (n) and the predicted value s̃ (n) is given by

e (n) = s (n)− s̃ (n) = s (n) +
p∑

k=1

a (k) s (n− k) (7.11)

e (n) is also known as the residual. In the method of least squares the parameters a (k) are
obtained as a result of the minimization of the mean or total squared error with respect to each of
the parameters.

The analysis will be developed along two lines. First, we assume that s (n), is a deterministic
signal, and then we give analogous derivations assuming that s (n) is a sample from a random
process.

7.2.1.3 Deterministic Signal

Denote the total squared error by E, where

E =
∑

n

e2 (n) =
∑

n

(
s (n) +

p∑
k=1

a (k) s (n− k)

)2

(7.12)

The range of the summation in equation (7.12) and the de�nition of s (n) in that range are impor-
tant. However, we will minimize E without specifying the range of summation. E is minimized by
setting

∂E

∂a (i)
= 0 (7.13)

with 1 6 i 6 p. From equations (7.12) and (7.13) we obtain the set of equations

p∑
k=1

a (k)
∑

n

s (n− k) s (n− i) = −
∑

n

s (n) s (n− i) (7.14)

also with 1 6 i 6 p. Equations (7.14) are known in the least squares terminology as the normal
equations. For any de�nition of the signal s (n), equations (7.14) form a set of p equations in p
unknowns which can be solved for the predictor coe�cients {a (k) , 1 6 k 6 p} which can minimize
E in equation (7.12).

The minimum total squared error, denoted Ep, is obtained by expanding equation (7.12) and
substituting into equation (7.14). The result can be shown to be

Ep =
∑

n

s2 (n) +
p∑

k=1

a (k)
∑

n

s (n) s (n− k) (7.15)

We shall now specify the range of summation over n in equations (7.12), (7.14) and (7.13).
There are two cases of interest, which will lead to two distinct methods for the estimation of
parameters, namely the autocorrelation method and the covariance method. First we will assume
that the error in equation (7.12) is minimized over the in�nite duration −∞ < n <∞, which leads
to the autocorrelation method.

7.2.1.4 Autocorrelation Method

Equations (7.14) and (7.13) then reduce to

p∑
k=1

a (k)R (i− k) = −R (i) (7.16)
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with 1 6 i 6 p, and

Ep = R (0) +
p∑

k=1

a (k)R (k) (7.17)

where

R (i) =
∞∑

n=−∞
s (n) s (n+ i) (7.18)

is the autocorrelation function of the signal s (n). Note that R (i) is an even function of the index
i, i.e.,

R (−i) = R (i) (7.19)

Since the coe�cients R (i− k) form what often is known as an autocorrelation matrix, this
method is generally called the autocorrelation method. An autocorrelation matrix is a symmetric
Toeplitz matrix1.

In practice, the signal s (n) is known over only a �nite interval, or we are interested in the
signal over only a �nite interval. One popular method is to multiply the signal s (n) by a window
function w (n) to obtain another signal s′ (n) that is zero outside some interval 0 6 n 6 N − 1,
that is

s′ (n) =

{
s (n)w (n) , 0 6 n 6 N − 1
0, otherwise

. (7.20)

the autocorrelation function is then given by

R (i) =
N−1−i∑

n=0

s′ (n) s′ (n+ i) (7.21)

where i > 0. The shape of the window function w (n) can be of great importance.

7.2.1.5 Covariance Method

In contrast with the autocorrelation method, here we assume that the error E in equation (7.12)
is minimized over a �nite interval, say, 0 ≤ n ≤ N − 1. Equations (7.14) and (7.15) then reduce to

p∑
k=1

a (k)ϕ (k, i) = −ϕ (0, i) , 1 ≤ i ≤ p (7.22)

Ep = ϕ (0, 0) +
p∑

k=1

a (k)ϕ (0, k) (7.23)

where

ϕ (i, k) =
N−1∑
n=0

s (n− i) s (n− k) (7.24)

is the covariance of the signal s (n) in the given interval. The coe�cients ϕ (k, i) in equation
(7.22) form a covariance matrix, and, therefore, we shall call this method the covariance method.
From equation(7.24) it can be easily shown that the covariance matrix ϕ (i, k) is symmetric, i.e.,

1A Toeplitz matrix is one where all elements along each diagonal are equal.
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ϕ (i, k) = ϕ (k, i) . However, unlike the autocorrelation matrix, the terms along each diagonal are
not equal. This can be seen by writing from 7.24

ϕ (i+ 1, k + 1) = ϕ (i, k) + s (−i− 1) s (−k − 1)− s (N − 1− i) s (N − 1− k) (7.25)

Note from equation 7.25 also that values of the signal s, for −p ≤ n ≤ N − 1 must be known:
a total of p + N samples. The covariance method reduces to the autocorrelation method as the
interval over which n varies goes to in�nity.

7.2.1.6 Random Signal

If the signal sn is assumed to be a sample of a random process, then the error e (n) in equation
(7.11) is also a sample of a random process. In the least squares method, we minimize the expected
value of the square of the error. Thus

E = Ξ
(
e2 (n)

)
= Ξ

(
s (n) +

p∑
k=1

a (k) s (n− k)

)2

(7.26)

where Ξ represents the expected value. Applying equation (7.13) to (7.26), we obtain the
normal equations

p∑
k=1

a (k) Ξ ((n− k) s (n− i)) = −Ξ (s (n) s (n− i)) , 1 ≤ i ≤ p (7.27)

The minimum average error is then given by

Ep = Ξ
(
s2 (n)

)
+

p∑
k=1

a (k) Ξ (s (n) s (n− k)) (7.28)

Taking the expectations in equations (7.27) and (7.28) depends on whether the process s (n) is
stationary or nonstationary.

For a stationary process s (n), we have

Ξ (s (n− k) s (n− i)) = R (i− k) (7.29)

where R (i) is the autocorrelation of the process. Equations (7.27) and (7.28) now reduce
to equations identical to equations (7.16) and (7.17), respectively. The only di�erence is that
here the autocorrelation is that of a stationary process instead of a deterministic signal. For a
stationary (and ergodic) process the autocorrelation can be computed as a time average. Di�erent
approximations have been suggested in the literature for estimating R (i) from a �nite known
signal s (n). One such approximation is given by equation (7.21). Using this estimate in the
stationary case gives the same solution for the coe�cients a (k) as the autocorrelation method in
the deterministic case.

For a nonstationary process s (n), we have

Ξ (s (n− k) s (n− i)) = R (n− k, n− i) (7.30)

where R (t, t′) is the nonstationary correlation between times t and t′. R (n− k, n− i) is a
function of the time index n. Without loss of generality, we shall assume that we are interested in
estimating the parameters a (k) at time n = 0. Then equations 7.27 and 7.28 reduce to
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p∑
k=1

a (k)R (−k,−i) = −R (0,−i) (7.31)

E′p = R (0, 0) +
p∑

k=1

a (k)R (0, k) (7.32)

In estimating the nonstationary autocorrelation coe�cients from the signal s (n), we note that
nonstationary processes are not ergodic, and, therefore, one cannot substitute the ensemble aver-
age by a time average. However, for a certain class of nonstationary processes known as locally
stationary processes, it is reasonable to estimate the autocorrelation function with respect to a
point in time as a short-time average. Examples of nonstationary processes that can be considered
to be locally stationary are speech and musical instrument sounds.

In a manner analogous to the stationary case, we estimate R (−k,−i) by ϕ (i, k) in equation
(7.24). Using this approximation for the nonstationary autocorrelation leads to a solution for
the parameters a (k) in equation (7.31) that is identical to that given by equation (7.22) in the
covariance method in the deterministic case. Note that for a stationary signal R (t, t′) = R (t− t′),
and therefore, the normal equations (7.31) and (7.32) reduce to (7.16) and (7.17).

7.2.1.7 Gain Computation

Since in the least squares method we assumed that the input was unknown, it does not make much
sense to determine a value for the gain G. However, there are certain interesting observations that
can be made. Equation (7.11) can be rewritten as

s (n) =
p∑

k=1

a (k) s (n− k) + e (n) (7.33)

Comparing equations (7.8) and (7.33) we see that the only input signal u (n) that will result in
the signal s (n) as output is that where Gu (n) = e (n). That is, the input signal is proportional
to the error signal. For any other input u (n), the output from the �lter H (z) will be di�erent
from s (n). However, if we insist that whatever the input u (n), the energy in the output signal
must equal that of the original signal s (n), then we can at least specify the total energy in the
input signal. Since the �lter H (z) is �xed, it is clear from the above that the total energy in
the input signal Gu (n) must equal the total energy in the error signal, which is given by Ep in
equations(7.17) or (7.23), depending on the method used.

7.2.1.8 Computations of Predictor Parameters

In each of the two formulations of linear prediction presented in the previous section, the predictor
coe�cients a (k) , 1 ≤ k ≤ p , can be computed by solving a set of p equations with p unknowns.
These equations are (7.16) for the autocorrelation (stationary) method and (7.22) for the covari-
ance (nonstationary) method. There exist several standard methods for performing the necessary
computations, e.g., the Gauss reduction or elimination method and the Crout reduction method.
These general methods require p3

/3 +O
(
p2
)
operations (multiplications or divisions) and p2 stor-

age locations. However, we note from equations (7.16) and (7.22) that the matrix of coe�cients
in each case is a covariance matrix. Covariance matrices are symmetric and in general positive
semide�nite, although in practice they are usually positive de�nite. Therefore, equations (7.16)
and (7.22) can be solved more e�ciently by the square-root or Cholesky decomposition method.
This method requires about half the computation p3

/6 +O
(
p2
)
and about half the storage p2

/2 of
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the general methods. The numerical stability properties of this method are well understood and
it is considered to be quite stable.

Further reduction in storage and computation time is possible in solving the autocorrelation
normal equations (7.16) because of their special form. Equation (7.16) can be expanded in matrix
form as 

R0 R1 R2 · · · Rp−1

R1 R0 R1 · · · Rp−2

R2 R1 R0 · · · Rp−3

...
...

...
...

Rp−1 Rp−2 Rp−3 · · · R0




a1

a2

a3

...
ap

 = −


R1

R2

R3

...
Rp

 (7.34)

Note that the p × p autocorrelation matrix is symmetric and the elements along any diago-
nal are identical (i.e., a Toeplitz matrix). Levinson [Makhoul, 1975] derived an elegant recursive
procedure for solving this type of equation. The procedure was later reformulated by Robinson
[Markel and Gray, 1976]. Levinson's method assumes the column vector on the right hand side of
equation (7.34) to be a general column vector. By making use of the fact that this column vector
comprises the same elements found in the autocorrelation matrix, another method attributed to
Durbin [Rabiner and Schafer, 1978] emerges which is twice as fast as Levinson's. The method
requires only 2p storage locations and p2 + O (p) operations: a big saving from the more general
methods. Durbin's recursive procedure can be speci�ed as follows:

E0 = R (0) (7.35)

k (i) = −[R(i)+
Pi−1

j=1 ai−1(j)R(i−j)]/Ei−1 (7.36)

ai (i) = k (i) (7.37)

ai (j) = ai−1 (j) + k (i) ai−1 (i− j) , 1 ≤ j ≤ i− 1 (7.38)

Ei =
(
1− k2 (i)

)
Ei−1 (7.39)

Equations (7.35) through (7.39) are solved recursively for i = 1, 2, . . . , p. The �nal solution is
given by

a (j) = ap (j) , 1 ≤ j ≤ p (7.40)

Note that in obtaining the solution for a predictor of order p, one actually computes the solutions
for all predictors of order less than p. It has been reported [Makhoul, 1975] that this solution is
numerically relatively unstable. However, most researchers have not found this to be a problem in
practice.

It should be emphasized that, for many applications, the solution of the normal equations (7.17)
or (7.23) does not form the major computational load. The computation of the autocorrelation or
covariance coe�cients require pN operations, which can dominate the computation time if N � p,
as is often the case.

The solution to equation (7.34) is una�ected if all the autocorrelation coe�cients are scaled by
a constant. In particular, if all R (i) are normalized by dividing by R (0), we have what are known
as the normalized autocorrelation coe�cients r (i)
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r (i) =
R (i)
R (0)

(7.41)

which have the property that |r (i)| ≤ 1. This can be useful in the proper application of scaling
to a �xed point solution to equation (7.34).

A byproduct of the solution in equations (7.35) through (7.39) is the computation of the mini-
mum total error Ei at every step. It can easily be shown that the minimum error Ei decreases (or
remains the same) as the order of the predictor increases. Ei is never negative, of course, since it
is a squared error. Therefore, we must have

0 ≤ Ei ≤ Ei−1, E0 = R (0) (7.42)

If the autocorrelation coe�cients are normalized as in equation (7.41), then the minimum error
Ei is also divided by R (0). We shall call the resulting quantity the normalized error Vi

Vi =
Ei

R (0)
= 1 +

i∑
k=1

a (k) r (k) (7.43)

From equation (7.42) it is clear that 0 ≤ Vi ≤ 1, i ≥ 0. Also, from equations (7.39) and (A.33),
the �nal normalized error Vp is

Vp =
p∏

i=1

(
1− k2

i

)
(7.44)

The intermediate quantities ki, 1 ≤ i ≤ p, are known as the re�ection coe�cients. In the
statistical literature, they are known as partial correlation coe�cients. ki can be interpreted as
the (negative) partial correlation between sn and sn+i holding sn+1 · · · sn+i−1 �xed. The use of
the term �re�ection coe�cient� comes from transmission line theory, where ki can be considered
as the re�ection coe�cient at the boundary between two sections with impedances Zi and Zi+1.
ki is then given by

ki =
Zi+1 − Zi

Zi+1 + Zi
(7.45)

The transfer function H (z) can then be considered as that of a sequence of these sections with
impedance ratios given from equation (7.45) by

Zi+1

Zi
=

1 + ki

1− ki
, 1 ≤ i ≤ p (7.46)

The same explanation can be given for any type of situation where there is plane wave transmis-
sion with normal incidence in a medium consisting of a sequence of sections or slabs with di�erent
impedances. In the case of an acoustic tube with p sections of equal thickness, the impedance ratios
reduce to the inverse ratio of the consecutive cross-sectional areas. This fact has been used in speech
analysis [Rabiner and Schafer, 1978]. Because of the more familiar �engineering interpretation� for
ki, we shall refer to them as re�ection coe�cients.

Beside the direct methods for the solution of simultaneous linear equations, there exist a number
of iterative methods. In these methods, one begins by an initial guess for the solution. The solution
is then updated by adding a correction term that is usually based on the gradient of some error
criterion. In general, iterative methods require more computation to achieve a desired degree of
convergence than the direct methods. However, in some applications [Rabiner, 1993] one often has
a good initial guess, which might lead to the solution in only a few iterations. This can be a big
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saving over direct methods if the number of equations is large. Some of the iterative methods are
the gradient method, the steepest descent method, Newton's method, conjugate gradient method
and the stochastic approximation method.

Up till now we have assumed that the whole signal is given all at once. For certain real time
applications it is useful to be able to perform the computations as the signal is coming in. Adaptive
schemes exist which update the solution based on every new observation of the signal. The update
is usually proportional to the di�erence between the new observation and the predicted value given
the present solution. Another application for adaptive procedures is in the processing of very long
data records, where the solution might converge long before all the data is analyzed. It is worth
noting that Kalman �ltering notions are very useful in obtaining adaptive solutions.

7.2.1.9 Optimal Number of Poles

One of the important decisions that usually have to be made in �tting all-pole models is the deter-
mination of an �optimal� number of poles. It is a nontrivial exercise to de�ne the word �optimal�
here, for as we have seen, the �t of the model �improves� as the number of poles p increases. The
problem is where to stop. Clearly we would like the minimum value of p that is adequate for the
problem at hand, both to reduce our computation and to minimize the possibility of ill-conditioning
(which increases with p since the normalized error for order p, called Vp, decreases).

If the signal spectrum is an all-pole spectrum with p0 poles, then we know that Vp = Vp0 , p ≥ p0,
and kp = 0, p > p0, i.e., the error curve remains �at for p > p0. Therefore, if we expect the signal
spectrum to be an all-pole spectrum, a simple test to obtain the optimal p is to check when the error
curve becomes �at. But, if the signal is the output of a p0-pole �lter with white noise excitation,
then the suggested test will not work, because the estimates of the poles are based on a �nite
number of data points and the error curve will not be �at for p > p0. In practice, however, the
error curve will be almost �at for p > p0. This suggests the use of the following threshold test

1− Vp+1

Vp
< δ (7.47)

This test must succeed for several consecutive values before one is sure that the error curve has
actually �attened out.

Appendix A discusses the stability of the all-pole �lter, the frequency domain counterpart of
the time domain formulation presented here, and the error analysis. To make the text �ow more
smoothly, I'll refer the interest reader to the appendices for more details about these topics, and
consider them to be out of the scope of the text. They are, nevertheless, important conceptually.

7.3 Discrete All-Pole Model

It has been known for some time that linear prediction (LP) su�ers from drawbacks that are
especially manifested during voiced segments of speech. Speci�cally, the peaks of LP spectral
estimates during these segments are highly biased towards the pitch harmonics (the partials),
especially for high pitched sounds and voices [Makhoul, 1975]. El-Jaroudi and John Makhoul
[El-Jaroudi and Makhoul, 1969] pointed out that the drawbacks of LP are inherent to its error
criterion. To overcome these drawbacks, they proposed a new all-pole method based on a discrete
form of the Itakura-Saito distance measure, shown in equation (7.83).

The new method, which they call discrete all-pole (DAP) modeling, overcomes the well know
limitations of LP and generally gives better all-pole spectral envelopes that are less biased towards
the pitch harmonics. In DAP, they approximate the spectrum of voiced speech, which has its
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energy located approximately at the harmonics of the fundamental frequency, by a discrete spec-
trum. The problem of �nding the spectral envelope is then reduced to �tting an all-pole spectrum
to a �nite set of spectral points so as to minimize the discrete form of the Itakura-Saito (IS) dis-
tance measure. They present an algorithm to compute the optimal envelopes and show that DAP
modeling produces generally better �tting spectral envelopes than LP.

7.3.1 Limitations of Linear Prediction

As presented in Section 7.2, the basic concept of LP is to predict the present value of a signal based
on its previous p values subject to an error measure. Normally, the error criterion used is a least
squares distance measure between the actual and predicted values, like equation (A.17) expresses.
For a set of discrete frequencies ωm ∈ Ω, equation A.17 becomes

ELP =
1
N

N∑
m=1

P (ωm)
P̂ (ωm)

(7.48)

where, just like before, P (ω) is the spectrum of the original signal s (n), and P̂ (ω) is the
spectrum of the all-pole envelope approximating it, de�ned in equation (A.15). Here, P (ωm) and
P̂ (ωm) are discrete versions of P (ω) and P̂ (ω) obtained by evaluating them at frequencies ωm. It
is important to notice that the frequencies ωm include both positive and negative values and they
can be arbitrary and need not be equally spaced [El-Jaroudi and Makhoul, 1969].

Just like for the continuous spectra in Section 7.2.1.1, the minimization of ELP with respect
to the predictor coe�cients expressed in equation (7.13) leads to the normal equations (7.16) and
the prediction error (7.17), where we express the autocorrelation of the discrete spectrum P (ωm)
as in equation (A.11) in its discrete form (A.23).

An important interpretation of LP is that, by minimizing ELP , we are matching the auto-
correlation of the continuous LP envelope P̂ (ω) to that of the given discrete spectrum P (ωm),
as expressed in Appendix A.1.3. This is equivalent to setting equation (A.23) equal to equation
(A.18), the autocorrelation of the discrete spectrum P (ωm). For discrete or harmonic spectra, El-
Jaroudi [El-Jaroudi and Makhoul, 1969] discusses a typical behavior of LP analysis that consists
in mismatching the original envelope P̂ (ω) or not �tting properly the original spectrum P (ω). El-
Jaroudi states that there is a unique all-pole envelope, which he assumes to be the original P (ω),
that perfectly �ts the discrete spectrum P (ωm) and that LP applied to P (ωm) fails to recover it.
Finally, he concludes by stating that, for discrete spectra P (ωm), the LP error measure expressed
in equation (7.48) possesses an error cancellation property that makes it select an envelope other
than the only one which passes through all the spectral points.

Following El-Jaroudi [El-Jaroudi and Makhoul, 1969], I will brie�y demonstrate why it is un-
reasonable to expect LP to recover the original envelope from the discrete spectral samples. From
equation (A.11), the autocorrelation corresponding to the original all-pole �lter with spectrum
P (ω) is expressed as Ro, so that we have the relation

P (ω) =
∞∑

l=−∞

Ro (l) e−jωl (7.49)

which is simply the inverse Fourier transform of equation (A.23). The autocorrelation R cor-
responding to the discrete samples of the synthesis envelope is de�ned in equation (A.23). By
substituting equation (7.49) into (A.23), we obtain

R (i) =
1
N

N∑
m=1

∞∑
l=−∞

Ro (l) e−jωm(l−i), ∀i (7.50)
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which is the relation between R and Ro. Equation (7.50) shows the aliasing that occurs in the
autocorrelation domain whenever a spectral envelope is sampled at a discrete set of frequencies.
For the periodic excitation case, the frequencies ωm will be equally spaced at ωm = 2π(m−1)/N, and
equation (7.50) reduces to

R (i) =
∞∑

l=−∞

Ro (i− lN) , ∀i (7.51)

Now, as stated above, by minimizing ELP , LP matches the autocorrelation R̂LP of the contin-
uous LP envelope P̂ (ω) to R (i) ,that of the given discrete spectrum P (ωm). This means that

R̂LP (i) = R (i) =
∞∑

l=−∞

Ro (i− lN) 6= Ro, 0 ≤ i ≤ p (7.52)

In other words, since the autocorrelation corresponding to the LP envelope will always be an
aliased version of Ro (for the discrete spectrum case), the LP envelope P̂ (ωm) will not equal the
original envelope P̂ (ω). It is also important to note that LP produces a unique all-pole model
given a set of autocorrelations, which means that the original all-pole is not a possible solution to
the normal equations (7.16).

To improve upon the LP estimate, researchers have devised methods with either a di�erent error
criterion or with added constraints to regular LP [El-Jaroudi and Makhoul, 1969]. El-Jaroudi
brie�y reviews some of these methods and then presents their own solution, which consists in
adopting the IS distance measure.

Appendix B presents the properties of the error measure using the Itakura-Saito (IS) distance.
Again, the interested reader should check it.

7.4 Cepstral Smoothing

In order to understand the cepstral smoothing technique to estimate spectral envelopes, we
need to understand the cepstrum and what kind of information it represents. Nowadays,
cepstrum analysis is considered as part of the techniques used in homomorphic systems
[Oppenheim and Schafer, 1968, Oppenheim, 1969, Oppenheim et al., 1968]. The advantages of the
cepstral representation are numerous: it was found to provide a perceptually-realistic distance mea-
sure for assessing the similarity of the spectral envelope of sounds [D'haes and Rodet, 2003], mak-
ing it a natural candidate for speech/speaker recognition problems; it usually provides smooth en-
velopes (by contrast with autoregressive envelope modeling), which is a desirable feature in the con-
text of sound synthesis. Also in the music domain, cepstral coe�cients have been extensively used
in numerous applications such as the retrieval of similar audio tracks [Aucouturier et al., 2005],
instrument identi�cation [Brown, 1999], content based audio retrieval [Foote, 1997], synthesis
[Schwarz and Rodet, 1999], and they are currently investigated for automated estimation of control
parameters for musical synthesis algorithms [D'haes and Rodet, 2003].

In a fascinating review article [Oppenheim and Schafer, 2004], Oppenheim and Schafer tell us
that, historically, the term cepstrum [Bogert et al., 1963] was coined independently from the theory
of homomorphic systems. To suggest what prompted the invention of the term cepstrum, note that
a signal with a simple echo can be represented as

x (n) = s (n)− αs (n− τ) (7.53)

The power spectral density of such signal is given by
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|X (k)|2 = |S (k)|2
[
1 + α2 + 2α cos (2πkτ)

]
(7.54)

Thus, we see from equation (7.54) that the spectral density of a signal with an echo has the
form of an envelope (the spectrum of the original signal) that modulates a periodic function of
frequency (the spectrum contribution of the echo). By taking the logarithm of the spectrum, this
product is converted to the sum of two components; speci�cally

X̃ (k) = log |X (k)|2 = log |S (k)|+ log
[
1 + α2 + 2α cos (2πkτ)

]
(7.55)

Thus, X̃ (k) viewed as a waveform has an additive periodic component whose �fundamental fre-
quency� is the echo delay τ . In conventional analysis of time waveforms, such periodic components
show up as lines or sharp peaks in the corresponding Fourier spectrum. Therefore, the �spectrum�
of the log spectrum would likewise show a peak when the original time waveform contained an echo.
This new �spectral� representation domain was not the frequency domain, nor was it really the
time domain. So, looking to forestall confusion while emphasizing connections to familiar concepts,
Bogert et al. chose to refer to it as the quefrency domain, and they termed the spectrum of the
log of the spectrum of a time waveform the cepstrum. While most of the terms in the glossary at
the end of the original paper have faded into the background, the term cepstrum has survived and
become part of the digital signal processing lexicon. In the early 1960s, totally unrelated to, and
independent of, the work by Bogert et al., Alan Oppenheim was pursuing his doctoral research on a
class of nonlinear signal processing techniques inspired by the concept of homomorphic (i.e., linear
in a generalized sense) mappings between algebraic groups and vector spaces. His dissertation,
�Superposition in a Class of Nonlinear Systems� [Oppenheim, 1964] completed at MIT in May,
1964, developed a theory for nonlinear signal processing referred to as homomorphic systems. The
use of such systems for signal processing was termed homomorphic �ltering.

7.4.1 Homomorphic Systems

Homomorphic systems for convolution obey a generalized principle of superposition. The principle
of superposition for conventional linear systems is

L [x (n)] = L [x1 (n) + x2 (n)] = L [x1 (n)] + L [x2 (n)] = y1 (n) + y2 (n) = y (n) (7.56)

and

L [ax (n)] = aL [x (n)] = ay (n) (7.57)

where L represents the linear operator and a is a scalar constant. The principle of superposition
simply states that if an input signal is composed of a linear combination of elementary signals,
then the output is a linear combination of corresponding outputs. A direct result of the principle
of superposition is the fact that the output of a linear time-invariantsystem can be expressed as
the convolution sum

y (n) =
∞∑

k=−∞

h (n− k)x (k) = h (n) ∗ x (n) (7.58)

The * symbol will henceforth denote the operation of discrete-time convolution. By analogy with
the principle of superposition for conventional linear systems, we can de�ne a class of systems
which obey a generalized principle of superposition where addition is replaced by convolution

H [x (n)] = H [x1 (n) ∗ x2 (n)] = H [x1 (n)] ∗ H [x2 (n)] = y1 (n) ∗ y2 (n) = y (n) (7.59)
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Figure 7.1: Canonic form for system for homomorphic deconvolution.

Systems that have the property expressed by equation ((7.59)) are termed �homomorphic systems
for convolution�. A homomorphic �lter is simply a homomorphic system with the property that one
component passes through the system unchanged, while the undesired component is removed; i. e.,
y1 (n) = δ (n). Any homomorphic system can be represented as a cascade of three homomorphic
systems, as depicted in �gure ((7.1))

The �rst system takes inputs combined by convolution and transforms them into an additive
combination of corresponding outputs. The second system is a conventional linear system obeying
the principle of superposition as given in equation ((7.56)). The third system is the inverse of
the �rst system; i.e., it transforms signals combined by addition back into signals combined by
convolution. The importance of the existence of such a canonic form for homomorphic systems lies
in the fact that the design of such systems reduces to the problem of the design of a linear system.
The system D∗ [] is called the characteristic system for homomorphic deconvolution and it is �xed
in the canonic form of �gure 7.1. Likewise, its inverse is also a �xed system. The characteristic
system for homomorphic deconvolution obeys a generalized principle of superposition where the
input operation is convolution and the output operation is ordinary addition. The properties of
the characteristic system are de�ned as

D∗ [x (n)] = D∗ [x1 (n) ∗ x2 (n)] = D∗ [x1 (n)] +D∗ [x2 (n)] = x̂1 (n) + x̂2 (n) = x̂ (n) (7.60)

Likewise, the inverse characteristic system D−1
∗ is de�ned as

D−1
∗ [ŷ (n)] = D−1

∗ [ŷ1 (n) + ŷ2 (n)] = D−1
∗ [ŷ1 (n)] ∗D−1

∗ [ŷ2 (n)] = y1 (n) ∗ y2 (n) = y (n) (7.61)

The mathematical representation of the characteristic system is dependent on the fact that we
require that if the input is a convolution

x (n) = x1 (n) ∗ x2 (n) (7.62)

then the z-transform of the input is the product of the corresponding z-transforms.

X (z) = X1 (z)X2 (z) (7.63)

From equation (7.60), it is clear that the z-transform of the output of the characteristic system
must be an additive combination of z-transforms. Thus, the frequency domain behavior of the
characteristic system for convolution must have the property that if a signal is represented as a
product of z-transforms at the input, then the output must be a sum of corresponding output
z-transforms. One approach to the representation of such a system is depicted in �gure 7.2. This
approach is based on the fact that the logarithm of a product can be de�ned so that it is equal to
the sum of the logarithms of the individual terms. That is

X̂ (z) = log [X (z)] = log [X1 (z)X2 (z)] = log [X1 (z)] + log [X2 (z)] (7.64)

The logarithm must be de�ned so that it has the property that the logarithm of a product is equal
to the sum of the logarithms, which is not always uniquely true for complex numbers. Here we
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Figure 7.2: Frequency domain representation of a homomorphic system for convolution.

will be primarily concerned with ensuring it is valid when evaluated upon the unit circle (i.e., for
z = ejω), so an appropriate de�nition of the complex logarithm is

X̂
(
ejω
)

= log
∣∣X (ejω

)∣∣+ j arg
[
X
(
ejω
)]

(7.65)

In this equation the real part causes no particular di�culty. However, problems of uniqueness
arise in de�ning the imaginary part, which is simply the phase angle of the z-transform evaluated
on the unit circle. One approach to dealing with the problem of uniqueness of the phase angle is
to require that the phase angle be a continuous odd function of ω (this is not equivalent to the
principal value of log (z), the one whose imaginary part lies in the interval (−π, π]). Ronald Schafer
[Schafer, 1968] presents a detailed discussion of the conditions under which equations (7.64) and
(7.65) hold.

7.4.2 Cepstrum

Historically, the cepstrum has its roots in the general problem of the deconvolution of two or more
signals. This literature is rich and varied and encompasses linear prediction, predictive deconvo-
lution, inverse �ltering, and general deconvolution. Childers [Childers et al., 1977] presents a list
of references on deconvolution methods in his comprehensive review of cepstrum-based processing.
In what follows in this chapter, we will see that the power (or equivalently real) cepstrum was �rst
developed for echo detection, while the (complex) cepstrum is concerned with the deconvolution
of two signals (in speech processing the signals are usually a basic or fundamental wavelet and a
train of impulses [Markel and Gray, 1976, Rabiner and Schafer, 1978]).

7.4.2.1 Historical Background

Allan Oppenheim tells us [Oppenheim and Schafer, 2004] that it was a fortuitous discussion in
1965 between Jim Flanagan of Bell Telephone Laboratories and himself that connected the work
going on at MIT to the development of the cepstrum at Bell Laboratories. After hearing about
homomorphic deconvolution from Oppenheim, Flanagan noted that the characteristic system for
homomorphic convolution was reminiscent of the spectrum of the log of the spectrum (i.e., the
cepstrum) as proposed by Bogert et al. Furthermore, he suggested looking at work by Michael
Noll [Noll, 1964, Noll, 1967] in the Journal of Acoustical Society of America. Noll credits Manfred
Schroeder (who was aware of the work of Bogert et. al.) with suggesting to him that it might be
interesting to apply cepstrum analysis on a short-time basis to speech signals. In the Journal of
Acoustical Society of America papers [Noll, 1967, Noll, 1973, Noll, 1964], Noll applied the cepstrum
as a basis for pitch detection. The problem of pitch detection is very similar to detecting echo
times in the sense that the basic speech model consists of representing speech as the convolution
of the vocal tract impulse response with the quasi-periodic train of glottal pulses.

7.4.2.2 The Power Cepstrum

The power cepstrum was �rst described by Bogert et al. [Bogert et al., 1963] in 1963 as a heuristic
technique for �nding echo arrival times in a composite signal. Basically, these authors de�ned the
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cepstrum (which we term the power cepstrum to avoid confusion with the complex cepstrum) of a
function as the power spectrum of the logarithm of the power spectrum of that function.

These authors quickly showed (as we saw above in the opening of this section) that the e�ect
of a delayed echo will manifest itself as a ripple in the log spectrum. The �frequency� of this ripple
is easily determined by calculating the spectrum of the log spectrum wherein this �frequency� will
appear as a peak. However, the units of �frequency� of this ripple in the log spectrum are in
units of time; thus, the independent variable (abscissa) in the spectrum of the log spectrum is
time. Other parameters were also observed to undergo similar transformations of units. To avoid
confusion, Bogert et al. [Bogert et al., 1963] introduced the following now classical paraphrased
terms according to a syllabic interchange rule

frequency ............. quefrency

spectrum .............. cepstrum

phase ................. saphe

amplitude ............. gamnitude

�ltering ............. liftering

harmonic .............. rahmonic

period ................ repiod

along with others. Today the two most prevalent terms are cepstrum and quefrency, e.g.,
�ltering in the cepstrum domain is usually called just that and not �liftering� as suggested by
Bogert et al. [Bogert et al., 1963], but this can and often does lead to confusion. In practice
the power cepstrum is e�ective if the wavelet and the impulse train, whose convolution comprise
the composite data, occupy di�erent quefrency ranges. In actuality, the power cepstrum does
not exist for most signals; it is meaningful only when de�ned in a sampled data sense (as is the
complex cepstrum) although attempts to extend it exist [Childers et al., 1977]. Thus the following
de�nition is o�ered: the power cepstrum of a data sequence is the square of the inverse z-transform
of the logarithm of the magnitude squared of the z-transform of the data sequence, as shown in
equation 7.66. When this de�nition is evaluated on the unit circle, the result (except for the
normalization factors associated with the power spectrum) is the same as that obtained with the
Fourier transform. Thus we may write the power cepstrum as

x̃ (nT ) =
[
Z−1

(
log |X (z)|2

)]2
=

 1
2πj

∮
C

log |X (z)| zn−1dz


2

(7.66)

where X (z) is the z-transform of the data sequence x (nT ). Alternately, the de�nition could
be changed to use the forward z-transform and/or the �nal squaring could be changed to magni-
tude squared. In actuality the �nal squaring operation in equation (7.66) is unnecessary and is
frequently omitted for several reasons, but it has been used here to provide historical continuity
with [Bogert et al., 1963]. When we omit the �nal squaring in equation (7.66) and evaluate it on
the unit circle (which is equivalent to using the DFT to perform the calculation), the result is
usually called real cepstrum [Noll, 1973, Kemerait, 1971].

The waveform of the basic wavelet cannot be recovered by processing the power cepstrum
since the phase information is discarded. This latter situation is corrected with the com-
plex cepstrum which we discuss in the next subsection along with the inversion process. The
power cepstrum has been applied to seismic data [Bogert et al., 1963], sonar [LeBlanc, 1969],
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speech [Noll, 1964, Noll, 1967, Noll, 1973, Noll, 1964], and the electroencephalogram (EEG)
[Kemerait, 1972]. Its statistical properties have also been examined [Hassab and Boucher, 1976].
It is hopefully bene�cial to point out that alternate viewpoints and, thus, subsequent terminologies
have arisen since the original paper by Bogert et al. [Bogert et al., 1963]. These viewpoints have
led to what might well be considered two lines of investigation:

1. the use of varying degrees of spectral whitening;

2. the attempts to devise methods for obtaining the phase relations of the wavelet with respect
to the reference signal [Cohen, 1970].

We have seen that the occurrence of an echo in the time domain signal leads to what amounts to
a spectral modulation (or ripple) in the frequency domain. The spectral whitening approach to
echo detection considers the application of the logarithm a severe spectral whitener (rather than
a mechanism to transform the product of two functions into the sum of the logarithm of the two
functions as Bogert et al. intended).

7.4.2.3 The Complex Cepstrum

The complex cepstrum is an outgrowth of homomorphic system theory developed by Oppenheim
[Oppenheim and Schafer, 1968, Oppenheim et al., 1968, Oppenheim, 1964, Oppenheim, 1969]. In
fact, the power cepstrum is also a speci�c application of homomorphic system theory. The
complex cepstrum has been investigated extensively [Kemerait, 1971, Kemerait, 1972, Noll, 1973,
Schafer, 1968]. Since the complex cepstrum retains the phase information of the compos-
ite data, it can be used not only for echo detection but also wavelet recovery; this pro-
cess is also known as homomorphic deconvolution or homomorphic �ltering and has since
been applied to seismic data [Cohen, 1970], speech [Oppenheim et al., 1968, Schafer, 1968,
Oppenheim, 1969, Oppenheim and Schafer, 1968, Schafer and Rabiner, 1970], image processing
[Oppenheim et al., 1968], and EEG analysis [Kemerait, 1971, Kemerait, 1972]. Formally, we de�ne
the complex cepstrum of a data sequence as the inverse z-transform of the complex logarithm of
the z-transform of the data sequence [Childers et al., 1977, Schafer, 1968], i.e.,

x̂ (nT ) =
1

2πj

∮
C

log [X (z)] zn−1dz (7.67)

where x̂ (0) = log [x (0)] and X (z) is the z-transform of the data sequence x (nT ). Frequently,
X̂ (z) is used to denote the logX (z); then x̂ (nT ), the complex cepstrum, is the inverse z-transform
of X̂ (z). The contour of integration lies within an annular region in which X̂ (z) has been de�ned
as single valued and analytic. If we have the convolution of two sequences as expressed in equation
(7.62) in the time domain or in equation (7.63) in the frequency domain, then using the convention
X̂ (z) = logX (z) we obtain equation (7.64). Further, if x̂1 and x̂2 occupy di�erent quefrency
ranges, then the complex cepstrum can be liftered (�ltered) to remove one or the other of the
convolved sequences. Since the phase information is retained, the complex cepstrum is invertible.
Thus if x̂2 is rejected from x̂ by liftering, then x̂ = x̂1 and we may then z-transform, exponentiate,
and inverse z-transform to obtain the sequence x̂1, i.e., x̂1 and x̂2 have been deconvolved.

7.4.2.4 Phase Unwrapping

The computation of the complex cepstrum is complicated by the fact that the complex logarithm
is multivalued. If the imaginary part of the logarithm is computed module 2π, i.e., evaluated as its
principal value, then discontinuities appear in the phase curve. This is not allowed since log [X (z)]
is the z-transform of x̂ (nT ) and thus must be analytic in some annular region of the z-plane. This
problem may be recti�ed by making the following observations:
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1. The imaginary part of log [X (z)] must be a continuous and periodic (evaluated on the unit
circle) function of ω with period 2π/T since it is the z-transform of x̂ (nT ) .

2. Since it is required that the complex cepstrum of a real function be real, it follows that the
imaginary part of log [X (z)] must be an odd function of ω.

Subject to these conditions we may compute the unwrapped phase curve as follows [Schafer, 1968]
(provided the phase is sampled at a rate su�ciently great to assure that it never changes by more
than π between samples [Childers et al., 1977]): a correction sequence C (k) is added to the modulo
2π phase sequence P (k) where C (k) is

C (0) = 0 (7.68)

C (k) =


C (k − 1)− 2π, if P (k)− P (k − 1) > π

C (k − 1) + 2π, if P (k − 1)− P (k) > π

C (k − 1) , otherwise

(7.69)

Alternately, the phase may be unwrapped by computing the relative phase between adjacent
samples of the spectrum. These phases may be added to achieve a cumulative (unwrapped) phase
for each point. Both methods have the drawback that the computation must be done sequentially.
It is also noted that if the phase never changes by more than π/2 between samples, the phase
modulo π could be computed and unwrapped with algorithms similar to the above. This is inter-
esting since it is slightly easier to calculate the phase modulo π than the phase modulo 2π (the
arctangent algorithm is simpler) and many signals have this property (though noise generally does
not) [Childers et al., 1977].

Several other phase unwrapping procedures have been discussed, e.g., integrating the phase
derivative [Schafer, 1968], an adaptive numerical integration procedure [Tribolet, 1977], and fac-
torization of the z-transform [Steiglitz and Dickinson, 1977].

Phase unwrapping is unnecessary for the class of minimum phase signals, i.e., a sequence whose
z-transform has no poles or zeros outside the unit circle, which implies that x̂ (nT ) = 0 for n < 0
[Schafer, 1968]. The complex cepstrum of such a sequence is zero at negative quefrencies. Further,
for n > 0 the complex cepstrum is identical to the real cepstrum (except for a factor of 2 and the
squaring operation); for n = 0 the two cepstra are identical.

7.4.2.5 Relationship Between the Complex and Power Cepstra

Clearly the complex and power cepstra are closely related. The simple formal relationship can be
obtained from equation (7.66) as follows:

x̃ (n) =
{
Z−1 [log (X (z)X∗ (z))]

}2
=
{
Z−1 [log (X (z)) + log (X∗ (z))]

}2
(7.70)

Assuming that x (n) is real and evaluating its z-transform on the unit circle, we �nd X∗ (z) =
X
(
z−1
)
, thus we may write

x̃ (n) =

 1
2πj

∮
C

log |X (z)| zn−1dz +
1

2πj

∮
C

log
∣∣X (z−1

)∣∣ zn−1dz


2

(7.71)

Letting z′ = z−1, we obtain

x̃ (n) =

 1
2πj

∮
C

log |X (z)| zn−1dz +
1

2πj

∮
C

log |X (z′)| z′−n−1dz′


2

(7.72)
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Then by de�nition of the complex cepstrum in equation (7.67) we have

x̃ (n) = [x̂ (n) + x̂ (−n)]2 (7.73)

Thus the power cepstrum is four times the square of the even part of the complex cepstrum.
This also follows from the fact that the power cepstrum is the square of the inverse transform of
twice the real part of the log spectrum; and, as was noted earlier, the power cepstrum contains
no phase information. Equation (7.73) is of value since the power cepstrum is often superior to
the complex cepstrum for echo arrival time estimation [Kemerait, 1972]. This is apparently due
to the fact that the linear phase contribution (to be discussed below) of the imaginary part of the
logarithm tends to mask the echo delay. There are probably other phase unwrapping errors as well
as noise errors which contribute to this observation. A wavelet recovery (homomorphic �ltering)
system can easily compute both the power and complex cepstra. Finally, as was noted earlier, if
the squaring operation in equation (7.73) is not performed, then the homomorphic �ltering system
can be used to obtain an estimate of the log power spectrum and in turn the power spectrum of the
basic wavelet. Note that if this is one's objective (and not wavelet recovery), then the problems
associated with phase unwrapping are not encountered.

7.4.2.6 The Fourier Transform Formulation of the Complex Cepstrum

The complex cepstrum can be de�ned as the inverse transform of the complex logarithm of the
Fourier transform of the sequence x (n)

x̂ (n) =
1
2π

π∫
−π

X̂
(
ejω
)
ejωndω =

1
2π

π∫
−π

log
∣∣X (ejω

)∣∣ ejωndω +
j

2π

π∫
−π

arg
[
X
(
ejω
)]
ejωndω (7.74)

the sequence c (n) = 1
2π

∫ π

−π
log
∣∣X (ejω

)∣∣ ejωndω is usually termed the real cepstrum and can
be shown to be equal to the even part of the complex cepstrum x̂ (n) because of the symmetry
properties of the Fourier transform.2

The real cepstrum can be de�ned as the inverse transform of the logarithm of the magnitude
Fourier transform of the sequence x (n)

c (n) =
1
N

N−1∑
k=0

log |X (k)| ej 2π
N kn (7.75)

The doctoral dissertation �Echo Removal by Discrete Generalized Linear Filtering�
[Schafer, 1968] by Ronald Schafer at MIT in 1968, focused on the issues of the discrete-time formu-
lation of the complex cepstrum, phase computation, recursion relations, and applications to echo
removal from speech. In our development of the complex cepstrum, a variety of alternate imple-
mentations of the complex cepstrum and relationships between the power cepstrum and complex
cepstrum were developed, both in general and for minimum-phase, maximum-phase and all-pass
sequences. The work also led to the interpretation in the cepstral domain of the Hilbert transform
relationship between Fourier transform magnitude and phase for minimum phase signals.

The cepstral coe�cients contain frequency information about the log magnitude spectrum, such
that each coe�cient can be interpreted as a measure of the energy of the log-magnitude spectrum on
increasing frequency bands. It is possible to obtain an estimate of the spectral envelope by liftering
(�ltering in the cepstral domain) the higher order coe�cients, keeping only the coe�cients that
contain lower-frequency information. This technique, termed cepstral smoothing, can give a good

2If x (n)is real, |X (ω)|is even and arg [X (ω)] is odd. If x (n) is even, X (ω) is even. The real part of the Fourier
transform is the Fourier transform of the even part of the sequence x (n)
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approximation of the spectral envelope of |X (k)| when used iteratively in a method called true
envelope estimation [Röbel et al., 2007].

Appendix 7.4 presents the phase cepstrum and discusses some operations such as windowing
and zero-padding in the cepstral domain.

7.4.3 Cepstral Smoothing

The cepstrum can be used to estimate the spectral envelope of speech or musical instrument
sounds (or any other signal) in a technique called cepstral smoothing. Cepstral smoothing can be
interpreted in the light of the source-�lter model, where the (real or complex) cepstrum is used to
deconvolve the pitch information (source) from the spectral envelope (�lter) by liftering, or simply
�ltering the cepstrum. The basic idea is to eliminate any quefrencies above that corresponding
to the fundamental period of the signal. Using the real cepstrum as de�ned in equation 7.75 and
regarding the log magnitude spectrum as a signal, we can interpret each cepstral coe�cient as a
measure of the energy present in discrete frequency bands of that signal. Low-pass �ltering the
cepstrum (also called liftering) would result in a smoother version of the log magnitude spectrum,
given by

C (k) =
N−1∑
n=0

w (n) c (n) exp
(
−j2πkn
N

)
(7.76)

where C (k) is the smoothed spectrum (corresponding to the spectral envelope estimation) and
w (n) is a low-pass window in the cepstral domain usually de�ned as

w (n) =


1, |n| < nc

0.5, |n| = nc

0, |n| > nc

(7.77)

where nc is the cuto� quefrency. If we only want to represent the spectral envelope, discarding
information about the partials we should set the cuto� quefrency below the period of the signal.
One major drawback of this operation is that we discard spectral energy when setting cepstral
coe�cients to zero. The result is a smooth curve C (k) that is always below the peaks of the log
magnitude spectrum. Figure 7.3 illustrates the cepstral smoothing technique. In �gure 7.3 we
see the original spectrum and the resultant spectral envelope curve. We should notice that, even
though the spectral envelope curve is a smooth curve that follows the amplitude of the magnitude
spectrum, it does not approximately match the peaks. Therefore, cepstral smoothing does not give
satisfactory results according to some de�nitions of the spectral envelope curve. We will see in
this chapter that the �true envelope� estimator uses cepstral smoothing in an iterative procedure
to overcome this problem. In the �true envelope� estimation technique, the aim is to �t a spectral
envelope curve that approximately matches the peaks of the log magnitude spectrum. But �rst,
we will see an alternative way of using the cepstrum to estimate the spectral envelope of discrete
spectra in a method called discrete cepstrum.

7.5 Discrete Cepstrum

The discrete cepstrum is a technique to solve the problem of estimating a continuous frequency-
envelope when the value of this envelope is speci�ed only at discrete frequencies. This problem
arises naturally in sinusoidal analysis/synthesis systems in which the signal is modeled as the
discrete sum of sinusoids. Such a continuous envelope is needed for example for pitch-scale modi�-
cations of speech signals (because the amplitudes of the modi�ed harmonics must be extrapolated
from the knowledge of the original harmonic amplitudes).
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Figure 7.3: Cepstral Smoothing. The �gures illustrates the cepstral smoothing technique. In the
�gure we see the log magnitude spectrum and the resultant spectral envelope curve.

Let us suppose that X (ω) is the power spectrum of the signal to be analyzed, S (ω) is the
power spectrum of the hypothetical source, and d (Y, Z) is a spectral distance. Now let us consider
the class C of power spectra P (ω) that are candidates to model the �lter, such that X (ω) ∼
S (ω)P (ω). We search for the parameters pm of P (ω) in C that de�ne a model that minimizes
d (X,SC). When we consider that S (ω) = 1, ∀ω and de�ne d (Y, Z) by the quadratic error between
the log spectra and the class C of power spectra P (ω) de�ned by

P (ω) =
L−1∏
k=0

epkcosωk (7.78)

we obtain the cepstrum because

log |P (ω)| =
L−1∑
k=0

pk cos (ωk) =
L−1∑
k=0

(2− δk0) ck cos (ωk) = c0 + 2
L−1∑
k=1

ck cos (2πfk) (7.79)

which is consistent with the de�nition of the real cepstrum given by equation (7.75). When
applied to discrete spectra this method gives erroneous results if the order of the model is not
negligible when compared to the number of spectral peaks. Now, we assume that the power
spectra S (ω) and X (ω) are de�ned on the same discrete set Ω = {ωn, n = 1 . . . N}, such that they
can be described as a set of partials at frequencies ωn with amplitudes sn and xn, respectively.
This can be written as

S (ω) =
N∑

n=1

snδ (ω − ωn) (7.80)

and
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X (ω) =
N∑

n=1

xnδ (ω − ωn) (7.81)

where δ (ω) denotes the Dirac delta distribution and the spectral envelope domain considered
is de�ned by equation (7.78). Next we adopt the distance given by the quadratic error between
the log spectra with spectral weights hn that are strictly positive real numbers and that are used
to obtain a better �t at certain discrete frequencies.

ε (c) =
N∑

n=1

hn [log |P (ωn)| − log (xn)]2 =
N∑

n=1

hn

[
L−1∑
k=0

(2− δk0) ck cos (ωk)− log (xn)

]2

(7.82)

Galas [Galas and Rodet, 1990] states that this error measure is �rather pertinent from the
perceptual point of view,� probably because it uses the logarithm of the power spectrum. D'haes
[D'haes and Rodet, 2003] states that comparing spectral envelopes is very interesting since it is
related to the timbral similarity between two short time spectra in a trivial way. The fact that
the perceived loudness of a human listener is approximately logarithmic with the signal amplitude
suggests that the square di�erence between the log magnitude spectra can be used to express the
perceived similarity. This di�erence, computed for two spectral envelopes |H1 (ω)| and |H2 (ω)|
de�ned by two vectors of cepstrum coe�cients c1 and c2 respectively, is equivalent to the Euclidean
distance between these vectors. We should bear in mind that there are other perceptually motivated
spectral distance measures, such as the Itakura-Saito distance, which is a measure of the perceptual
di�erence between a spectrum X (ω) and its approximation X̃ (ω). The Itakura -Saito distance is
de�ned as

d
(
X (ω) , X̃ (ω)

)
=

1
2π

π∫
−π

[
X (ω)
X̃ (ω)

− log
(
X (ω)
X̃ (ω)

)
− 1
]
dω (7.83)

It is important to notice that the Itakura-Saito distance is not symmetric, which means that

d
(
X (ω) , X̃ (ω)

)
6= d

(
X̃ (ω) , X (ω)

)
.

So the discrete cepstrum estimation can be formulated as an error minimization problem by
imposing the condition that the partial derivatives of ε with respect to the cepstral coe�cients c
must be equal to zero, resulting in

∂ε (c)
∂ck

=
N∑

n=1

hn

(
L−1∑
k=0

(2− δk0) ck cos (ωk)

)
cos (kωk) = 0 (7.84)

This formulation leads to a system that can be solved as a matrix equation of the form Ac = a,
with

Aij =
N−1∑
k=0

hk (2− δk0) cos (iωk) cos (jωk) (7.85)

P is the vector of cepstral coe�cients that we are looking for, and B is the vector given by

aij =
N−1∑
k=0

hk log (xk) cos (iωk) (7.86)

We can compute A more e�ciently by using an intermediate vector r de�ned as
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ri =
1
2

N−1∑
k=0

hk cos (iωk) (7.87)

and then

aij = ri+j − ri−j (7.88)

Galas [Galas and Rodet, 1990] proposes to solve the matrix equation using the Cholesky algo-
rithm and observes that the results depend on the order selection, that is, on the number L of
cepstral coe�cients. D'haes [D'haes and Rodet, 2003] observes that since the cepstrum coe�cients
are computed from a set of linear equations, the computation of L coe�cients requires at least
an equal number of detected peaks. Over�tting occurs when the number of coe�cients equals the
number of peaks. This can easily be avoided by lowering the number of coe�cients. However,
when too few coe�cients are used, a low pass �ltered envelope is obtained that fails to match
the peaks accurately. Galas [Galas and Rodet, 1990] states that one of the reasons for this phe-
nomenon is that the formulation assumes that we know precisely the position of the spectral peaks.
He proposes to replace the position (ωi, xi) of every spectral peak by a probability distribution
Prn (ω, x), and then replace the �rst error condition by its mathematical expectation. Assuming
sn = hn = 1, ∀n, this can be expressed as

ε (c) =
N−1∑
n=0

∫∫
Prn (ω, x) [log |P (ωn)| − log xn]2 dωdx (7.89)

Galas states [Galas and Rodet, 1990] that if Prn (ω, x) has no particular properties, compu-
tation of the parameters can be done by using a sampling of Prn (ω, x). Every spectral peak
(ωn, xn) is then replaced by a set of peaks (ωk, xk) with weights hk = Prk (ωk, xk). Particularly,
if we choose a Gaussian distribution for Prn (ω, x), it is possible to compute explicitly the cor-
responding matrix equation AC = B. Later on, Cappé [Cappé and Moulines, 1996] proposed a
regularization technique that tries to overcome many of the shortcomings of the original discrete
cepstrum formulation.

Appendix 7.5 contains yet another proposal for computing the discrete cepstrum using regular-
ized estimation [Cappé and Moulines, 1996, Cappé et al., 1995]. However, we will see in the next
section that �true envelope� estimation leads to better results when we want a spectral envelope
curve that approximately matches the peaks of the magnitude spectrum.

7.6 True Envelope

The true envelope estimator [Villavicencio et al., 2007] has been shown to outperform linear predic-
tion [Makhoul, 1975] or cepstral methods such as discrete cepstrum [Cappé and Moulines, 1996]
both in terms of accuracy and ease of model order selection. Recently the iterative procedure
has been signi�cantly improved such that the computational costs are similar to the costs of the
Levinson recursion such that real time processing can be achieved [Villavicencio et al., 2007]. True
envelope estimation is based on cepstral smoothing of the log amplitude spectrum and the re-
sulting estimation can be interpreted as the best band limited interpolation of the major spectral
peaks in such a way that the peak matching is maximized and inter-peak valleys are avoided
[Villavicencio et al., 2007].
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7.6.1 True Envelope Estimation

Let X (k) be the K-point DFT of the signal frame x (n) and Ci (k) the smoothed spectrum at
iteration i. The algorithm then iteratively updates the resulting spectral envelope Ai (k) with the
maximum of the original spectrum and the current spectral envelope Ci−1 (k)

Ai (k) = max (log |X (k)| , Ci−1 (k)) (7.90)

and applies cepstral smoothing to Ai (k) to obtain Ci (k). The procedure is initialized setting
A0 (k) = log |X (k)| and starting the cepstral smoothing to obtain C0 (k). Figure 7.4 illustrates
the �true envelope� estimation at di�erent iterations i. On the left-hand side we see the original
magnitude spectrum log |X (k)| and the smoothed spectrum Ci (k) at the indicated iteration. On
the right-hand side, we see the smoothed magnitude spectrum corresponding to Ai (k) used in the
next iteration.

7.6.2 Optimal Order Selection

The order of the cepstral representation of the spectral envelope is the number of cepstral coe�-
cients we keep in the cepstral smoothing procedure, and as such is proportional to the fundamental
frequency of the original signal. The optimal order should give a spectral envelope that follows the
overall shape of the �lter without representing the harmonic structure of the spectrum. In order to
estimate the optimal order, we use the source-�lter model and think of the spectrum as the result
of the interaction of two components, represented by the source, an input signal that contains
information about the frequencies of the partials and the �lter that shapes the source spectrum.
According to this model, the spectral envelope represents the �lter that has been excited by the
source. For near harmonic sources, the resulting spectrum will be quasi-harmonic. In terms of the
interaction between source and �lter, we can think of the resulting harmonics sampling the �lter
with a sampling rate that depends on the fundamental frequency of the source spectrum. Accord-
ing to the sampling theorem, we must sample the �lter with at least twice the maximum frequency
present in that signal. If we assume that the spectral envelope should not contain information
about the harmonic structure of the spectrum, the maximum frequency present in that signal is
the fundamental frequency F0, such that the related Nyquist frequency (assuming a sampling rate
of FS) is FS = 2F0. This formula provides a simple way of selecting the cepstral order because
higher sampling frequencies would reveal (maybe partially) information about the harmonic struc-
ture of the spectrum and lower sampling frequencies would smooth out the spectral envelope, not
revealing information about the (formant) peaks. We can therefore postulate the near optimal
order of the cepstrum given only that the maximum frequency di�erence between two spectral
peaks that carry envelope information is known. If the di�erence between those peaks is ∆F then
the cepstral order should be

Ô =
FS

2∆F
= α

FS

F0
, α = 0.5 (7.91)

While the optimal order, that is the order that provides an envelope estimate with minimum
error, depends on the speci�c properties of the envelope spectrum, the order selection according
to equation 7.91 is reasonable for a wide range of situations and the resulting error is generally
rather close to the one obtained with the optimal order.

In this work I have chosen to estimate the spectral envelopes using true envelope and manip-
ulate them with line spectral frequencies (LSFs). The next section introduces LSFs and how to
convert from the cepstral coe�cients resulting from the true envelope (TE) estimation to the LSFs
representation used to manipulate the spectral envelopes.
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7.7 Alternative Spectral Envelope Representations

Makhoul [Makhoul, 1975] proposes the following list of possible sets of parameters that characterize
uniquely the all-pole �lter H (z) or its inverse A (z).

1. Impulse response of the inverse �lter A (z), i.e., predictor parameters a (k) , 1 ≤ k ≤ p. Note
that the �rst p+ 1 coe�cients uniquely specify the �lter.

2. Autocorrelation coe�cients of a (k), ρ (i) , 0 ≤ i ≤ p, as de�ned in equation A.20.

3. Spectral coe�cients of A (z), Γi = ρ (0) + 2
∑p

j=1 ρ (j) cos 2πij
2p+1 , 0 ≤ i ≤ p where ρ (i) are as

de�ned in equation A.20. In other words, Γi is obtained from {ρ (i)} by a discrete Fourier
transform.

4. Cepstral coe�cients of A (z) as de�ned in equation 7.74. There is an iterative method for
the computation of the cepstral coe�cients directly from the predictor coe�cients. I will
reproduce the derivation in section 7.7.2.

5. Poles ofH (z) or zeros of A (z), denoted z (k) , 1 ≤ k ≤ p, where {z (k)} are either real or form
complex conjugate pairs. Conversion of the roots to the s plane can be achieved by setting
each root z (k) = es(k)T , where s (k) = σ (k)+ jω (k) is the corresponding pole in the s plane,
and T is the sampling period. If the root z (k) = zr (k) + jzi (k), where zr (k) and zi (k) are
respectively the real and imaginary parts of z (k), then we have ω (k) = 1/T arctan (zi(k)/zr(k))
and σ (k) = 1/2T log

(
z2
r (k) + z2

i (k)
)
.

6. Re�ection coe�cients ki, 1 ≤ i ≤ p, which are obtained as a byproduct of the solution of the
autocorrelation normal equations, as in equation 7.36, or from the backward recursion A.6.

Some of the preceding sets of parameters have p + 1 coe�cients while others have only p coe�-
cients. However, for the latter sets the gain G needs to be speci�ed as well, thus keeping the total
number of parameters as p+ 1 for all the cases. For purposes of data transmission, one is usually
interested in recovering the predictor coe�cients from the parameters that are chosen for trans-
mission. Each representation has its own properties that depend on the application. Quantization
and interpolation will be discussed later in section 7.7.3.

It is unknown whether Makhoul omitted line spectral frequencies (LSFs) for some reason or was
just unaware of their proposal by Itakura in 1975 [Itakura, 1975], the same year Makhoul published
his seminal paper on linear prediction. It was known that the linear predictor coe�cients (LPC)
of speech signals can be transformed into a �pseudo� vocal tract area function whose boundary
conditions are a complete opening at the lips and a matching resistance termination at the glottis.
Itakura realized that if the boundary condition at the glottis is replaced by a complete opening
or a complete closure, all the poles of the resulting system function will move onto the unit circle
in the z plane. Using this fact, Itakura proposed to describe the original LPCs by two sets of
pole frequencies corresponding to the two new boundary conditions at the glottis, or a set of
frequency-residue pairs corresponding to either set of poles. This representation is called line
spectral frequencies (LSF) or line spectral pairs (LSP).

7.7.1 Line Spectral Frequencies

LSFs collectively describe the two resonance conditions arising from an interconnected tube model
of the human vocal tract. This includes mouth shape and nasal cavity, and forms the basis of the
underlying physiological relevance of the linear prediction representation [Paliwal, 1992]. The two
resonance conditions are those that describe the vocal tract being either fully open or fully closed
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at the glottis, respectively. The model in question being constructed from a set of equal-length but
di�erent diameter tubes, with the source end either closed or open. The two conditions give rise
to two sets of resonant frequencies, with the number of resonances in each set being determined by
the number of joined tubes (which in turn is a function of the order of the analysis system). The
resonances of each condition are the odd and even line spectra, respectively, and are interleaved
into a monotonically increasing set of LSFs. In reality, the human glottis opens and closes rapidly
during voiced speech: it is neither fully closed nor fully open over an analysis frame. Hence actual
resonances occur at frequencies located somewhere between the two extremes of odd and even LSP
condition. Nevertheless, this relationship between vocal resonance and LSP position endows them
with a signi�cant interpretation which we will build upon as we review the representation.

Figure 7.5 illustrates LSPs overlaid on a power spectrum plot. The 10 vertical lines were drawn
at the LSFs, and show the odd (solid) and even (dashed) frequencies being interleaved. Both the
lines and the spectrum were derived from the same set of linear prediction parameters which were in
turn obtained from 10th-order linear predictive analysis of a 20ms frame of voiced speech. Apart
from the natural interleaving of the line frequencies, it is notable that peaks in the underlying
spectrum of �gure 7.5 tend to be bracketed by a narrow pair of lines. By contrast, local minima
in the spectrum tend to not have LSPs overlaid nearby. This relationship between line location
and spectral resonance is one reason for the popularity of LSPs for the analysis, classi�cation and
transmission of speech.

Figure 7.5: An example LPC spectrum overlaid with the corresponding vertical LSP frequencies.
Odd lines are drawn solid and even lines are drawn dashed. After McLoughlin [McLoughlin, 2008]

Concerning vocabulary, the abbreviation LSP refers in some sources to Line Spectrum Pair
polynomials and in others to line spectral polynomials. Moreover, the operation yielding LSP
polynomials has been called LSP transformation, LSP decomposition or simply LSP. Since there
is virtually no di�erence in meaning, we will use all forms interchangeably. The LSFs, which refer
to the angle (frequency) of the zeros of LSP polynomials, are sometimes loosely used to refer
to LSP methods in general, but we prefer to use LSFs to denote the actual angle or frequency
only. The LSP decomposition is based on a transformation of a polynomial to its symmetric
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and antisymmetric parts, and many di�erent names have appeared to denote these symmetries.
According to our understanding the following terms are equivalent: symmetric, selfreciprocal, and
palindromic polynomial. The same terms apply for the antisymmetric polynomial but with a pre�x
of either ``anti'', ``skew'', or ``conjugate''. A polynomial A (z) that has all its zeros inside the unit
circle is said to be minimum-phase, or equivalently, its inverse A−1 (z) is said to be stable. If it
has all zeros outside the unit circle, it is maximum-phase and if the zeros are on the unit circle it
is sinusoidal.

7.7.1.1 The LSP Representation

LSFs are derived from the linear predictive coding (LPC) �lter representing vocal tract resonances
in analyzed speech, for M th-order analysis

A (z) = 1 +
M∑

m=1

amz
−m (7.92)

Following the formalization in Appendix E.1, a polynomial As (z) of order M is said to be
palindromic if it has real coe�cients {as (m)} and the following relation holds

As (z) = z−MAs

(
z−1
)

(7.93)

Similarly, a polynomial Aa (z) is antipalindromic if it has real coe�cients {as (m)} and the
following relation holds

Aa (z) = −z−MAa

(
z−1
)

(7.94)

We will de�ne two (M + 1)th-order polynomials related to A (z) which we shall name P (z)
and Q (z). These polynomials represent an interconnected tube model of the human vocal tract.
They correspond in turn to complete closure at the source end of the interconnected tubes and a
complete opening, de�ned by the (M + 1)th extra term. The two polynomials are created from
the LPC polynomial with an extra feedback term being positive to model energy re�ection at a
completely closed glottis, and negative to model energy re�ection at a completely open glottis

P (z) = A (z) + z−(M+1)A
(
z−1
)

(7.95)

Q (z) = A (z)− z−(M+1)A
(
z−1
)

(7.96)

The roots of these two polynomials are the set of LSFs, ωk. These relate back to the palindromic
and antipalindromic polynomials.

In the original model, the source end is the glottis, which is neither fully open nor fully closed
during the period of analysis, and thus the actual resonance conditions encoded in A (z) are a
linear combination of the two boundaries. In fact this is simply stated as

A (z) =
P (z) +Q (z)

2
(7.97)

It can be shown that the complex roots of the polynomials will lie on the unit-circle in the
z-plane if the original LPC �lter was stable [McLoughlin, 2008], and alternate in order around the
unit circle. It is also important to note that any equivalent size set of roots that alternate in this
way around and on the unit circle will represent a stable LPC �lter, and we shall consider the
implications of this for LSP-based adjustment and processing.
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According to equation E.3, if we denote the set of complex roots as {φk}, then the LSFs are
determined from equations 7.95 and 7.96

ωk = arctan
(
<{φk}
= {φk}

)
(7.98)

ωk are then the LSFs expressed in radians.
The polynomials P (z) and Q (z) have trivial zeros at z = ±1, like stated in section E.1.

Conversion from LSFs back to LPCs is a simple process [McLoughlin, 2008], since we can easily
use the ordered LSFs ωk to recreate the polynomials that they are roots of, namely, if M is even,
P (z) and Q (z) can be written as

P (z) =
(
1 + z−1

) ∏
k=2,4,··· ,M

(
1− 2z−1 cosωk + z−2

)
(7.99)

Q (z) =
(
1− z−1

) ∏
k=1,3,··· ,M−1

(
1− 2z−1 cosωk + z−2

)
(7.100)

when M is odd, the relations are given by

P (z) =
∏

k=2,4,··· ,M

(
1− 2z−1 cosωk + z−2

)
(7.101)

Q (z) =
(
1− z−2

) ∏
k=1,3,··· ,M−1

(
1− 2z−1 cosωk + z−2

)
(7.102)

so that we can easily retrieve A (z) from the polynomials P (z) and Q (z).

7.7.1.2 Properties of Line Spectral Pair Polynomials

Bäckström gives a comprehensive review of the properties of LSFs [Backström and Magi, 2006].
In brief, if A (z) is minimum phase, the roots of P (z) and Q (z) are on the unit circle, are real,
interleaved with each other, and always lead to stable envelopes when arranged in ascending order
[Backström and Magi, 2006]. Both palindromic and antipalindromic polynomials, as expressed
in equations 7.93 and 7.94 are linear-phase FIR �lters when interpreted as transfer functions
[Backström and Magi, 2006]. It follows that if zm is a root of a palindromic or antipalindromic
polynomial, then also z = z−1

m must be a root. Zeros of palindromic and antipalindromic polyno-
mials can be in one of the four possible categories

1. root quadruples symmetric to the unit circle and real axis
[
zm, z̄m, z

−1
m , z̄−1

m

]
, where z̄i stands

for the complex conjugate of zi;

2. root pairs on the unit circle summetric to the real axis [zm, z̄m];

3. root pairs on the real axis symmetric to the unit circle
[
zm, z

−1
m

]
;

4. trivial zeros at zm = ±1.

Like equations 7.99, 7.100 and 7.101, 7.102 suggest, simple trivial zeros of palindromic and an-
tipalindromic polynomials depend on the order M of the polynomial.

Bäckström [Backström and Magi, 2006] de�nes the relation +, such that F1 (z) + F2 (z) means
that F1 (z) and F2 (z) interlace on the unit circle and F1 (z) has a root-pair closer to the angle
zero, or z = 1. The formal de�nition is as follows: Two polynomials with real coe�cients F1 (z)
and F2 (z) (not necessarily of the same order) are interlaced on the unit circle if
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1. all zeros z = zm of Fk (z) are on the unit circle, that is, Fk (zm) = 0 ⇔ |zm| = 1;

2. zeros of F1 (z) and F2 (z) are simple and distinct, with the exception of possible simple trivial
zeros at z = ±1;

3. the N non-trivial zeros z 6= ±1 of F1 (z) and F2 (z) are interlaced on both the upper and lower
halves of the unit circle, that is, the zeros z(j)

i = exp
(
j2πω(m)

k

)
of Fk (z) have −π < · · · <

2πω(2)
N/2−1 < 2πω(1)

N/2−1 < 2πω(2)
N/2

< 2πω(1)
N/2

< 0 and 0 < 2πω(1)
N/2+1 < 2πω(2)

N/2+1 < 2πω(1)
N/2+2 <

2πω(2)
N/2+2 < · · · < π. Note that N is always even because we have omitted trivial zeros.

Next, Bäckström [Backström and Magi, 2006] proves the most famous property of LSP, the intra-
model interlacing property, that says that if A (z) is a polynomial with real coe�cients and all its
roots are inside the unit circle, then the roots of the LSP polynomials de�ned in equations 7.95 and
7.96 are interlaced on the unit circle P (z) + Q (z). Conversely, if the zeros of two polynomials with
real coe�cients of the same degree, one palindromic and the other antipalindromic, are interlaced,
then their sum always has all zeros within the unit circle.

Since the roots of LSP polynomials lie on the unit circle, they can, in principle, be readily
found. Moreover, the zeros of the LSP polynomials de�ne the polynomial unambiguously up to
scaling and we can reconstruct the LSP polynomials from their zeros (and scaling coe�cients) and
thereby obtain the original A (z) as well. The zeros can, in turn, be represented by their angles
only, since they lie on the unit circle. Finally, the angles are bounded and if the ordering property
is ensured, the minimum phase property of the reconstructed A (z) is retained. It is therefore this
theorem that justi�es the use of LSP in speech coding.

LSFs also present the useful tendency to be located where the peaks of the envelope they
represent are. Figure 7.5 shows that each pair tends to be close together when near a peak of the
spectral envelope and far apart when not, depicting another useful property of LSFs. The closer
the line spectrum pair is, the narrower the peak.

7.7.1.3 Modi�cation of Line Spectral Frequencies

Based on these properties of LSFs, McLoughlin [McLoughlin, 2008] exempli�es how we can ma-
nipulate the LSFs to produce small changes in the shape of the spectral envelope and Morris
[Morris and Clements, 2002] presents a method for modifying formant peak locations and band-
widths in the line spectrum domain. Figure 7.6 shows the original spectral envelope in grey and a
modi�ed envelope (solid line) with its corresponding LSFs. Since there are LSF pairs that corre-
spond roughly to speci�c spectral peaks, we generally can make changes to a speci�c peak without
changing much the overall spectral envelope.

A comparison of the original and �nal spectra shows di�erences in the immediate frequency
regions of the lines that were changed most. From these observations it has been found possible to
alter the values of particular LSPs to change the underlying spectral information which they repre-
sent. Methods used to achieve these alterations are shown to have great potential for enhancement
of speech in the presence of noise. To illustrate some of the modi�cations possible, �gure 7.6 plots
the original spectrum of �gure 7.5 in gray, and a power spectrum derived from an altered set of
LSPs as drawn. The LSP adjustments made to cause these spectral changes were namely: The
separation of line pair {1:2} has been increased, resulting in a wider, lower amplitude spectral peak
between them. The separation of line pair {5:6} has been decreased, and the pair has also been
translated slightly upward in frequency, causing a sharper peak between them, now at a higher
frequency. Line 10 has been moved closer to the Nyquist frequency of 4 kHz, inducing a spectral
peak at that frequency. All of the line alterations shown were performed manually.
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It was probably Paliwal again [Paliwal, 1992] who �rst reported that the e�ects, on the under-
lying spectrum, of modifying a line are predominantly con�ned to the immediate frequency region
of that line. However, amplitude changes in one region will always cause compensatory power
redistribution in other regions. Despite this, as long as line alterations are minimal, the e�ects
on other spectral regions can be limited. This is saying that, for small movements, and small
movements only, localized spectral adjustments can be made through careful LSP manipulation.
The example of �gure 7.5 shows a spectrum of voiced speech. The three spectral peaks represent
formants, and as such we can see that the operations we performed have a�ected those formants.
In fact, LSP operations have demonstrably altered formant bandwidths and positions. The LSP
operations to derive the changes shown in �gure 7.5 can be formalized as follows. If ωk are the LSP
frequencies and ω′k the altered frequencies, then narrowing line pair {k:k+1} by degree α would
be achieved by

ω
′

k = ωk + α (ωk+1 − ωk) (7.103)

ω
′

k+1 = ωk+1 − α (ωk+1 − ωk) (7.104)

and increasing the frequency of line k by degree γ may be achieved with

ω
′

k = ωk + ωk
(γ − 1) (π − ωk)

π
(7.105)

When altering the line positions it is important to avoid forming unintentional resonances by
narrowing the gaps between lines that were previously separated. This problem may be obviated
either by moving the entire set of LSPs or providing some checks to the adjustment process. In the
former case, movement of lines 1 and 10 closer to angular frequencies of 0 and p may also induce
an unintentional resonance. Equation 7.105, designed for upward shifting, progressively limits the
degree of formant shift as a frequency of π is neared. A similar method may be applied to downward
shifting. Adjusting lines in this way alters the frequency relationship between any underlying
formants, and therefore will tend to degrade the quality of encoded speech [McLoughlin, 2008].

Appendix ?? presents the fundamental theorem of palindromic polynomials, which forms the
basis of the line spectral pair (LSP) representation.
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Figure 7.6: The altered set of LSPs, and the resulting LPC spectrum are plotted over the original
spectrum, which is shown as a gray area. After McLoughlin [McLoughlin, 2008].

7.7.2 Conversion from Linear Prediction to Cepstral Based Represen-
tations

We need to estimate the spectral envelope and manipulate it (interpolation of parameters). For
such, we will study the most reliable estimation method and the representation most suited to the
problem at hand, interpolation of the spectral envelopes. Since the estimation and manipulation
are independent stages of the morphing process, we use both linear prediction and cepstral based
representations. There are di�erent possible ways of converting from linear prediction to cepstral
representations. I will present recursive and direct analytical relations, followed by an indirect
method that uses the power spectrum as intermediate representation between them and that is
approximate.

7.7.2.1 Recursive Relations

Recursive relations between cepstrum and predictor coe�cients have long been known
[Markel and Gray, 1976]. If we let equation (7.92) be an inverse �lter polynomial
[Markel and Gray, 1976] of order M whose roots are inside the unit circle, the set {am} are the
prediction coe�cients. Then, 1/A(z) is a stable all-pole �lter whose cepstrum coe�cients can be
expressed as

log
[

1
A (z)

]
=

∞∑
n=1

cnz
−n (7.106)

The well-known recursive relation between the am and cn is obtained by di�erentiating equation
(7.106) with respect to z−1 and equating equal powers of z−1, yielding [Schroeder, 1980]

cn = −an −
1
n

n−1∑
k=1

kckan−k (7.107)
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The inverse recursive relation is given by

an = −cn +
1
n

n−1∑
k=1

−kckan−k (7.108)

For some purposes, knowledge of direct relations between these two sets of important parameters
characterizing sources and signals is desirable.

7.7.2.2 Direct Relations

A direct (nonrecursive) relation can be obtained by applying a formula [Schröeder, 1999] for the
division of two power series to the ratio −A′(z)/A(z) obtained after di�erentiating the left side of
equation 7.106. This gives

cn =
1
n

(−1)n

∣∣∣∣∣∣∣∣∣
a1 1 0 · · · 0
2a2 a1 1 0 . . . 0
...

nan an−1 · · · a1

∣∣∣∣∣∣∣∣∣ (7.109)

Unfortunately, this determinant is somewhat unwieldy. An alternative direct form is, therefore,
desirable and can be derived as follows. From equations 7.92 and 7.106 we have

ln

(
1 +

M∑
m=1

amz
−m

)
= −

∞∑
n=1

cnz
−n (7.110)

Using the well known power series expansion for ln (1 + x) yields

∞∑
k=0

1
k

(
−

M∑
m=1

amz
−m

)k

= −
∞∑

n=1

cnz
−n (7.111)

or alternatively

∞∑
k=0

1
k
k!

∞∑
n=k

z−n
∑ (−a1)

m1 · · · (−aM )mM

m1! · · ·mM !
= −

∞∑
n=1

cnz
−n (7.112)

where the third sum has to be taken over all

m1 + 2m2 + · · ·+MmM = n (7.113)

and

m1 +m2 + · · ·+mM = k (7.114)

Because k is summed over all positive integers, the condition 7.114 can be dropped if k in
equation 7.112 is replaced by m1 +m2 + · · ·+mM .

Equating equal powers of z−1 in equation 7.112 then yields the desired direct relation between
cepstrum and predictor coe�cients

cn =
∑ (m1 +m2 + · · ·+mM − 1)!

m1! · · ·mM !
(−a1)

m1 · · · (−aM )mM (7.115)

where the sum is to be taken over allmr that ful�ll equation 7.113. But what does the restriction
7.113 on the sum in equation 7.115 mean? In order to understand that, let us assume that n = 4
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and M ≥ 4. Then equation 7.113 can be satis�ed by the following �ve choices of mr, given by
table 7.1.

m1 m2 m3 m4

4 0 0 0
2 1 0 0
1 0 1 0
0 2 0 0
0 0 0 1

Table 7.1: The table lists the values of m.

In addition, all mr with r > 4 must equal zero.
Sincemr is multiplied by r in equation 7.113, we can also say that the di�erentmr are �counted�

r times in adding up to n. In other words, each row of table 7.1 corresponds precisely to one
decomposition of n into positive integers

number of 1's 2's 3's 4's

4 0 0 0 (1+1+1+1=4)
2 1 0 0 (1+1+2=4)
1 0 1 0 (1+3=4)
0 2 0 0 (2+2=4)
0 0 0 1 (4=4)

Table 7.2: Decomposition of n into positive integers. The table lists the values of m.

Thus, the number of terms in equation 7.115 equals the number of partitions P (n) of n into
positive integers not exceeding M . The generating function for P (n) is

M∏
n=1

(1− xn)−1 (7.116)

a result that can be veri�ed by expanding each term of the product into a geometric series.
The restricted partitions P (n) are related to the unrestricted partitions p (n) by the formula

P (n) = p (n)−
n−M−1∑

i=0

p (i) (7.117)

where p (0) is de�ned to equal 1 and the empty sum is considered to be zero, i.e., for n ≤
M, P (n) = p (n). Equation 7.117 is obtained by observing that for m = M + 1, P (n) = p (n)− 1
and by complete induction.

From equations 7.92 and 7.106 we have

M∑
m=0

amz
−m = exp

[
−

∞∑
k=1

ckz
−k

]
(7.118)

Now we are ready to derive the inverse direct relation, that is, direct computation of predictor
coe�cients from the cepstrum. Expanding the exponential function into a power series results in

M∑
m=0

amz
−m =

∞∑
n=0

1
n!

(
−

∞∑
k=1

ckz
−k

)n

(7.119)
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Evaluation of the nth power yields

M∑
m=0

amz
−m =

∞∑
n=0

∞∑
m=n

∑ (−c1)k1 · · · (−cM )kM

k1! · · · kM !
(7.120)

where the third sum has to be taken over

k1 + 2k2 + · · ·+ nkn = m (7.121)

and

k1 + k2 + · · ·+ kn = n (7.122)

Because of the sum over n in equation 7.120, the side condition equation 7.122 is obviated.
Equating equal powers of z−1 gives the desired direct relation for the predictor coe�cients in
terms of the cepstrum

an =
∑ (−c1)k1 · · · (−cn)kn

k1! · · · kn!
(7.123)

where the sum is to be taken over all kr subject to the condition 7.121.

7.7.2.3 Spectral Power Density Method

The Wiener�Khinchin theorem states that the power spectral density Sxx (ω) of a wide-sense-
stationary random process is the Fourier transform of the corresponding autocorrelation function.
For the continuous case this gives

Sxx (ω) = F {rxx (τ)} =
∫ ∞

−∞
rxx (τ) e−j2πfτdτ (7.124)

where

rxx (τ) = E [x (t)x∗ (t− τ)] (7.125)

is the autocorrelation function de�ned in terms of statistical expectation, and where Sxx(ω) is
the power spectral density of the function x (t). Note that the autocorrelation function is de�ned
in terms of the expected value E of a product, and that the Fourier transform of x (t), does not
exist in general, because stationary random functions are not square integrable (power signals).
The asterisk denotes complex conjugate, and can be omitted if the random process is real-valued.
For the discrete case the formulation is similar

Sxx (ω) =
∞∑

k=−∞

rxx[k]e−j2πkf (7.126)

where

rxx [k] = E
[
x [n]x∗ [n− k]

]
(7.127)

and where Sxx(f) is the power spectral density of the function with discrete values x (n). Being
a sampled and discrete-time sequence, the spectral density is periodic in the frequency domain.

Following from the de�nition of convolution of two signals x (n) and h (n)
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y (n) =
∞∑

n=−∞
x (m) y (n−m) = x (n) ∗ h (n) (7.128)

we can easily show that for a real signal x (n)

F {rxx (τ)} = F {x (n) ∗ x̄ (−n)} $ X (ω) X̄ (−ω) = |X (ω)|2 = Sxx (ω) (7.129)

which uses the convolution theorem where indicated by $. Equation 7.129 provides a link
between the Fourier spectrum of a signal and its autocorrelation, which leads us directly to our
main result, the conversion between linear prediction and cepstral coe�cients via calculation of
the power spectrum. Applying the Levinson-Durbin recursion (7.2.1.8), we can recover the linear
prediction coe�cients {an} from the power spectrum. The relation between cepstral coe�cients
and power spectrum is a direct consequence of the de�nition of the real cepstrum given by equation
7.75. Since this method is computationally e�cient due to utilization of the DFT to calculate the
power spectrum and we can use a standard implementation of the Levinson-Durbin recursion,
we have chosen this method over the direct relation in equations 7.115 or 7.123, which require
complicated conditions on the coe�cients. Also, we veri�ed empirically that this method is much
more stable than the recursive relation given by equation 7.107, which seems to present convergence
problems when truncated.

7.7.3 Quantization Properties

In digital signal processing, quantization is the process of approximating a continuous range of
values by a �nite set of discrete symbols or integer values. Although the sets of parameters given
above provide equivalent information about the linear predictor, their properties under quantization
are di�erent. For the purpose of quantization, two desirable properties for a parameter set are:

1. �lter stability upon quantization and

2. a natural ordering of the parameters.

Property 1) means that the poles of H (z) continue to be inside the unit circle even after parameter
quantization. By natural ordering of the parameters, we mean that the parameters exhibit an
inherent ordering, e.g., the predictor coe�cients are ordered as a1, a2, · · · ap. If a1 and a2 are
interchanged then H (z) is no longer the same in general, thus illustrating the existence of an
ordering. The poles of H (z), on the other hand, are not naturally ordered since interchanging
the values of any two poles does not change the �lter. When an ordering is present, a statistical
study on the distribution of individual parameters can be used to develop better encoding schemes.
Only the poles and the re�ection coe�cients insure stability upon quantization, while all the sets
of parameters except the poles possess a natural ordering. Thus only the re�ection coe�cients
possess both of these properties.

In the experimental investigation of the spectral and cepstral parameters, it was found that the
quantization properties of these parameters are generally superior to those of the impulse responses
and autocorrelation coe�cients. The spectral parameters often yield results comparable to those
obtained by quantizing the re�ection coe�cients. However, for the cases when the spectrum
consists of one or more very sharp peaks (narrow bandwidths), the e�ects of quantizing the spectral
coe�cients often cause certain regions in the reconstructed spectrum (as described in the previous
section) to become negative, which leads to instability of the computed �lter.
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Figure 7.4: �True Envelope� estimation. The �gures illustrates the �true envelope� estimation
at di�erent iterations i, each corresponding to a row. On the left-hand side we see the original
magnitude spectrum log |X (k)| and the smoothed spectrum Ci (k) at the indicated iteration. On
the right-hand side, we see the smoothed magnitude spectrum corresponding to Ai (k) used in the
next iteration.



Chapter 8

Temporal Evolution

The aim of this chapter is to present theoretical and technical considerations about the automatic
segmentation of musical instrument sounds into perceptually salient temporal segments (or re-
gions). From a theoretical point of view, we need a model of the temporal evolution of musical
instrument sounds to guide the segmentation task. In practice, though, only a theoretical model
is not enough to obtain robust estimations of the regions de�ned in the model automatically.

Usually, when we want to automatically detect speci�c events, we use a detection function that
behaves in a particular fashion during the event we want to detect. Thus the automatic detection
task becomes simply identifying such behavior and associating it to the event. One example is
onset detection, where the event we want to detect is the onset of the sounds (for instance, the
beginning of notes played by a musical instrument). There are many possible detection functions,
and consequently many di�erent ways of detecting onsets using each type of detection function.
The details of onset detection are out of the scope of this work, so I will refer the interested reader
to the tutorial review by Bello and colleagues [Bello et al., 2005].

The automatic segmentation task is complex because it requires the detection of several events
(onset, end of attack, beginning of release, o�set, etc). We simply cannot expect one single de-
tection function (such as the temporal envelope) to contain information about all of the distinct
events we want to detect. So we adopted a model that includes spectral information indirectly
with the temporal variation of the spectral centroid. The temporal segmentation is done according
to the amplitude/centroid trajectory (ACT) model proposed by Hajda [Hajda, 1996] for sustained
musical instrument sounds and shown in �gure 8.6. Although Hajda proposed a theoretical model
to segment sustained musical instrument sounds using spectro-temporal information, there was no
explicit recommendation for the automatic identi�cation of the boundaries of the segments. Conse-
quently, I [Caetano and Rodet, 2010a] developed techniques to automatically detect the boundaries
of the di�erent events proposed by the ACT model.

The segmentation of musical instrument sounds depends on the correct detection of the bound-
aries of the regions. Clearly we need a good de�nition of the regions to be detected in order to
be able to estimate them. The �rst problem we face is that not all instruments contain the same
temporal events, so we cannot expect, for example, to be able to estimate the sustain part for
a percussive instrument sound. This is where a robust model plays a key role in de�ning the
segments and their boundaries.

The most important aspect to be taken into account is a clear separation of cause and e�ect.
The temporal envelope is merely the description of one of the results of the source-�lter interaction.
It is fruitless to attempt to detect the boundaries of the events we want to estimate without a proper
causal description. We must �nd the signal level counterparts of the physical events to properly
estimate them. The technique we present in this chapter, dubbed ACT segmentation, uses spectro-

161



162 CHAPTER 8. TEMPORAL EVOLUTION

temporal cues at the signal level left by the physical/gestural events to correctly segment them.
The di�culty in this approach is that each instrument has its own particularities. Ideally, we

search for a model that is robust enough to describe the signal level manifestations of as many
types of instruments as possible. We will begin by describing the general model we will consider,
namely, the source �lter model, and then the physical characteristics of the events we aim to
describe. Section 8.4 presents the amplitude/centroid trajectory (ACT) model [Hajda, 1996] for
speci�c classes of instruments. Chapter 12 shows how we use the ACT model to obtain signi�cant
estimates of the boundaries from spectro-temporal traces left by the physical gestures.

8.1 Di�erent Regions

Musical instruments are mechanical systems that by themselves are at equilibrium. They need an
external source of energy input to produce sound. In general terms, all acoustic musical instruments
have one (or more) method for applying mechanical energy to the system, herein termed the
excitation method. Pianos have keys connected to hammers that strike a set of tuned strings.
Violins have strings that are bowed or plucked. Clarinets have a mouthpiece with a single reed
that, when blown, creates a vibrating column of air. Di�erent modes of excitation will generally
lead to perceptually di�erent attacks.

The connection between intensity (dynamics), frequency and temporal envelope is far less
obvious. Hartmann [Hartmann, 1978] reports on the e�ects of the amplitude envelope on the
pitch of sinusoidal tones. Grey [Grey and Gordon, 1978] and Risset [Risset and Mathews, 1969]
have investigated musical instrument sounds independently and concluded that each partial has a
particular temporal envelope. They have also discovered that each partial has a slightly di�erent
onset, so they termed this phenomenon onset asynchrony. Higher partials tend to start later and
this would be an important perceptual cue to group them together into a single percept.

Before the onset, the instrument is in a state of equilibrium. As with all mechanical systems,
there is a certain amount of resistance or inertia that keeps the instrument from vibrating on its
own. Performers must overcome that inertia before their instrument will sound properly. The
more energy a performer uses, the faster the resistance is overcome and the faster the instrument
reaches its steady state vibration. For example, di�erent �ngerings on a wind instrument produce
di�erent lengths of air columns - longer columns mean more mass to vibrate. We know that large
masses have more inertia to overcome, but also have more momentum once they are in motion.
Thus, low notes have a longer attack and a longer release than high ones.

This section de�nes the physical/gestural events that generate/de�ne each perceptually di�erent
region of the temporal evolution of musical instrument sounds and, more importantly, the signal-
level manifestations of the physical events.

8.1.1 Attack

The attack is perhaps the only event that is present in all sounds independent of the mode of
excitation. The attack corresponds to the initial excitation of the instrument. The beginning of
the attack is perhaps best characterized by the transition between no event and event (or more
properly background noise and event for recordings, i.e., signals). This is usually termed onset.

The end of the attack is more di�cult to de�ne since it depends on the physical gesture.
Notably, transients occur until a permanent resonance mode is attained. For some instruments,
we can make a clear distinction between the end of the attack and the beginning of the resonance.
The time period when a hammer touches the piano strings would be the attack and the moment
the standing wave pattern establishes itself in the string marks the beginning of the resonance
mode. For a bowed string it is similar. From the moment when the bow �rst touches the string
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(onset) until the string enters a resonance regime with the bow we can devise two physically and
perceptually distinct events. The end of the attack happens before the resonance. For a tube
(blown instruments) the situation is similar.

8.1.2 Sustain

The sustain part usually corresponds to the region where the system (musical instrument) is
constantly exited with external energy. It is usually de�ned in terms of approximately constant
amplitude. Perceptually, though, it is not reasonable to expect the region where a standing wave
vibration pattern manifests as spectrally constant resonances (similar spectral shape) to be su�-
ciently described solely by the amplitude. Therefore we suggest that constant excitation instru-
ments (bowed and blown, among others), where the energy and the spectral information remain
roughly constant, present a sustained part.

8.1.3 Decay

The decay supposedly corresponds to a decrease of energy after the attack during which the
permanent excitation regime (such as a standing wave vibration pattern) is already established.
This is the region where the amplitude evolution of a percussive instrument sound constantly
decays due to losses and strays from constant excitation patterns (blown/bowed strings), where
energy is repeatedly input to the instrument during a period of time.

When we look closely, the decay remarkably contains standing wave patterns, even though
the amplitude is decreasing. In plucked strings, for example, there is a clear spectral pattern
that remains constant throughout and that is perceptually important. The decay contrasts with
the amplitude evolution of a blown or bowed instrument, whose standing wave vibration pattern
coincides with a more or less constant amplitude.

8.1.4 Release

The release phase admits several interpretations, and its de�nition has not been consistent among
authors. On the one hand, it can refer to the release of the excitation, such that the release
segment is the interval between the time instant where the energy ceases to be supplied and the
vibrations dying out (o�set). This de�nition is common for sustained sounds, but not always used
for non-sustained (percussive) sounds. In the latter case release would be equivalent to decay. On
the other hand, it can refer to an intentional interruption of the vibration by the player. Most
notably, in stringed keyboard instruments, this corresponds to the release of a key, which causes
the damper to stop string vibrations. To avoid confusion between these very di�erent physical
events, the following convention will be used. The term release will correspond to the release
of the excitation in sustained instruments, while interruption will refer to the case of intentional
interruption of vibration in non-sustained instruments.1

8.2 The Helmholtz Model

We are looking for a model that allows us to automatically detect perceptually salient temporal
events such as attack, decay, sustain, and release of musical instrument sounds. The automatic

1Note that, while rare, it is also possible for the release phase of a sustained instrument to be followed by an
interruption phase, such as when a violinist intentionally interrupts the vibrations of the strings after having stopped
supplying energy to them by bowing.
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Figure 8.1: The Helmholtz model of the temporal evolution of acoustic musical instrument sounds.
Helmholtz de�ned that the amplitude envelope can be divided into attack, steady state and decay.

detection of these regions usually consists in de�ning the beginning and end of each event, and
here this task is called temporal segmentation.

Usually, these regions have a natural temporal progression (the attack always comes �rst, for
example) and they are successive, such that the boundaries coincide. In chapter 12 the method
developed to automatically segment musical instrument sounds and how to use the markers from the
automatic segmentation in the temporal alignment part of the morphing process will be described.
At this point, we are looking for the signal-level counterparts of the events we want to detect.
In other words, we want to determine what we need to measure in the signal in order to detect
perceptually relevant events such as attack, sustain and release.

Historically, Helmholtz was the �rst to propose the segmentation of isolated acoustic musical
instrument sounds according to their temporal evolution [Helmholtz, 1885]. Helmholtz character-
ized what he called musical tone as a waveform that follows an amplitude envelope that consists of
the attack, the steady state and the decay, as shown in �gure 8.1. During the attack, the amplitude
increases from zero to its peak value. In the steady state portion the amplitude is constant and
�nally decreases back to zero during the decay. Helmholtz concluded that sounds that evoke the
sensation of pitch possess �xed waveforms that do not change in the course of the tone, apart from
the amplitude envelope, whose temporal evolution has great impact on the perception of the tone,
according to him. We should notice that this model only takes into account temporal cues provided
by the temporal envelope to de�ne perceptually salient features such as the attack, steady state
and decay.

The classic Helmholtz model led to the development of some segmentation techniques that
only take temporal cues into account [Jensen, 1999, Peeters, 2004]. Notably, these methods rely
on the estimation of the amplitude (or energy, which is amplitude squared) envelope and use it as
detection function to estimate the boundaries of the regions de�ned by the model.

However, the classical Helmholtz model breaks down when we examine musical instrument
sounds on a small scale. When the harmonic content of sound is examined with the STFT over
small time periods, we discover that, contrary to the Helmholtz model, a sound's spectrum changes
profoundly over time. During the attack portion of a sound, harmonic content may change rapidly
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and unpredictably. This phenomenon is called the initial transient. During the release, upper
partials tend to disappear more quickly before the entire sounds fades away. While the sustain
portion of the sound, when it exists, is certainly more stable than the attack or decay, it is hardly
as static as Helmholtz would suggest.

Clearly, the basic premise of the classical Helmholtz model - a static spectral envelope with
a �xed temporal envelope evolution is by no means an accurate and robust characterization of a
wide range of acoustic musical instrument sounds. All these facts suggest that, in order to better
understand the temporal evolution of sounds, we need a model that accounts for spectro-temporal
changes.

The vast majority of research in sound perception has focused either on the acoustic properties
of musical instruments [Risset and Wessel, 1982] or on the perception of sounds as unveiled by
psycho-acoustic experiments [McAdams et al., 2005]. The challenge we face today is to �nd the link
between the two in order to be able to manipulate the sounds in a more perceptually meaningful
way. A classical example is Risset's discovery that brassy trumpet sounds present a broader
spectrum

8.3 The Classical Attack-Decay-Sustain-Release (ADSR)
Model

Robert Moog is usually associated with the ADSR envelope model shown in �gure 8.2. Moog
used the ADSR model in his synthesizer and it quickly became the standard way to describe the
amplitude envelope generator functions [Pinch and Trocco, 2002]. However, as early as 1938 (25
years before the �rst Moog synthesizer), the Hammond Novachord used a 7-position switch to select
di�erent ADS (attack-decay-sustain) values, and also had a footpedal to control the release time,
which created a sort of pseudo-ADSR envelope controller. It wasn't until Vladimir Ussachevsky,
the head of the Columbia-Princeton Electronic Music Center, started working with Bob Moog in
1965, and suggested to Moog that he use an ADSR envelope that it became part of synthesizer
history.

Even though the ADSR model was developed to emulate the characteristic time varying ampli-
tude changes of acoustic sounds, it usually does not describe well the temporal evolution of most
musical instrument sounds. However, most segmentation techniques [Jensen, 1999, Peeters, 2004]
rely on the detection of these events/regions based solely on the use of the temporal envelope.
Particularly, the attack is notoriously thought as being dependent on the rise time of the ampli-
tude envelope [Luce and Clark, 1965] and some authors use it as its de�nition [Bello et al., 2005].
Therefore, we will present some amplitude envelope estimation techniques usually used in the
detection of some of these events.

Finally, we present two previously proposed techniques to automatically segment individ-
ual musical instrument sounds based solely on the amplitude envelopes, namely derivatives
[Jensen, 1999, Skowronek and McKinney, 2006] and e�orts [Peeters, 2004]. Both methods try to
detect the in�ection points of the amplitude envelope based on the assumption that the ampli-
tude envelope changes correspond to the boundaries of the regions we are looking for. Notably,
these models de�ne the attack as the rise time of the amplitude envelope, like other authors
[Bello et al., 2005, Luce and Clark, 1965].

8.3.1 The Attack-Decay-and-Sustain-Release (AD&SR) Model

Skowronek [Skowronek and McKinney, 2006] proposed a segmentation method based on their
attack-decay-and-sustain-release (AD-&-SR) model. They obtain an approximation of the am-
plitude envelope and use it together with its �rst derivative to estimate the boundaries of the three
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Figure 8.2: ADSR model applied to a wind instrument to explain its temporal evolution.

regions de�ned as start of attack (soa) and end of attack (eoa); and start of release (sor) and end
of release (eor), as exempli�ed in Figure 8.3.

The �rst step of determining the desired A-D&S-R approximation is to determine the phases'
start and end points. This approach is similar to that proposed by Jensen [Jensen, 1999], which
consists of a three stage process illustrated in �gure 8.3.

First we compute a heavily smoothed envelope and determine the desired start and end points.
Secondly we adjust these points step by step using less and less smoothed versions of the enve-
lope until the unsmoothed version is reached. Jensen's procedure of detecting the time instances
from the heavily smoothed envelope has been developed for single harmonic components of instru-
ment sounds. Hence, he uses the temporal envelope of single partials to automatically detect the
boundaries.

In this approach, we compute the �rst derivative of the smoothed envelope and use di�erent
derivative thresholds in order to �nd good candidates for the desired start and end points as follows:

1. The algorithm searches for the steepest point (derivative criterion) having a reasonable value
(envelope criterion) and claims this as the middle of attack phase (moa). Starting from this
moa point, the algorithm goes backward until certain derivative and envelope criteria are
ful�lled and de�nes this point as start of attack phase (soa). Then starting from moa again,
the algorithm goes forward and uses another derivative and envelope criterion for �nding the
end of attack phase (eoa)

2. The algorithm looks for the start and end points of the release phase (sor, eor) in a similar
way, this time starting with the identi�cation of the middle of release (mor) and using negative
derivative criteria.

3. Finally the Decay/Sustain phase is de�ned as the period beginning at the end of attack (eoa)
and ending at the start of release (sor).

This gives start and end points of the three phases for the smoothed envelope.
In the second stage the algorithm uses an iterative procedure to perform the adjustment of the

found time instances to the unsmoothed case. Step by step a less smoothed version of the envelope
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Figure 8.3: Attack Decay and Sustain Release model of the temporal evolution of musical in-
strument sounds. The �gure shows the temporal envelope (top) and its �rst derivative (bottom),
used in the detection of the boundaries of the regions de�ned by the model. After Skowronek
[Skowronek and McKinney, 2006]

is computed and the time instances (soa, eoa, sor, eor) are adjusted using a certain time and level
criterion: The new candidate must not be too far away from the former time instance and its new
envelope value not too far from the former envelope value.

Once the above mentioned start and end points were found, the three-phase approximation of
the signal envelope is adjusted according to the parametric description of the envelope proposed
by Jensen [Jensen, 1999]

AE (x) = v0 + (v1 − v0) (1− (1− x)n)
1/n (8.1)

The boundary conditions v0 and v1 are the envelope values for the start and end points of
the phase. The variable x is the time normalized between zero and one (tstart → x = 0 and
tend → x = 1). The scalar parameter n determines the curve form. If n is equal to 1, then the
curve form is linear, if n is smaller than 1, then the curve form has an exponential characteristic; and
if n is greater than 1, then the curve form is logarithmic. The optimal curve form parameter nopt

is found by minimizing the least-square error between the resulting curve form and the envelope.
In summary the algorithm provides a three-phase parametric description of the envelope with

11 parameters: 4 time instances (soa, eoa, sor, eor), 4 level values (env(soa), env(eoa), env(sor),
env(eor)) and 3 curve shape parameters (one for each phase: nA, nD&S, nR).

The use of the derivative as detection function assumes implicitly that the boundaries of the
regions we are looking for (soa, eoa, sor, and eor) correspond to the in�ection points of the tem-
poral envelope. This is a drawback of this method because naturally sounds do not follow such
simpli�ed model. If we consider a sound that presents tremolo, clearly not every modulation in the
amplitude of the sound will correspond to spectral changes (even though vibrato most certainly
does correspond to spectral changes and is usually accompanied by amplitude modulation as well).
This method is particularly sensitive to ripples in the temporal envelope and it depends heavily
on the temporal envelope estimation technique. In other words, it is not very robust.
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Figure 8.4: Attack Rest model of temporal evolution. After Peeters [Peeters, 2004]

8.3.2 The Attack-Rest (AR) Model for Percussive Sounds

Peeters [Peeters, 2004] adopted two di�erent models of the temporal evolution of musical sounds,
corresponding to sustained and percussive excitation, shown respectively on the left and right of
�gure 8.4. He proposes to use this model to segment the sounds into two regions, the attack and
the rest (because the attack is the only region that is present in both sustained and percussive
sounds.) The segmentation function he uses is the RMS envelope, and the method detects the
beginning and end of the attack, de�ned as the rise time at the beginning of the sound.

The left-hand side of �gure 8.5 shows the �xed threshold method and the right-hand side shows
method of e�orts, introduced by Peeters [Peeters, 2004]. The �xed threshold method simply de�nes
the beginning of the attack as the point where the RMS envelope reaches 20% of its peak value
during the initial rise, and the end of the attack is de�ned as the point corresponding to 90% of
it, following Luce and Clark [Luce and Clark, 1965].

These two criteria are not very realistic because they do not take context such as background
noise into account and because not every musical instrument sound follows such simple temporal
evolution. Therefore using �xed thresholds does not give very accurate or robust estimations of
the start and end of attack. The method of e�orts tries to �x some of the problems of the �xed
thresholds by determining a way of �nding adaptive thresholds tailored for each individual sound.
It relies on the division of the initial rise into e�orts, as explained in the next paragraph and shown
in �gure 8.5.

First we divide the slope corresponding to the rise time into N equal intervals according to
the amplitude incremental values (called thresholds). The start of attack and end of attack are
estimated according to the slope of the rise region. So we calculate a piecewise measure of the slope
for each threshold jump by measuring how long it takes to go from one threshold to the next (called
e�orts). The selected threshold is the one whose value is smaller thanM times the mean threshold
for both the start and end of the attack. Peeters recommends usingM = 3. Although this method
is more robust than the previously presented, it still yields results that do not accurately capture
the attack because it uses strictly temporal information. We will show in the next section why
methods that rely solely on the amplitude fail to segment sounds into perceptually meaningful
events because they use restricted information.
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Figure 8.5: Method of e�orts. After Peeters [Peeters, 2004]

8.4 The Amplitude/Centroid Trajectory (ACT) Model

Hajda [Hajda, 1996] proposed a segmentation model he dubbed the amplitude/centroid trajectory
(ACT) that relies on both the amplitude envelope and temporal evolution of the spectral centroid
shown in �gure 8.6. The spectral centroid is calculated as follows

C (t) =
∑M

b=1 fb (t) ab (t)∑M
b=1 ab (t)

(8.2)

Here C (t) is the time-varying spectral centroid, fb (t) is the frequency in Hz and ab (t) is the
amplitude of frequency band b up to the M th band computed. In this model, the spectral centroid
gives information about the excitation indirectly. The sudden transition characteristic of the onset
re�ects as a brief broadening and narrowing of the spectrum, causing the centroid to drop until
the steady state resonance establishes itself, bringing the centroid up again to a somewhat steady
value. For continuous excitations characteristic of sustained instruments, the release is the moment
when the player stops supplying energy to the instrument. This re�ects a new drop in the centroid
because the higher partials tend to fade before the lower ones, until the sound/note fades away,
characterizing the o�set. Figure 8.6 depicts the regions (letters) and boundaries (numbers) of the
ACT model for sustained sounds. In the �gure, BN stands for background noise, A for attack,
T for transition, S is sustain, and R is release. The boundaries are the onset (1), end of attack
(2), begin of sustain (3), begin of release (4) and o�set (5). Using this model, Hajda de�nes the
attack as that part of the signal from onset during which the amplitude increases and the centroid
decreases. Pre-attack noise is indicated by more or less uncorrelated �uctuations of both amplitude
and centroid. According to the model, the attack ends when the centroid slope changes direction. A
new segment, the attack/steady state transition, is de�ned as that segment immediately following
the attack during which the amplitude continues to increase and the centroid increases overall.
The sustain begins when the amplitude has achieved a local maximum; during this segment, the
amplitude and centroid vary in a more or less monotonic fashion [Hajda, 1996]. The release (or
interruption) begins when both the amplitude and centroid decrease.

In this work, the ACT model was chosen to be used in the automatic segmentation task because
it outperformed the others. Chapter 12 will explain in detail how to automatically detect the
boundaries of the regions de�ned in the model. Chapter 12 also compares the results of the
automatic detection obtained with the ACT method to those of a baseline method, which will be
Peeters' AR method.
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Figure 8.6: The amplitude/centroid trajectory (ACT) model.



Chapter 9

Temporal Envelope Estimation

An audible sine tone may have thousands of cycles per second, depending on its frequency in
Hertz, but we perceive it as a steady sound. That is because its amplitude is a constant. By
contrast, sinusoidal signals that are heard as �uctuating have amplitudes that change in time. So
the ear distinguishes two di�erent time scales that are perceived di�erently. One scale is the rapid
variation perceived as frequency. The other time scale is the slower variation perceived as amplitude
modulation and is directly related to the changes in the temporal envelope [Hartmann, 1998].

The temporal envelope is an extremely important factor in the perception of sounds because
the �uctuations in amplitude are perceived di�erently than pitch. Hartmann [Hartmann, 1998]
states that there is little di�erence, if any, between the concept of a time-varying (modulated)
amplitude and the temporal (amplitude) envelope. It is important, however, to make a distinction
between the temporal envelope and the temporal variation of energy when we consider the Fourier
decomposition of signals into a set of time-varying partials.

For each isolated partial (a sinusoidal signal), the temporal variations in amplitude are detected
by the ear neglecting phase information [Plomp, 1966]. For a signal resulting from a combination
of partials, however, the in�uence of the phase of each partial on the total temporal evolution
of amplitude is not neglectable. Plomp et al. [Plomp and J.M.Steeneken, 1969] investigated if
the di�erences of phase (and therefore global temporal amplitude of the composite signal) are
perceptually relevant for �complex tones�, that is, signals composed of partials, and concluded that
phase information is mostly neglected.

When confronted with partials that present di�erent amplitude modulations, the brain uses the
modulations of the total energy that reaches the ear rather than the global time-varying amplitude
of the sound. Therefore, for musical instrument sounds (composed of a set of quasi-harmonic time-
varying partials), we can distinguish between the temporal amplitude envelope and the temporal
energy envelope.

This chapter presents the classic temporal envelope estimation techniques found in the lit-
erature, some of which detect the amplitude, others the energy envelope. The amplitude en-
velope estimation techniques that will be presented are the classical low-pass �ltering (LPF),
root-mean squared (RMS) energy, and analytic signal amplitude demodulation, as well as
frequency-domain linear prediction (FDLP) and the �true amplitude envelope� (TAE) method
[Caetano and Rodet, 2011a], developed in the context of this work.
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9.1 Early Temporal Envelope Estimation Techniques

An early attempt [Schloss, 1985] consisted of a piece-wise linear approximation of the waveform.
The amplitude envelope is created by �nding and connecting the peaks of the waveform in a
window that moves through the data. Jensen [Jensen, 1999] proposed a method that �ts curve
shape approximations to model the amplitude envelope of the partials of an additive model of
instrument sounds. Later, Skowronek [Skowronek and McKinney, 2006] applied it to approximate
the global amplitude envelope.

9.2 Low-Pass Filtering

Low-pass �ltering (LPF) is the most straightforward way of obtaining a smooth signal that follows
the amplitude evolution of the original waveform. It is based on a classical amplitude demod-
ulation envelope follower technique [Bello et al., 2005], that low-pass �lters a half-wave (hwr) or
full-wave recti�ed (fwr) version of an amplitude modulated (AM) signal. The principle of am-
plitude modulation (AM) is that the amplitude changes of the signal carry the information we
seek.

There are many possible �lter designs with di�erent characteristics and the choice a�ects the
quality of the �nal envelope. For instance, Jensen [Jensen, 1999] proposes convolving the waveform
with a Gaussian window function, resulting in a suboptimal estimation. When using a �nite
impulse response (FIR) �lter, we should consider the ear's �integration time� because FIR �lters
shorter than the ear's integration time are perceptually instantaneous [Smith, 2011]. Also, the
cut-o� frequency of the �lter has a major impact on the result. High cut-o� frequencies will likely
produce an amplitude envelope with ripples. On the other hand, very low cut-o� frequencies give
temporal envelopes that are smoother but also less responsive to sudden amplitude changes, which
can be an issue when estimating the amplitude envelope of percussive sounds.

It is always possible to use low-pass �ltering to calculate the energy envelope instead of the
amplitude envelope of a signal x (t). We need to low-pass �lter the instantaneous energy x2 (t)
instead of the signal x (t) and then take the square root of the envelope. The �lter lag then becomes
the temporal window that can be adjusted to account for the �ear's integration time.� We will see
that this is equivalent to estimating the root-mean square (RMS) energy envelope.

9.3 Root-Mean Square

The root-mean square (RMS) energy envelope is perhaps the most popular
[Tzanetakis and Cook, 2002, Hajda, 1996] method for estimating the temporal evolution of
the signal energy. The RMS energy envelope is based on the root mean square energy calculation
and can be easily adapted to obtain an estimate of the temporal envelope by simply applying it
with a sliding rectangular window, as shown in equation 9.1

RMS (t) =

√√√√ 1
T

T∑
i=1

x2
i (t) (9.1)

where xi (t) is the ith local sample of the signal centered around t as seen through the window,
t is the number of samples the analysis window moves, and T is the window length.

The RMS is a special case of the generalized mean with exponent p = 2 and as such, also
functions as a sort of moving average, low-pass �lter that smooths out the instantaneous energy
x2 (t) of the signal x (t). The analysis step t imposes a trade-o� between the temporal sampling
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rate of the envelope and how much information it represents. Small values of t react sooner to
sudden changes in amplitude, while presenting ripple in more steady regions and larger values
smooth out the ripples but tend to lag behind abrupt energy changes.

9.4 Analytic Expression

We know from Fourier's theorem that any signal x (t), periodic or not, with a �nite number of
components can be written as a sum of cosine waves

x (t) =
N∑

n=1

An cos (ωnt+ φn) (9.2)

where the amplitudes An are positive real numbers, and there are no restrictions on the fre-
quencies ωn that are included in the sum. In chapter 18, Hartmann [Hartmann, 1998] derives an
analytic expression for the temporal amplitude envelope curve which can be used to understand
the limitations of the use of the analytic signal (based on the Hilbert transform) to estimate the
temporal amplitude envelope of musical instrument sounds. To �nd the temporal envelope of x (t),
we begin by extracting a sinusoidal character by writing each frequency ωn as the sum of a charac-
teristic frequency ω̄ plus a deviation δn as follows ωn = ω̄+δn. Even though for practical purposes
of determining the temporal envelope ω̄ can be computed as the average frequency present in the
signal's spectrum, the actual value of ω̄ is not important.

We begin by rewriting equation 9.2 as

x (t) =
N∑

n=1

An cos (δnt+ φn) cos ω̄t−
N∑

n=1

An sin (δnt+ φn) sin ω̄t = R (t) cos ω̄t− I (t) sin ω̄t (9.3)

where R (t) =
∑N

n=1An cos (δnt+ φn) and I (t) =
∑N

n=1An sin (δnt+ φn).
We should notice that although the division of the time dependence into factors that oscillate

at frequency ω̄ and the factors R (t) and I (t) is arbitrary, the point is that we suppose that R (t)
and I (t) vary much more slowly than ω̄. Over one cycle of the oscillation at frequency ω̄ the
functions R (t) and I (t) can be considered as approximately constant.

Equation 9.3 for x (t) has an explicit oscillation at frequency ω̄, given by a sine term plus a
cosine term. This can be written as a single cosine

x (t) = E (t) cos [ω̄t+ Φ (t)] (9.4)

where E (t) is a non-negative time-varying amplitude called the temporal (amplitude) envelope,
and Φ (t) is a phase. The connection between E (t) and functions R (t) and I (t) is given by

E (t) =
√
R2 (t) + I (2t) =

√√√√[ N∑
n=1

An cos (δnt+ φn)

]2

+

[
N∑

n=1

An sin (δnt+ φn)

]2

(9.5)

Equation 9.4 shows that any signal can be written as a cosine wave having a frequency of ω̄,
so long as it also has a time-dependent phase Φ (t) and a time-dependent amplitude E (t). At this
point we should notice that only because we can always write a signal in the form of equation 9.4,
it does not mean that it is always useful to do so. Equation 9.4 explicitly expresses the signal x (t)
in terms of an oscillation at a characteristic frequency ω̄, and this representation is useful if the
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frequency ω̄ is representative of the signal as a whole. Usually, when the signal consists of a narrow
band of frequencies centered at the vicinity of ω̄, this representation is useful. In the case of a
narrow band, E (t) and Φ (t) vary slowly compared to the characteristic frequency ω̄ because they
are derived from R (t) and I (t) which are slow varying by construction. This, in turn, is because
the range of deviations δn is small.

9.4.1 Analytic Signal

The above derivation was done using only real functions. A more elegant way of deriving the same
result is by means of the analytic signal x̃ (t). The analytic signal can be obtained by replacing
the cosines in equation 9.2 by a complex exponential of the form

x̃ (t) =
N∑

n=1

Ane
i(ωnt+φn) (9.6)

Unlike the real signal x (t), the analytic signal x̃ (t) is complex. From Euler's theorem, we know
that each cosine in the real signal x (t) contains a term e|i(ωnt+φn)| and a term e|−i(ωnt+φn)|, in
other words, both positive and negative frequencies. The analytic signal x̃ (t) is what we get when
we omit the negative frequency terms and multiply by two. Before we do that in the next section,
we will show that the temporal (amplitude) envelope is given by the absolute value of the analytic
signal.

In order to show that the temporal (amplitude) envelope is given by the absolute value of the
analytic signal, as expressed below in equation 9.7, we need to take a few steps back.

E (t) = |x̃ (t)| (9.7)

From equation 9.5, we can write R (t) = E (t) cos Φ (t) and I (t) = E (t) sinΦ (t). Euler's
formula, in turn, allows us to simplify it even further by writing

R (t) + iI (t) = E (t) eiΦ(t) =
N∑

n=1

Ane
i(δnt+φn) (9.8)

where the right hand side of equation is obtained by simple substitution of the cosine and sine
expressions for R (t) and I (t). Then, using equations 9.5 and 9.8we readily see that

E (t) =

∣∣∣∣∣
N∑

n=1

Ane
i(δnt+φn)

∣∣∣∣∣ (9.9)

A clever mathematical trick [Hartmann, 1998] makes the �nal step possible. We begin by
writing

∣∣eiω̄t
∣∣ = 1, such that equation 9.9 can be rewritten as

E (t) =
∣∣eiω̄t

∣∣ ∣∣∣∣∣
N∑

n=1

Ane
i(δnt+φn)

∣∣∣∣∣ =
∣∣∣∣∣eiω̄t

N∑
n=1

Ane
i(δnt+φn)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
n=1

Ane
i(ωnt+φn)

∣∣∣∣∣ = |x̃ (t)| (9.10)

Even though equation 9.10 can be useful in theory to calculate the temporal (amplitude) enve-
lope of a time-domain signal x̃ (t), it still depends on the decomposition of x̃ (t) in terms of a sum of
sinusoids. The Hilbert transform is a practical way of obtaining the analytic signal representation
of a real signal x (t) by means of the signal x (t) only.
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9.4.2 Hilbert Transform

In the previous section we saw that the analytic signal is the result of taking the Fourier transform of
a signal, eliminating the negative frequency terms, and calculating the inverse Fourier transform to
go back to the time domain. In this section we will do just that only to discover that this procedure
leads to the Hilber transform, part of a signal processing technique for amplitude demodulation
[Potamianos and Maragos, 1994].

We begin with the real signal x (t) as the inverse Fourier transform of function X (ω)

x (t) =
1
2π

∞∫
−∞

X (ω) eiωtdω (9.11)

The integral goes over all frequencies, positive and negative. The analytic signal x̃ (t) is the
same, except that the negative frequencies are excluded and it is multiplied by two.

x̃ (t) =
1
2π

∞∫
0

X (ω) eiωtdω (9.12)

We can rewrite equation 9.12 using the unit step function U (ω), de�ned here as

U (ω) =


U (ω) = 0, ω < 0
U (ω) = 1, ω > 0
U (0) = 1/2

(9.13)

so equation 9.12 becomes

x̃ (t) =
1
π

∞∫
−∞

U (ω)X (ω) eiωtdω (9.14)

Equation 9.14 can be interpreted as the inverse Fourier transform of the product between u (ω)
and X (ω), which becomes the convolution of the inverse Fourier transforms in the time domain.
We already know that the inverse Fourier transform of X (ω) is x (t), so we de�ne u (t) as the
inverse Fourier transform of U (ω). Thus,

x̃ (t) = 2

∞∫
−∞

x (τ)u (t− τ) dτ (9.15)

The inverse Fourier transform of U (ω) is given by

u (t) =
1
2
δ (t) +

i

2π
1
t

(9.16)

such that equation 9.15 becomes

x̃ (t) = 2

∞∫
−∞

x (τ)
[
1
2
δ (t− τ) +

i

2π
1

(t− τ)

]
dτ = x (t) + iH{x (t)} (9.17)

where H{x (t)} is the Hilbert transform of x (t) , de�ned as
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H{x (t)} =
1
π

∞∫
−∞

x (τ)
(t− τ)

dτ = x (t) ∗ 1
πt

(9.18)

where * stands for convolution. Using equation 9.18, we can de�ne the analytic signal x̃ (t) as

x̃ (t) = x (t) + jH{x (t)} = E (t) exp [jΦ (t)] =
√
x2 (t) + [H{x (t)}]2 exp

[
j arctan

(
H{x (t)}
x (t)

)]
(9.19)

Equation 9.19 provides us with an expression for the temporal amplitude envelope E (t) that
depends only on the time domain, without any reference to frequency. In those cases where the
Hilbert transform can be found from the integral in equation 9.18, the temporal amplitude envelope
can be found as the absolute value of the analytic signal, as de�ned in equation 9.19. However, the
integral in equation 9.18 converges slowly and there are practical cases when it cannot be used.
A more reliable way of computing the Hilbert transform of a signal is by means of equation 9.14,
using the inverse Fourier transform to compute the analytic signal x̃ (t).

The analytic signal is useful for envelope detection since its modulus E (t) and time derivative
of the phase Φ (t) can serve as estimates for the amplitude envelope and instantaneous frequency of
x (t) under certain conditions. Notably, if the Hilbert transform of x (t) is equal to its quadrature
signal [Potamianos and Maragos, 1994], then the estimates are equal to the actual information
signals. Synthetic (i.e., AM) signals can be constructed to have this property, but there is no
reason to expect that acoustic musical instrument sounds also present it. A more realistic condition
is veri�ed when we are dealing with narrowband signals, which is rarely the case for musical
instrument sounds. The Hilbert transform can be e�ectively used to extract the amplitude envelope
of individual partials if applied to each frequency bin of the STFT, but when applied to the whole
signal it is equivalent to trying to demodulate several AM signals at the same time. However, the
absolute value of the analytic signal representation is always positive, so we use it as half-wave
recti�er in this work.

9.4.3 Temporal Envelope Power

The temporal envelope power is the long-term average value of E2 (t), de�ned analogously to
the familiar concept of signal power, which is the long-term average value of x2 (t). Because
the power in the Hilbert transform of a signal is equal to the power in the signal itself, we see
from equation 9.19 that the temporal envelope power is twice the signal following directly from
E2 (t) = x2 (t) + [H{x (t)}]2 = 2x2 (t).

9.5 Frequency-Domain Linear Prediction

Traditional linear prediction [Makhoul, 1975] estimates the spectral envelope from the time-domain
signal. The idea behind FDLP [Athineos and Ellis, 2003] is to exploit time-frequency duality to
extract the temporal amplitude envelope by applying linear prediction to a spectral representation.
In particular, the used spectral representation is the discrete cosine transform (DCT), since it is
real-valued. The envelope peaks, whose number and width are determined by the model order, will
now be their frequency domain counterparts, the recti�ed waveform peaks. Thus, the model order
has to be adjusted with respect to the temporal structure of the signal, and not to the formant
structure of the spectrum.
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9.5.1 Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) expresses a sequence of �nitely many data points in terms
of a sum of cosine functions oscillating at di�erent frequencies. The distinction between a DCT
and a DFT is that a DCT implies di�erent boundary conditions than the DFT. The DCT and its
inverse, the IDCT are usually de�ned as

X̃ (k) =
N−1∑
n=0

x (n) cos
[
π

N

(
n+

1
2

)
k

]
, k = 0, ..., N − 1 (9.20)

X̃ (k) =
1
2
x (0) +

N−1∑
n=1

x (n) cos
[
π

N
n

(
k +

1
2

)]
, k = 0, ..., N − 1 (9.21)

Equation 9.20 is known as the forward discrete cosine transform, and equation 9.21 is known as
the inverse discrete cosine transform. The DCT presents the important properties of decorrelation
and energy compactation.

9.6 True Amplitude Envelope (TAE)

Ideally, the amplitude envelope should be a curve that outlines the waveform, following its general
shape without representing information about the harmonic structure. One of the most challenging
aspects of this problem is that we are looking for a curve that is smooth during rather stable regions
of the waveform, while being able to react to sudden changes (such as percussive onsets) when
they occur. In the context of this work [Caetano and Rodet, 2010a, Caetano and Rodet, 2011a], a
temporal envelope estimation technique named true amplitude envelope (TAE) was developed to
meet the above mentioned requirements.

TAE uses a dual of �true envelope� estimation, explained in chapter 7, in the time domain. The
time domain signal is subjected to the algorithm instead of the Fourier spectrum. In this way, the
amplitude envelope is expected to match the amplitude peaks corresponding to the period of the
waveform more closely than the previously introduced methods. The idea behind TAE is to mimic
the structure of the spectrum with the time-domain signal to be able to apply the true envelope
method directly.

The basic steps to estimate the TAE are as follows. First we obtain a recti�ed version of the
waveform (so that that are no negative amplitudes), next we zero-pad the recti�ed waveform to
nearest power of two (thus mimicking the DFT), and then we �nally add a time-reversed version
of the zero-padded recti�ed waveform to represent the negative frequencies. Before estimation,
we still need to exponentiate the amplitudes because true envelope supposes that we are �tting a
smooth curve to the log magnitude spectrum. The result is illustrated in �gure 9.1. The last step
is the application of the true envelope estimation technique to obtain the true amplitude envelope
(TAE), represented as a solid line outlining the recti�ed waveform.

It is important to notice that the peaks of the waveform do not carry the same information as the
spectral peaks. Each peak of the spectrum corresponds to a partial, such that for quasi-harmonic
spectra the separation between spectral peaks is given by the value of the fundmental frequency
f0. On the other hand, in only one period, the peaks of the half-wave recti�ed waveform generally
contain information about all the frequencies contained in that signal (depending on their phases).
Therefore, the time-domain counterpart of the near optimal order selection must take into account
only the period T of the waveform, instead of all recti�ed peaks. The optimal order is now directly
proportional to the fundamental frequency of the waveform, instead of inversely proportional when
using true envelope in the spectral domain because the separation of the spectral peaks ∆f is now
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x
Figure 9.1: Symmetrical waveform used as input for the true amplitude envelope estimation tech-
nique. The �gure shows the full-wave recti�ed and zero padded (zp) version of the waveform with
its time-reversed counterpart used in the true amplitude envelope estimation method.

represented by ∆T and given by the period of the signal T0 for a half-wave recti�ed waveform
(hwr) as equation 9.22 shows

Ô =
Fs

2∆T
= α

Fs

T0
, α = 0.5 (9.22)

A full-wave recti�ed (fwr) version would present twice as many main peaks, requiring half T0,
or α = 1. At this point we should remember that the absolute value of the analytic signal |x̃ (t)|
gives a half-wave recti�ed version of signal x (t), while the absolute value of the signal |x (t)| is a
full-wave recti�ed version of x (t).

9.7 Comparison of Amplitude Envelope Estimation Tech-
niques

This section presents a comparison of temporal envelope estimation techniques. The techniques
compared are low-pass �ltering (LPF), frequency-domain linear prediction (FDLP), root-mean
square (RMS) and true amplitude envelope (TAE). Figure 9.2 shows a comparison of the temporal
envelope estimation techniques using the recti�ed version of the waveforms of two di�erent musical
instrument sounds.

9.8 Model Conversion

At this point it should be clear that converting between cepstral based and linear prediction
based parametric representations of the temporal envelope is strictly equivalent to the conversion
operation in the frequency domain. In other words, we can use the same techniques to extract and
convert parameters of spectral envelopes for the temporal envelope, because they are similar.
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Figure 9.2: Amplitude envelope estimation techniques. The �gure shows the waveform and the
true amplitude envelope (TAE), frequency domain linear prediction (FDLP), low-pass �ltering
(LPF), and root-mean square (RMS).
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Chapter 10

Vienna Sound Database

This chapter is dedicated to presenting the sound material used in this thesis. The aim of this work
is morphing isolated quasi-harmonic acoustic musical instrument sounds across timbre dimensions.
Naturally, the focus on musical instruments restricts the possible choice of sounds used in this work.
For example, environmental or vocal sounds are out of the scope of the investigation proposed.
Moreover, the emphasis on timbre requires a set of musical instrument sounds equalized across
other perceptual dimensions, such as pitch, loudness, duration, spatial localization, among others.
Finally, quasi-harmonic sounds exclude most percussive instruments.

The type of transformation investigated, cyclostationary morphing, also in�uenced the choice
of sound material. Dynamic morphs would probably demand longer sounds because the transfor-
mation happens along the course of the sound. A cyclostationary morph, on the other hand, takes
listening to multiple versions of the sound. Thus shorter durations are favored to spare the listener
and to avoid memory e�ects when evaluating the transformation (the listener already forgot the
�rst sound when listening to the last one).

Therefore, a musical instrument sound database that meets such speci�c needs is nec-
essary. Among the most popular choices are the RWC database (http://staff.aist.
go.jp/m.goto/RWC-MDB/), Electronic music studios from the university of Iowa (http:
//theremin.music.uiowa.edu/), Ircam solo instruments (http://www.zikinf.com/news/
ircam-solo-instruments-218), McGill university master samples (http://www.music.mcgill.
ca/resources/mums/html/index.htm), and Vienna symphonic library (http://www.vsl.co.at/
en/65/71/84/1349.vsl). These databases were originally conceived with di�erent purposes, such
that the instruments, pitch range and available dynamics vary across databases.

All the sounds used in this thesis are from the Vienna symphonic library, which is generally
considered very high quality. The samples were played by professional musicians and recorded in
controlled conditions to be used in (sample based) synthesizers. The Vienna sound database allows
to choose the sounds with di�erences due mainly to spectral envelope (color as de�ned by Slawson)
and attack times. The sounds are used in all �gures presented in chapters 11, 12, 13 and in the
listening tests presented in chapter 14.

10.1 Vienna Sound Database

The Vienna sound database contains samples from most musical instruments commonly found
in an orchestra recorded under controlled conditions and played by professional instrumentalists.
There are woodwind, brass, plucked and bowed string instrument samples in the database covering
the normal pitch range of each instrument. The isolated notes are usually played in 7 di�erent
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dynamics (pp, p, mp, m, mf, f, �).

To avoid timbral di�erences related to pitch and dynamics, the sounds chosen were played with
the same pitch and dynamics. The pitches chosen (C3 and C4) were merely the ones for which the
most instruments intersect. I used �gure 10.1 as a guide. The dynamics chosen was always �forte�
for all instruments used in the experiments. For some instruments, notably in the brass family,
the timbre changes a great deal when we move up the dynamics scale. Musical instruments in the
brass family are commonly described as �brassy� when played �fortissimo�, and the characteristics
of the sounds change very clearly.

We can �nd sound recordings with or without vibrato for most instruments in the Vienna
sound database. Since vibrato is sometimes considered as a separate timbre dimension, sometimes
considered a mere e�ect, I decided to avoid sound recordings with vibrato whenever possible. In
fact, only the strings do not have recordings without vibrato in the Vienna sound database.

One interesting factor to take into consideration is the di�erent attacks for each instrument.
Winds have slow, normal and staccato recordings for each pitch and and dynamics. Strings are
bowed (normal or staccato) or plucked. Whenever possible, I tried to avoid too many variations,
so I selected normal attack. But for some parts of the model, it proved valuable to explore these
di�erences. Notably, in chapter 12 about temporal alignment, I used some of the attack variants
to test the robustness of attack time estimation under these changes. The instruments used in the
experiments are listed next.

Woodwinds Brass Strings
Bass Clarinet Bass Trombone Double Bass

Bassoon Bass Trumpet Cello
Clarinet Bb Cimbasso Viola
English Horn Contrabass Tuba Violin

Flute French Horn
Oboe Tenor Trumpet

Trumpet C
Tuba

Table 10.1: Vienna sound database. The table lists the instruments used in this work by instrument
family.

In the next pages the instrument sounds used in the experiments will be presented by family.
The waveform and spectrogram of each instrument sound will be shown.
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Figure 10.1: Pitch range for the musical instruments normally found in an orchestra.



186 CHAPTER 10. VIENNA SOUND DATABASE

10.1.1 Woodwinds
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Figure 10.2: Waveform and spectrogram representation of the woodwind instrument sound record-
ings used in the experiments.
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10.1.2 Brass
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Figure 10.3: Waveform and spectrogram representation of the brass instrument sound recordings
used in the experiments.
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10.1.3 Strings
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Figure 10.4: Waveform and spectrogram representation of the string instrument sound recordings
used in the experiments.



Chapter 11

Overview of the Method

This is a key chapter because, on the one hand, it presents an overview of the sound morphing
algorithm proposed in this work step by step; on the other hand, it will show practical results
concerning the implementation of the source-�lter model used in this work. The source-�lter
model was presented from a theoretical point of view in the second part of this text, that is,
chapters 6 through 9. In this chapter, we will see examples of the estimation of source and �lter
from a temporal and spectral framework.

First of all, I will present a step by step overview of the sound morphing algorithm developed,
as shown in �gure 11.1. The algorithm can be subdivided into three parts, temporal processing,
spectral processing and morphing procedure. Each part will be presented separately. In the tem-
poral processing part, we will see the results of the automatic temporal segmentation in chapter
12. In the spectral processing part, �rst some examples of the sinusoidal plus residual decompo-
sition will be shown, then some examples of the spectral (source and �lter) modeling. Finally,
the morphing procedure is brie�y introduced. The morphing procedure coresponds to spectral
envelope and temporal envelope morphing. Chapter 12 presents the temporal alignment procedure
algorithmically. Chapter 13, in turn, is entirely dedicated to spectral envelope morphing. One very
important aspect of the sound morphing procedure when applied to muscal instrument sounds is
the spectral morphing, so we will see in chapter 14 the results of the evaluation adopted.

11.1 Sound Morphing Algorithm

Figure 11.1 depicts the general steps applied in the morphing scheme in the actual order in which I
apply them. First of all, we should notice that there are three distinct parts, a temporal processing
stage, followed by a spectral modeling stage, and �nally the morphing procedure is applied. The
blocks with a dark background represent sound signals, i.e., waveforms. The temporal processing
blocks present a light gray background and represent steps where we act directly on the waveform.
Finally, the blocks with a white background represent modeling and morphing of spectral features
done on each frame of the source-�lter model representation.

The global temporal features log attack time, transition time, sustain (or steady state) time,
release time, and temporal centroid are used in the temporal processing stage, as will be explained
later in chapter 12. The temporal centroid guides the temporal envelope morphing stage.

On the spectral domain, the spectral shape features guide not only the spectral morphing of
each frame, but also their temporal variation with time. The spectral shape features are spectral
centroid, spectral spread, spectral skewness, and spectral kurtosis, and their variation when mor-
phing the �lter part (spectral envelopes) of each frame of the model will be discussed in detail in

189
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Figure 11.1: Depiction of the general steps of the musical instrument sound morphing algorithm.
There are three distinct parts, temporal processing, spectral processing, and morphing procedure.
The blocks represent temporal and spectral feature extraction and processing.

chapter 13.
At last, the morphing algorithm uses the morphed temporal envelope to modulate the spectral

frames of the sinusoidal and residual components. Chapter 14 brie�y discusses which representation
of the temporal envelope leads to a smoother morphing. The criteria used and the discussion are
similar to their spectral-level counterparts.

11.2 Temporal Processing

The temporal processing part consists of the temporal segmentation step, followed by temporal
alignment. The temporal alignment step can be considered as a global temporal morphing pro-
cedure or pre-processing for the spectral modeling step. On the one hand, the global temporal
morphing view derives from the intermediate duration of the regions after temporal alignment. The
global temporal features of the sounds being morphed should also be perceptually intermediate.
On the other hand, time-aligning the sounds helps guarantee spectral smoothness in the mor-
phed sound. That is, it avoids the combination of attack transients with steady sustain frequency
information, etc.

11.2.1 Temporal Segmentation

The results of the temporal segmentation are crucial to the rest of the morphing procedure because
the temporal alignment uses the results from the temporal segmentation step. The temporal
alignment should guarantee not only correspondence between the number of spectral frames, but
also make sure that attack frames are matched with attack frames, etc. The results of the automatic
temporal segmentation method developed in this work will be presented in chapter 12, together
with the temporal alignment procedure.

11.2.2 Temporal Alignment

The temporal alignment procedure can be considered mere pre-processing or an actual part of
the morphing procedure (strictly in the time domain). An important consequence of the tempo-
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ral alignment procedure is that each segment ends up having an intermediate duration. This is
especially important for the attack time, which is a very important perceptual cue for musical
instrument sounds. Even though the temporal centroid has been shown to be correlated with
the concept of percussiveness, the log attack time usually explains better the �rst dimension of
timbre spaces obtained with MDS [Caclin et al., 2005, McAdams et al., 2005]. However, we will
not neglect the relative importance of the temporal centroid. The temporal morphing procedure,
which relies on the temporal envelope estimation, uses the value of the temporal centroid to guide
the results.

11.2.3 Temporal Envelope Estimation

Even though the temporal envelope has already been estimated before in other parts of the algo-
rithm, it is the result of the estimation of the temporal envelope of the time-aligned sounds that
is morphed. The temporal envelopes will be morphed and used to shape the temporal evolution
of the morphed sounds, by modulating the morphed spectral frames. To account for the temporal
variation of the energy, the temporal envelope is estimated using RMS [Caetano and Rodet, 2010a].

11.3 Spectral Processing

After the temporal processing part, both sounds have not only the same number of frames (one-by-
one correspondence), but also the corresponding regions (attack, transient, sustain, and release)
have intermediate lengths and are properly aligned. The spectral modeling part is represented in
�gure 11.2. The �rst step is to separate the time-aligned sound into a harmonic sinusoidal and noise
residual using a sinusoidal model. The sinusoidal component is modeled as a set of partials for each
frame. Each partial is modeled as a sinusoid whose amplitude values vary slowly when compared
to its frequency, such that each partial is described by the partial frequency, its corresponding
amplitude and phase values. The noise residual is simply the result of the subtraction of the
sinusoidal part from the original signal.

In the section about the spectral modeling step, we will see a comparison between the spectral
representation of the traditional sinusoidal model with the implementation of the source-�lter
model adopted in this thesis. We should consider two important aspects in the spectral modeling
part, accuracy of representation and ease of manipulation. Ideally, the model should represent
the original sound accurately and allow independent and coherent manipulation of di�erent parts
of the model. One way to test the accuracy of the representation is to resynthesize a sound
from the parameters of the model representation and compare it with the original. An accurate
model should lead to a sound that is perceptually identical to the original sound (or at least close
enough depending on the intended application). On the other hand, the ease of manipulation is
essential when performing sound transformations. If a representation has too many independent
parameters, it becomes cumbersome to manipulate all of them coherently to obtain a certain result.
Perceptually speaking, a coherent manipulation of the amplitude values of a spectral representation
would change the values of the amplitudes in such a fashion that the balance of the distribution
of spectral energy is changed, rather than the amplitudes of isolated partials independently from
the energetic context; i.e. the amplitudes of the partials around it.

One �nal aspect to take into consideration is the spectro-temporal variations, also called
spectral �ux or �uctuations [Caclin et al., 2005, Grey and Gordon, 1977, McAdams et al., 2005,
Krumhansl, 1989]. Time is such an inherent dimension in the perception of sounds that Smal-
ley states that �spectrum is perceived through time, and time is perceived as spectral motion
[Smalley, 1986].� Like mentioned earlier in the text, a sound and its time-reversed version are
rarely perceived as identical (or even similar), even though the spectral contents are exactly the
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Figure 11.2: Spectral modeling. The time-aligned sound is represented with a dark background, the
sinusoidal modeling blocks have a white background, and the blocks where features are extracted
have a light gray background.

same. In this chapter, we will see the temporal representation of the source-�lter model and the
temporal variation of the spectral shape features for the sounds of acoustic musical instruments.

11.3.1 Sinusoidal plus Residual Decomposition

For musical instrument sounds, the sinusoidal component contains most of the acoustic energy
present in the signal because musical instruments are designed to have very steady and clear
modes of vibration. To exemplify, this section will show the result of the sinusoidal plus resid-
ual decomposition for musical instrument sounds of each family considered in this work, namely,
woodwinds, brass and strings. Figure 11.3 illustrates the sinusoidal plus residual decomposition for
musical instrument sounds. In �gure 11.3, we see the waveform at the top and the spectrogram at
the bottom of the original sound on the left-hand side, the sinusoidal representation in the middle,
and the noise residual on the right-hand side. Figure 11.3 shows that most of the acoustic energy
corresponds to the sinusoidal component for musical instrument sounds, as stated earlier.

11.3.2 Spectral Modeling

This section discusses the technical aspects of the model presented in chapter 6. The aim of this
section is to specify what technique we used to estimate each part of the model and justify why
whenever necessary. The spectral modeling step comprises modeling the sinusoidal and the residual
components independently. In this work, the source-�lter model is used for both the sinusoidal
and the residual components. The source is represented by sinusoidal partials for the sinusoidal
component and white noise for the noise residual. The �lter is represented by a spectral envelope
curve for both sinusoidal and residual components. The implementation of the source-�lter model
will be presented separately for the sinusoidal and residual components.

11.3.2.1 Source-Filter Modeling of the Sinusoidal Component

Like explained earlier in chapter 4, the result of the sinusoidal analysis for each spectral frame is a
set of values that describe the partials contained in that frame. Each partial has a partial number,
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amplitude, frequency and phase value associated. For example, one frame where N partials are
detected would contain the following.

partial number amplitude frequency phase
1 a1 f1 φ1

2 a2 f2 φ2

...
...

...
...

N aN fN φN

(11.1)

where the �rst column contains the partial number, an is the amplitude of the nth partial, fn

the frequency value, and φn the phase. The source-�lter representation replaces the amplitude
values estimated with the sinusoidal model with the values given by the spectral envelope curve.
Thus the next section presents a comparison of the representation of the amplitudes of partials
between the sinusoidal and the source-�lter model.

Like explained in section 6.2, the source-�lter model can be used to represent the result of
sinusoidal analysis. The amplitudes of the sinusoids are represented with a spectral envelope
model, while the frequencies of the partials are considered the discrete frequencies at which we
sample the amplitude information contained in the spectral envelope curve. The sound model
developed in this thesis stores the frequencies of the partials and uses them later to obtain the
amplitudes of the partials from the morphed spectral envelope. We retrieve the amplitudes of
the partials from their frequency values using the property that sinusoids are the eigenfunctions
of linear shift-invariant systems. Therefore, the �lter must be converted to an LSI representation
(e.g., LPC) before this operation.

11.3.2.2 Spectral Envelope Estimation

In order to obtain the best possible estimation of the spectral envelope, we chose to use true
envelope [Röbel and Rodet, 2005] for the extraction of the spectral envelope of every frame of
the source-�lter model. The result of true envelope estimation is a set of cepstral coe�cients
representing the estimated spectral envelope curve. Next, this cepstral based representation is
converted to a linear prediction based representation using the spectral power density method
explained in chapter 7. The conversion needs to be done upon resynthesis to retrieve the amplitudes
of the partials from the LPC representation of the �lter.

The spectral power density method is used because it outperformed the other methods empir-
ically. For speech, there are studies on the quality of the conversion [Villavicencio et al., 2006],
so the same method was adopted for musical instrument sounds. But �rst, let us investigate how
accurate the spectral envelope estimation is.

Figure 11.4 shows the original spectrum and the corresponding partials (spectral peaks selected
by the peak-picking algorithm of the sinusoidal analysis). At the bottom, we see the spectral
envelope curve (estimated with �true envelope�) representing the amplitude of the partials, and the
partials represent the frequency values at which we sample the spectral envelope curve. We should
notice that the amplitudes of the partials shown at the bottom of �gure 11.4 as vertical lines are
from the sinusoidal analysis. That is, these are the values estimated from the original spectrum,
so we can compare them with the equivalent amplitudes given by the spectral envelope curve.

At this point it should be clear that both representations retain essentially the same information
(amplitude and frequency of partials peaks) in di�erent ways. The spectral envelope curve is only an
interpolation of the amplitudes of the partials using a cepstral model. The sinusoidal representation
has a more accurate representation of the amplitudes of the partials, while the source-�lter model
representation presents small in the values of the amplitudes inherited from the spectral envelope
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estimation procedure. On the other hand, the source-�lter representation is very �exible when we
want to transform source and �lter independently.

The reader should remember that the spectral shape features are a measure of the balance of
the distribution of spectral energy, and this is one of the reasons why they are correlated to the way
we hear sounds. In other words, even though the ear (seen as a spectral analyzer) only measures
the distribution of spectral energy (what we hear), the brain interprets this information in terms of
balance of this distribution (how we hear). For example, when we use the sinusoidal representation
to perform spectral transformations, we can change the amplitude of only one of the partials,
while changing the value of only one parameter of the spectral envelope model used to represent
the �lter usually has a more distributed impact on the amplitudes of the partials. The particular
impact of changing the parameters of di�erent spectral envelope representations depends on the
nature (cepstral, linear prediction, etc) of the spectral envelope model and what information each
parametric representation encodes. Chapter 13 is entirely dedicated to the problem of interpolation
of the parameters of di�erent spectral envelope representations.

The sinusoidal representation is accurate for the amplitudes of the partials, but it is not very
intuitive to manipulate coherently because there are too many degrees of freedom. The source-
�lter model represents the amplitudes of the partials less accurately because the estimation of the
spectral envelope curve presents errors, but it is more intuitive to manipulate coherently.

11.3.2.3 Partials Frequency Values

The values of the partials are essential in the resynthesis step because they represent the frequencies
at which we will �sample� the morphed spectral envelope that represents the �lter part of the
morphed sound. The �lter is estimated with a spectral envelope technique (in the cepstral domain)
and then converted to linear prediction coe�cients (LPC). The LPC representation is necessary
upon resynthesis because the sinusoids used to represent the partials are the eigenfunctions of linear
shift-invariant systems. In other words, we can simply �sample� the LPC representation of the �lter
part of the source-�lter model and we obtain the corresponding amplitudes. In mathematical terms,
the sinusoidal component ss (t) is expressed as a sum of sinusoids

ss (t) =
K(t)∑
k=0

Ak (t) sin (2πfkt+ ψk) (11.2)

where Ak is the amplitude of the kth partial, and fk its frequency in Hertz. Then, if we express
the LPC representation of the �lter by Hs (ω), we can obtain the amplitudes of the partials Ak

from their frequency values fk and Hs (ω) as follows

K(t)∑
k=0

Ak (t) = Hs

K(t)∑
k=0

2πfkt+ ψk

 (11.3)

Thus the signal ss (t) can be represented as

ss (t) =
K(t)∑
k=0

sk (t)Hs (2πfkt+ ψk) (11.4)

where sk (t) = sin (2πfkt+ ψk) is a slowly varying sinusoid with frequency fk in Hertz.
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11.3.2.4 Source-Filter Modeling of the Noise Residual

As explained earlier in chapter 4, the noise residual is obtained by subtraction of the synthetic
signal from the original sound. This procedure of subtracting the waveform in the time domain
is valid because the sinusoidal component preserves the waveform by estimating the phases of
each partial. The �lter part of the noise residual is modeled with a spectral envelope like for the
sinusoidal component. The only di�erence between them is the representation of the source. In
the sinusoidal component, the source is supposed sinusoidal, like in equation 11.2, and in the noise
residual component the source is represented by white noise.

This model supposes that there is information present in the spectrum of a quasi-harmonic
musical instrument sound that is not well represented with sinusoids. The same can be said for
speech [Stylianou, 2008]. The representation of the noise residual is simple, we suppose that the
noise residual can also be explained by the source-�lter model, but this time the source is white
noise instead of sinusoidal tracks. So the noise residual is modeled as white noise �ltered by the
spectral envelope estimated from the noise residual signal. For the residual component, this work
uses linear prediction to estimate the spectral envelope curve because we are looking for a curve
that �ts the statistical properties of the noise residual, rather than the peaks of the spectrum
[Makhoul, 1975].

11.3.2.5 Spectral Shape Descriptors

Now we are ready for the spectro-temporal view using the source-�lter representation. Figure 11.5
shows the sinusoidal model and the source-�lter model representations side by side to allow us to
compare them. The source-�lter representation shows the temporal variation of the frequency of
the partials (representing the source for the sinusoidal component) at the top and the temporal
variation of the spectral envelope envelope (the �lter) at the bottom.

The spectral envelope representation shows the same information as the spectrogram (higher
amplitudes are darker). One important di�erence is the scale of the frequency information repre-
sented. While the spectrogram shows the spectrum for each frame (with information about the
fundamental frequency), the spectro-temporal view of the �lter shows the spectral envelope curves
(only distribution of spectral energy).

The spectro-temporal view of the source-�lter model allows us to see the temporal variation of
the spectral shape features for each musical instrument. Figure 11.6 shows the waveform and the
value of each spectral shape descriptor calculated on each frame of the spectral representation. The
spectral shape features are calculated using the perceptually related model explained in chapter 5.

The �rst thing we should notice about �gure 11.6 is how the spectral shape features are cor-
related to one another. The spectral centroid and spread are positively correlated, and so are
the spectral skewness and kurtosis. We should also notice that the lower order moments (spec-
tral centroid and spread) are negatively correlated with the higher order moments (skewness and
kurtosis). The interpretation of the spectral shape features from a perceptually related point of
view as measures of the balance of the distribution of spectral energy now gives us insight into the
spectro-temporal evolution of musical instrument sounds. Interestingly, the segmentation model
adopted for the automatic segmentation of musical instrument sounds (explained in chapter 12)
uses the information conveyed by the spectral shape features (speci�cally the centroid) to aid in
detecting the segments.

11.4 Morphing Procedure

After the temporal and spectral modeling steps, we are �nally ready for the morphing procedure,
which comprises the interpolation of the spectral representation of each frame and the temporal
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envelope morphing. When we use the source-�lter model, we interpolate the parameters of the
representation of the source (frequencies of the partials) and of the �lter (parameters of the spectral
envelope model). Each one of these procedures will be explained separately below.

At last, the frames of the morphed sound are �nally modulated by the morphed temporal
envelope. The temporal envelope morphing procedure is guided by the value of the temporal
centroid, the temporal counterpart of the spectral centroid.

11.4.1 Spectral Morphing

The spectral morphing process consists of two steps, spectral envelope morphing and interpolation
of the values of the frequencies of the partials frame by frame. Each of these will be considered
separately next.

11.4.1.1 Spectral Envelope Morphing

The reader must remember that the spectral envelope is associated with musical instrument iden-
ti�cation. So morphing the spectral envelope is essential when we want to obtain sounds that
would correspond to hybrid musical instruments. Spectral envelope morphing is such a perceptu-
ally important step in morphing musical instrument sounds that it will be considered separately
in chapter 13, entirely dedicated to the subject. For now, su�ce it to say that the balance of the
distribution of spectral energy is a key aspect of the spectral envelope morphing procedure. The
morphed spectral envelope should have an intermediate balance of distribution of spectral energy
to be perceived as intermediate with respect to the spectral shape. The spectral shape features
adopted in this work as guides for the spectral envelope morphing procedure are measures of the
balance of distribution of spectral energy. Chapter 13 explores in depth the several intricacies of
spectral envelope morphing.

11.4.1.2 Interpolation of Partials Frequency Values

For musical instrument sounds, expressivity has an impact on the source part of the source-�lter
model. For example, vibrato usually leads to a modulation in the frequency values of the partials.
For this reason, it is very important to interpolate the frequencies of the partials too. If one of the
sounds to be morphed presents vibrato, but the other one does not, we want this particular feature
to gradually change when morphing from one sound to the other in a cyclostationary fashion (like
explained in chapter 3).

The amplitudes of the partials are represented by the spectral envelope, such that the interpo-
lated frequency values only represent the frequency values at which we will �sample� the response
of the morphed spectral envelope, which models the �lter of the hybrid musical instrument

The partial number is used to make sure that the principle of correspondence will hold. In other
words, we interpolate partials that have the same partial number. The interpolation of the values
of the frequencies of the partials is based on the interval between the frequency values measured
in cents. An interval ς between frequency f11 and frequency f12 can be expressed in cents the
following way

ς = 1200 log2

(
fn1

fn2

)
(11.5)

where fn1 represents the frequency value of the nth partial of the �rst sound, and fn2 the
frequency value of the nth partial of the second sound. Then we interpolate the interval ς in cents
rather than the frequency values fn1 and fn2 directly. First we de�ne the frequency fα with the
aid of equation 11.5 as a fraction α of the interval ς in cents. That is,
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fnα = fn12
ας

1200 = fn12
α log2

“
fn2
fn1

”
(11.6)

We use the value of fnα as the nth partial interpolated frequency. Naturally, a frequency fn[1−α]

can be analogously de�ned for the fraction [1− α], but we should notice that it gives the same
value as fnα when both fn1 and fn2 were detected. That is, when both sounds present the nth

partial for the frame being morphed.
This brings us to an important point when morphing the values of the frequencies of the partials,

namely, correspondence. When we strictly follow the correspondence principle adopted in chapter
2, we can only interpolate partials that have a matching partial number. That is, if the �rst
sound has N1 partials and the second N2, we only interpolate until the N th

1 partial number when
N1 < N2, and until the N th

2 otherwise.
Nevertheless, we can use a clever trick to �interpolate� between frequencies of partials that

were not detected for sounds whose spectrum �ts well the quasi-harmonicity model. In other
words, when N1 < N2 and the partial number n > N1, we can replace the frequency value fn1

by a harmonic estimate based on the fundamental frequency f11 and the harmonic number n as
fn1 ' nf11.

However, we should notice that this substitution can only be used when both sounds are quasi-
harmonic because it implicitly supposes so. The substitution does not work well when one of the
sounds is slightly inharmonic, that is, when the values of the frequencies of the partials of one of the
sounds being interpolated present a slight harmonic deviation (such as piano sounds, for example).
When we have an ihnarmonic set of values of partial frequencies we must only interpolate the
intervals in cents between pair of partials that were detected. Alternatively, we can use a model of
the inharmonicity to predict the frequencies of upper partials that were not detected and therefore
do not have a match.

11.4.1.3 Phase Values

The phase values are not interpolated because the phase of the morphed sound does not neces-
sarily correspond to the interpolation between the phase values of source and target sounds being
morphed. In fact, the phase values are simply discarded when morphing. The phase of the mor-
phed sound is simply reconstructed integrating the values of the frequencies of the partials at the
synthesis stage using equation 4.2. In this work, the di�erence between the integrated phase value
and phase values calculated as an interpolation of the estimated phases is neglected.

11.4.2 Temporal Envelope Morphing

Finally, the temporal envelope estimated from the time aligned sinusoidal and residual components
is morphed and used to modulate the frames of the morphed sound upon resynthesis. The esti-
mation of the temporal envelope is done using RMS. The temporal envelope curve obtained can
be converted to its cepstral or even linear prediction representation and morphed using the same
techniques for spectral envelope morphing.

In this work, temporal envelope morphing is guided by the value of the tempo-
ral centroid, which is correlated with the �percussiveness� of (musical instrument) sounds
[Skowronek and McKinney, 2006]. The results of the temporal envelope morphing procedure will
be shown and evaluated in chapter 14.
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Figure 11.3: Sinusoidal plus residual decomposition. The �gure shows the original sound (on the
left) with the corresponding sinusoidal component (in the middle) and the residual component (on
the right).
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Figure 11.4: Spectral view of the source-�lter model. Each �gure shows the traditional sinusoidal
representation at the top and the source-�lter representation at the bottom for one frame.
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Figure 11.5: Comparison between the spectro-temporal view of the sinusoidal and source-�lter
representations. The left-hand side shows the sinusoidal spectro-temporal representation (or spec-
trogram) at the bottom. The right-hand side shows the spectro-temporal representation of the
source at the top and the �lter at the bottom. The source is represented as the temporal variation
of the frequencies of the partials, while for the �lter the higher amplitudes are darker, like the
spectrogram.
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Figure 11.6: Temporal variation of spectral shape features. The �gure shows the temporal variation
of the spectral centroid, spread, skewness, and kurtosis. Notice how the temporal variation of
spectral shape features reveals that they are correlated. It is very important to keep this correlation
in the morphed sounds to obtain perceptually meaningful results.
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Chapter 12

Temporal Alignment

This chapter addresses the �rst important step in the morphing algorithm developed in this work,
namely, the temporal alignment of perceptually di�erent regions. Chapter 8 explains that the
attack, for example, is characterized by fast transients and the sustain part is much more stable.
We cannot expect to attain good results if we combine a sound that has a long attack with another
sound with a short one regardless of their temporal di�erences. The region where attack transients
are combined with more stable partials will not sound natural.

To achieve a more perceptually seamless morph, we need to temporally align these regions so
that their boundaries coincide. To do this, we need a model to correctly identify these regions
and their boundaries. Here we propose to use the automatic temporal segmentation based on the
ACT model presented in chapter 8 and originally proposed by Hajda [Hajda, 1996]. The temporal
alignment of two sounds depends on the previous segmentation.

However, Hajda does not propose an algorithm to automatically segment musical instrument
sounds using the model. The automatic segmentation task, which consists in automatically de-
tecting the boundaries of the regions de�ned by the model, is an important part of the temporal
alignment procedure. This thesis proposes an algorithmic procedure [Caetano and Rodet, 2010a]
to automate this task using the ACT model. This chapter presents the automatic segmentation
method developed, followed by the temporal alignment procedure.

However, any method that provides good estimates of the boundaries of the segments can
be used in the temporal alignment procedure. Naturally, annotating the sounds by hand is a
possibility that renders excellent results (they are usually considered the ground truth, i.e., the
reference against which we measure the quality of automatic estimations). Clearly, the drawback
is that annotating by hand is a cumbersome task that takes a lot of e�ort. We are looking for the
tradeo� between automatization and precision in the results.

The attack portion is one of the most salient perceptual regions of musical instrument sounds, so
the results of the attack-time detection method I developed are compared against a baseline method
proposed by Peeters [Peeters, 2004], hereafter called AR model. The main di�erence between the
methods is the segmentation model they use (ACT and AR). The aim of the comparison is to
exemplify the impact of the model in the results of the estimation.

There exist other automatic segmentation methods proposed in the literature, presented in
chapter 8. However, this chapter only compares the results of the segmentation using the ACT
model against the AR model because preliminary experiments using the AD&SR model and the
method of derivatives presented in chapter 8 suggested that this method is too sensitive to the
variations of the temporal envelope.

203
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Figure 12.1: Temporal alignment. The �gure represents two sounds segmented according to the
ACT model. The temporal alignment operation consists of time-stretching or compressing the
regions (letters) in order to align the boundaries (numbers) in time.

12.1 Temporal Segmentation

In this work, the temporal segmentation task consists in automatically estimating the boundaries
of four perceptually important regions that occur in sustained musical instrument sounds, namely,
the attack, the transition, the sustain or steady-state, and the release, de�ned in chapter 8. The
result of each estimation, called marker, is a time value.

The automatic temporal segmentation technique developed here uses the ACT model shown in
�gure 12.1 and it can be summarized by the block diagram shown in �gure 12.2. However, each
block involves more operations than explicitly said. For example, according to the block diagram
in �gure 12.2, the automatic segmentation technique depends solely on the calculation of spectral
centroid and temporal envelope. In fact, the calculation of the temporal variation of the spectral
centroid itself requires some steps.

The same can be said for the estimation of the temporal envelope, which notably depends on
the estimation of the fundamental frequency to de�ne the order of the cepstral model used. The
steps involved in the estimation of the temporal envelope were presented in chapter 9, while the
calculation of the temporal variation of the spectral centroid was presented in chapter 11.

12.1.1 Automatic Segmentation

The ACT model de�nes the boundaries of the segments with the aid of changes in the temporal
envelope and temporal variation of the spectral centroid. So naturally, before the automatic
segmentation, we need to estimate these two detection functions. The accuracy of the results
improves signi�cantly when the temporal envelope describes the overall energy evolution of the
sound. Therefore the RMS temporal envelope estimation is used to improve the results of the
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x
x

Figure 12.2: Temporal segmentation. The sound that will be segmented is represented by the
block with a dark background, the signal processing steps have a white background, and the
feature extraction steps have a light gray background.

segmentation task.
Also, the temporal variation of the spectral centroid needs to be a smooth curve so that we

can easily and robustly detect the changes that carry important information (minimum and last
in�ection point). The boundaries to be detected are the following

• onset detection (1);

• end of attack/beginning of transient (2);

• end of transient/beginning of sustain (3);

• end of sustain/beginning of release (4);

• o�set (5).

Next, the proposed procedure to automatically detect each boundary for the segmentation task
will be explained.

12.1.2 Automatic Detection of Boundaries

In this section, I will describe the automatic detection algorithm that gives the markers (time values
corresponding to the boundaries of the regions) in the actual order in which they are calculated,
as follows

1. Detect the onset (1);

2. Going backwards in time, detect the o�set (5) as the �rst frame with the same amplitude as
the onset (this step uses the temporal envelope);

3. Detect the beginning of sustain (3) using the method of e�orts with M = 3 (this step uses
the temporal envelope);

4. Going backwards in time, detect the beginning of release (4) using the method of e�orts with
M = 5 (this step uses the temporal envelope);

5. Detect the end of attack (2) as the minimum value of the centroid between (1) and (3) (this
step uses the spectral centroid).

The �rst important event to be detected is the onset of the sound. An onset detection algorithm
that detects transients as variations of phase [Röbel, 2003] is used. Naturally, other onset detection
algorithms could have been used. The chosen approach revealed to be very robust and accurate.
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The next boundary to be detected is the beginning of the sustain. The method of adaptive
e�orts proposed by Peeters [Peeters, 2004] is used in this step. Then, the end of the attack is
detected as the minimum of the centroid between the onset and the beginning of the sustain.

The method of adaptive e�orts is originally used to detect the �rst in�ection point of the
temporal envelope (corresponding to the end of the attack according to the original AR model).
This thesis proposed [Caetano and Rodet, 2010a] to adapt it to detect the beginning of the release
from the temporal envelope too by simply inverting the logic behind the beginning of sustain
detection.

Finally, the o�set is de�ned as the �rst point after the beginning of the release where the
temporal envelope attains the same value as the onset.

The result of the automatic segmentation method developed in the context of this work are the
�ve time markers used in the temporal alignment procedure. The next section shows examples of
the automatic segmentation and compares them against the baseline method [Peeters, 2004] that
uses the AR model.

12.1.3 Examples of Automatic Segmentation

The automatic segmentation algorithm developed in the course of this thesis
[Caetano and Rodet, 2010a] will be illustrated next in �gures 12.3 to 12.9. The results of
the automatic segmentation will be presented separately for each family of instruments considered
(selected from the Vienna database and brie�y presented in chapter 10), woodwinds, brass, and
bowed strings.

Each �gure shows the results for a speci�c instrument family. The baseline method against
which I compare my results is the attack-rest (AR) model proposed by Peeters [Peeters, 2004].
Naturally, annotations by hand would ideally be considered the �ground truth� segmentation. The
di�culty in this case is that the segmentation depends on the annotator, and we would need to
collect data from several people and include statistical analysis in the results. If we take into
account that the segmentation is not the aim of this work, but just a means, then the statistical
relevance of the annotations is out of the scope of this work. As a compromise, I decided to include
the spectrogram in the �gures and let the readers judge by themselves by visual inspection.

Each �gure shows the markers (numbers) as solid vertical lines, and the segments (letters)
against the waveform (left-hand side) and the spectrogram (right-hand side). The top of the
�gures show the whole duration of each sound to provide a global view of the segmentation results.
At the bottom of the �gures we see a zoom of the attack (A) and transient (T) segments with the
purpose of comparing the results of both segmentation methods.

The markers (numbers) for the ACT segmentation method are shown as solid vertical lines,
while the AR markers are shown as dashed vertical lines with the corresponding time values on
top. The purpose of the �gures is to show that, in general, the ACT method outperforms the AR.
The ACT method is expected to give more accurate and robust estimations in general because it
uses spectro-temporal information, rather than only temporal information like the AR method.

However, there are some speci�c cases where, for the same instrument, the estimates given by
the ACT method are visually poor, although rarely outperformed by AR. Each �gure illustrates
one case, aiming to show that the accuracy and robustness of the estimation actually depends on
the waveform, and not on the instrument. The conclusion, naturally, is that we would need a
speci�c model of the instrument to increase accuracy and guarantee robustness of estimation for
notes played by the same instrument.

Originally, the ACT model was proposed for sustained (nonpercussive) sounds only. This work
[Caetano and Rodet, 2010a] tested the model on any type of excitation (percussive and sustained),
using woodwind, bowed and plucked strings. The conclusion was that in general the model does
not apply to nonsustained (percussive) sounds.
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12.1.3.1 Woodwinds

In this section, the results of the automatic segmentation method using both the ACT and AR
models are compared for the following woodwinds: bass clarinet, bassoon, clarinet, english horn,
�ute, and oboe. In general, the result of the automatic segmentation is satisfactory when applied
to woodwinds because the ACT model applies well to this instrumental family.

12.1.3.2 Brass

In this second part we will see the comparison of the automatic segmentation for the following brass
instruments: bass trumpet, cimbasso, contrabass tuba, french horn, tenor trombone, trumpet, and
tuba. Once again the result of the automatic segmentation is satisfactory when applied to brass
instruments, even though it was empirically determined that the minimum of the centroid at the
end of the attack is not so clear for this instrumental family, which could render a poor automatic
estimation.

12.1.3.3 Strings

Finally, in the third part, the results of the automatic segmentation is compared for the following
strings: cello, double bass, viola, and violin. In this case, empirical results indicate that the ACT
model does not describe very accurately the temporal evolution of bowed strings. Even though the
result of the automatic segmentation is satisfactory, we veri�ed that the behavior of the spectral
centroid does not correspond well with the predicted by the model, notably presenting more than
one valley or a very shallow one, hard to detect automatically.

The robustness of the automatic segmentation method using the ACT model is yet to be tested.
However, for all the sounds tested the results seem to better suit the characteristics of each segment
when compared to the baseline AR method.

12.2 Temporal Alignment

Once both sounds are segmented and the boundaries of A, T , S and R are estimated, the temporal
alignment process is simple, as represented in �gure 12.1. For each sound, the length of each region
(labeled with letters) is measured by computing the time di�erence using the markers (numbers).
The length of the attack is represented in logarithmic scale as de�ned in equation 5.2, where at1
and at2 correspond respectively to the markers (1) and (2) shown in �gure 12.1. For the other
regions the representation is linear, as expressed below.


lat = logA = log (at2 − at1) = log [(2)− (1)]
T = [(3)− (2)]
S = [(4)− (3)]
R = [(5)− (4)]

(12.1)

where lat is the log attack time, and A is the linear attack time. The other letters correspond
directly to the ACT model. The next step is to calculate the length of each segment in the morphed
sound. The attack time is perceived logarithmically [Caclin et al., 2005, Grey and Gordon, 1977,
Krimpho� et al., 1994, Krumhansl, 1989, McAdams et al., 2005], so we should interpolate its log-
arithm and retrieve the corresponding linear value A12.
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12.2.1 Interpolation of Lengths

Equation 12.2 shows how to obtain the length of the segments in the morphed sound by interpola-
tion. The interpolated lengths are represented by a letter that indicates the segment and subscripts
indicating both sounds. For example S12 stands for the sustain of the morphed sound, obtained
by interpolation between S1 and S2, the sustain of the sounds used in the morph.

logA12 = α logA1 + [1− α] logA2

T12 = αT1 + [1− α]T2

S12 = αS1 + [1− α]S2

R12 = αR1 + [1− α]R2

(12.2)

In equation 12.2, S1 represents the length of the sustain region for the �rst sound and S2

for the second sound, and S12 is the calculated length of the sustain that the morphed sound
should have. In order to guarantee that the hybrid sound will present attack transients during
A12, stable partials during S12, etc, we align these segments in time for the original sounds by
time-stretching/compressing each region by the appropriate factors, calculated as explained in the
next section.

12.2.2 Calculate Time-Stretch Factors

The stretch/compress factors are then calculated according to the following
νA1 = A1

A12
, νA2 = A2

A12

νT1 = T1
T12

, νT2 = T2
T12

νS1 = S1
S12

, νS2 = S2
S12

νR1 = R1
R12

, νR2 = R
R12

(12.3)

where ν represents the time stretch/compress factor and the subscript follows the same con-
vention as in the previous section. Factors ν > 1 represent temporal stretching, while factors
0 < ν < 1 represent temporal compression of the corresponding region.

12.2.3 Temporal Alignment

Finally, the temporal alignment is done by simply applying the temporal stretch/compress factors
ν calculated for each sound to each corresponding region. Notice that when νS1 > 1, it follows
that 0 < νS2 < 1, because of how they are calculated. This simply means that the length of the
corresponding segment S12 is intermediate between S1 and S2.

After the temporal alignment operation, the boundaries of the segments for both source and
target sounds will be in di�erent time positions (indicated by a prime, such that (3)' is the position
is the beginning of the sustain after temporal alignment) that can be calculated according to the
following 

(1)
′

1 = (1)1 , (1)
′

2 = (1)2
(2)

′

1 = νA1 (2)1 , (2)
′

2 = νA2 (2)2
(3)

′

1 = νT1 (2)
′

1 , (3)
′

2 = νT2 (2)
′

2

(4)
′

1 = νS1 (3)
′

1 , (4)
′

2 = νS2 (3)
′

2

(5)
′

1 = νR1 (4)
′

1 , (5)
′

2 = νR2 (4)
′

2

(12.4)
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Figure 12.3: Automatic segmentation for the woodwinds. The �gure compares the results of the
automatic segmentation with the ACT and AR methods. The �gure shows the markers (numbers)
as solid vertical lines, and the segments (letters) against the waveform (left-hand side) and the
spectrogram (right-hand side). The top of the �gures show the whole duration of each sound to
provide a global view of the segmentation results. At the bottom of the �gures we see a zoom of
the attack (A) and transient (T) segments with the purpose of comparing the results of the ACT
method (solid line) with the AR method (dashed line).
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Original English Horn Temporal Segmentation
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Figure 12.4: Automatic segmentation for the woodwinds. The �gure compares the results of the
automatic segmentation with the ACT and AR methods. The �gure shows the markers (numbers)
as solid vertical lines, and the segments (letters) against the waveform (left-hand side) and the
spectrogram (right-hand side). The top of the �gures show the whole duration of each sound to
provide a global view of the segmentation results. At the bottom of the �gures we see a zoom of
the attack (A) and transient (T) segments with the purpose of comparing the results of the ACT
method (solid line) with the AR method (dashed line).
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Original Bass Trumpet Temporal Segmentation
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Figure 12.5: Automatic segmentation for brass. The �gure compares the results of the automatic
segmentation with the ACT and AR methods. The �gure shows the markers (numbers) as solid
vertical lines, and the segments (letters) against the waveform (left-hand side) and the spectrogram
(right-hand side). The top of the �gures show the whole duration of each sound to provide a global
view of the segmentation results. At the bottom of the �gures we see a zoom of the attack (A)
and transient (T) segments with the purpose of comparing the results of the ACT method (solid
line) with the AR method (dashed line).
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Figure 12.6: Automatic segmentation for brass. The �gure compares the results of the automatic
segmentation with the ACT and AR methods. The �gure shows the markers (numbers) as solid
vertical lines, and the segments (letters) against the waveform (left-hand side) and the spectrogram
(right-hand side). The top of the �gures show the whole duration of each sound to provide a global
view of the segmentation results. At the bottom of the �gures we see a zoom of the attack (A)
and transient (T) segments with the purpose of comparing the results of the ACT method (solid
line) with the AR method (dashed line).
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Figure 12.7: Automatic segmentation for brass. The �gure compares the results of the automatic
segmentation with the ACT and AR methods. The �gure shows the markers (numbers) as solid
vertical lines, and the segments (letters) against the waveform (left-hand side) and the spectrogram
(right-hand side). The top of the �gures show the whole duration of each sound to provide a global
view of the segmentation results. At the bottom of the �gures we see a zoom of the attack (A)
and transient (T) segments with the purpose of comparing the results of the ACT method (solid
line) with the AR method (dashed line).
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Figure 12.8: Automatic segmentation for strings. The �gure compares the results of the automatic
segmentation with the ACT and AR methods. The �gure shows the markers (numbers) as solid
vertical lines, and the segments (letters) against the waveform (left-hand side) and the spectrogram
(right-hand side). The top of the �gures show the whole duration of each sound to provide a global
view of the segmentation results. At the bottom of the �gures we see a zoom of the attack (A)
and transient (T) segments with the purpose of comparing the results of the ACT method (solid
line) with the AR method (dashed line).
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Figure 12.9: Automatic segmentation for strings. The �gure compares the results of the automatic
segmentation with the ACT and AR methods. The �gure shows the markers (numbers) as solid
vertical lines, and the segments (letters) against the waveform (left-hand side) and the spectrogram
(right-hand side). The top of the �gures show the whole duration of each sound to provide a global
view of the segmentation results. At the bottom of the �gures we see a zoom of the attack (A)
and transient (T) segments with the purpose of comparing the results of the ACT method (solid
line) with the AR method (dashed line).
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Chapter 13

Spectral Envelope Morphing

In this chapter, we will consider the problem of morphing spectral envelopes. Spectral envelope
morphing involves the combination of two (or more) spectral envelopes to produce another one
with intermediate characteristics. The application dictates which characteristics we should take
into consideration, and therefore how we should perform the combination of spectral envelopes. For
example, in concatenative synthesis, it is usually necessary to even out the edges between units to
make the transitions smoother. The techniques applied depend on the sound material (speech units,
etc) and on the type of transition that we are trying to achieve. When morphing between musical
instrument sounds, we usually want the result to sound like a hybrid between the instruments used
in the morph. This requirement imposes certain restrictions on the resultant morphed spectral
envelopes that make some spectral envelope morphing techniques more appropriate than others.

The spectral envelope is one of the most important characteristics of musical instrument sounds.
Perceptually, the spectral envelope is related to musical instrument (sound source) recognition and
timbre perception. Helmholtz [Helmholtz, 1885] was among the �rst to investigate the relationship
between the relative amplitudes of the partials and timbre perception for musical instrument tones
(pitched sounds or notes). In the source-�lter model, the spectral envelope models the �lter, as
explained in chapter 6. The �lter is associated with the subset of attributes of timbre that Slawson
dubbed sound color [Slawson, 1985]. The peaks of the spectral envelope, also called formants,
are the frequency regions of higher energy in the spectrum. The formant peaks re�ect the result
of the interaction between the excitation and the natural modes of vibration of the body of the
instrument. These natural modes of vibration depend mostly on the material of the resonant cavity
and its shape, and can be considered a sort of signature of the instrument

But we know that one instrument can present timbral variations (like the di�erent registers
of the clarinet or �brassy� trumpet sounds). These timbral di�erences are manifested in many
spectro-temporal features, the balance of spectral energy being among the most important. The
spectral shape features (spectral centroid, spread, skewness and kurtosis) are a measure of the
balance of spectral energy. Some verbal attributes used by musicians and composers to refer to
speci�c qualities of musical instrument sounds, such as bright, have an acoustic correlate, the
spectral centroid. For example, a brassy trumpet sound, usually considered brighter than softer
ones, has a higher spectral centroid.

Therefore, when morphing between musical instrument sounds, we need to take into account
not only the formants, but also the balance of spectral energy. On the one hand, we can keep track
of the formants if we study the behavior of the spectral envelope peaks. On the other hand, the
balance of energy can be measured by the values of the spectral shape features.

The aim of this chapter is to investigate the problem of morphing spectral envelopes from
both perspectives, behavior of the formant peaks and variation of spectral shape features. The
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spectral envelope morphing techniques proposed in the literature will be evaluated from these
perspectives considered above using the morphing evaluation criteria adopted in this work, namely,
correspondence, intermediateness, and smoothness. Ideally, we are looking for a spectral envelope
morphing technique that presents both a desireable behavior of spectral peaks and linear variation
of spectral shape features at the same time. The aim is to select the spectral envelope morphing
technique that leads to the optimal variation of spectral shape features under the constraints of
intermediateness and smoothness. The concept of optimal in the sense of variation of spectral
shape features will be discussed, leading to the evaluation of spectral envelope morphing presented
in chapter 14.

13.1 Morphing Spectral Envelopes

Before presenting the approach developed in this thesis to morph spectral envelopes, let us consider
the previous solutions. The problem of morphing spectral representations of sounds has been stud-
ied before in the context of sound morphing [Slaney et al., 1996, Ezzat et al., 2005, Moorer, 1978].
Notably, Ezzat [Ezzat et al., 2005] analyzes soberly the problem of interpolating spectral envelopes
and argues that any reasonable solution should account for proper formant shifting between source
and target.

Slaney [Slaney et al., 1996] proposes to morph spectral envelopes by cross-fading between the
the MFCCs that represent each spectral envelope. The conclusion is that the method should
be improved with more perceptually related representations of the spectral contents. P�tzinger
[P�tzinger, 2004] uses dynamic frequency warping (DFW), a frequency domain counterpart of
the widely known dynamic time warping algorithm, in a spectral smoothing approach applied
to concatenative speech synthesis. Ezzat [Ezzat et al., 2005] studied the use of DFW to morph
spectral envelopes in the context of musical sounds. The above mentioned approaches focus on the
behavior of the spectral peaks under the transformation, but they rarely consider the balance of
spectral energy.

Only recently did we start to take the variations of spectral shape features such as the
spectral centroid into consideration [Williams and Brookes, 2007, Williams and Brookes, 2009,
Caetano and Rodet, 2009, Caetano and Rodet, 2010c, Hatch, 2004], and the result is the addition
of another step in the process, feature extraction. We note that, while the choice of features is def-
initely important, most research e�orts concerning morphing guided by the values of features have
concentrated on the challenging problem of feature guided transformations [Verfaille et al., 2006].

More speci�cally, the most important aspect of spectral envelope morphing is the resultant
transition between the spectral envelope curves. There are two di�erent things to take into
consideration when analyzing the transition between spectral envelope curves, the behavior of
the formant peaks, and the balance of spectral energy. The formant peaks are associated with
sound color [Slawson, 1985], while the balance of spectral energy, which can be measured with the
spectral shape features, is correlated with timbral qualities [Caclin et al., 2005, Krumhansl, 1989,
Krimpho� et al., 1994, McAdams et al., 2006, McAdams et al., 2005]. Ideally, when morphing be-
tween musical instrument sounds, we want intermediate representations of the spectral envelopes
that lead to spectral envelope curves with peaks in positions that would correspond to a hybrid
instrument between the two, and that would also have an intermediate balance of spectral energy.
In the next section, we will consider both criteria, �rst separately and then at the same time.

We will consider two possible transitions between spectral envelope curves concerning the spec-
tral peaks, namely, spectral peak shifting and spectral peak rise and wane. One way of describing
the peaks of the spectral envelope curve is in terms of their center frequency and bandwidth or
magnitude. The center frequencies of the spectral peaks are the spectral regions of high energy,
while their magnitudes and bandwidths re�ect the energy loss (usually due to damping). Spectral
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Figure 13.1: Hybrid spectral envelopes. The �gure shows two spectral envelopes with peaks in
di�erent absolute positions in the frequency axis. When producing hybrid spectral envelopes that
correspond to a gradual transformation between those two, on the lefthand side of the �gure we
imagine a one-to-one Correspondence between the spectral peaks, whose center frequencies simply
shift in frequency. On the righthand side we imagine that the spectral peaks simply appear and
disappear remaining in the same absolute positions in frequency.

peak shifting and spectral peak rise and wane describe the behavior of the spectral peaks regarding
their center frequencies and magnitudes.

13.1.1 Spectral Peak Shifting

Just like the name suggests, when this type of transition occurs, the center frequencies of the
(formant) peaks shift in frequency. This is illustrated on the left-hand side of �gure 13.1, which
shows two spectral envelopes with two (formant) peaks each. When producing morphed spectral
envelopes that correspond to a gradual transformation between those two, we imagine a one-to-
one correspondence between the (formant) peaks, and consequently their center frequencies simply
shift in frequency. We should notice that the morphed spectral envelope curves corresponding to
intermediate steps of this transformation keep the same number of peaks as the original curves.
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13.1.2 Spectral Peak Rise and Wane

Another possible transition between two spectral envelope curves concerning the spectral peaks
in which the spectral peaks simply appear and disappear (rise and wane) is shown in �gure 13.1.
In this transition, the center of the formant peaks do not shift in frequency, instead, they remain
�xed during the transition while their amplitudes increase or decrease (depending on the direction
of transformation). Notice that, in this type of transition, the morphed spectral envelope curves
corresponding to intermediate steps do not keep the same number of formant peaks as the original
curves, because the intermediate spectral envelopes would have twice as many peaks as them, as
illustrated on the right-hand side of �gure 13.1.

Naturally, both transitions proposed above rely on an underlying correspondence between the
spectral envelope curves used in the transformation in terms of the number of formant peaks. We
have supposed for both possibilities that each formant peak on a spectral envelope curve has a
partner on the other one. This leads us to the following question, when there is no peak to peak
correspondence, is it still possible to propose reasonable solutions to the problem? And more
importantly, supposing that there exist solutions, what is their perceptual quality or how do they
sound? Let us �rst consider the problem of (formant) peak correspondence under spectral envelope
morphing transitions. Then, later in chapter 14 we will �nally investigate the much more important
question in the context of this work on how they sound when applied in morphed sounds.

13.1.3 No Spectral Peak Correspondence

Figure 13.2 illustrates the case when one spectral envelope has more peaks than the other used in
the transformation. Let us analyze two possible transitions between them inspired by the spectral
peak shifting and rise and wane paradigms.

When we imagine a gradual transformation between them under the spectral peak shifting
paradigm, the two peaks' center frequencies will shift to the same center frequency and merge
into one. This means that all the hybrid spectral envelopes will have two peaks with center
frequencies that get closer and closer (or farther and farther apart, depending on the direction of
the transformation). On the other hand, when we imagine the same gradual transformation using
the rise and wane model, all the morphed spectral envelopes now have three formant peaks.

The problem of correspondence between spectral peaks has been addressed independently by
Osaka [Osaka, 1998] for sinusoidal peaks and Laura [Laura and Rodet, 1990] in the context of
spectral envelope peaks. Both solutions proposed rely on a description of each spectral peak
in terms of center frequency and bandwidth/amplitude, and attack the problem trying to �nd
the best match for each peak in terms of a distance measure between their center frequencies.
Algorithmically, the solution involves combinatorics and minimization of the distance measure,
which can be very complex and time-consuming to solve.

In this work, I propose an alternative solution to this problem that always guarantees corre-
spondence between the spectral representations. Notice that I will reason in terms of spectral
envelopes, but the same arguments apply to plain Fourier spectra. The idea is fairly simple, we
can work around the lack of correspondence between the number of spectral peaks, which arises
when we describe the spectral peaks individually, if we represent the spectral envelopes using a
spectral envelope model instead. In this case, all we have to do to guarantee correspondence is to
use the same number of coe�cients (i.e., the same model order) for both spectral envelopes used
in the transformation. In principle, this solves the correspondence problem elegantly. There is one
important consideration, though. Now we are interpolating the parameters of spectral envelope
models to obtain the morphed spectral envelopes (and consequently the corresponding morphed
spectral envelope curves). So we should study the behavior of the spectral peaks when we change
(interpolate) the parameters of di�erent spectral envelope models. Naturally the question about
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Figure 13.2: No spectral peak correspondence. The �gure illustrates both spectral peak shifting
and rise and wane spectral envelope morphing paradigms when there is no correspondence between
spectral peaks.

the behavior of the spectral peaks remains the same as before. As we will see in the next section,
the answer depends on how the spectral envelope model encodes information about the spectral
envelope curve.

13.1.4 Spectral Envelope Morphing

Spectral envelope morphing is a spectral envelope transformation technique that takes two (or
more) spectral envelope models as input as produces one as output. Spectral envelope morphing can
be understood as the convex combination of the parameters of the spectral envelope representation
of a given spectrum. Given two vectors of parameters σp and σq of a spectral envelope model
whose map is S, the convex combination between two spectral envelopes is de�ned as the convex
combination of the parameters of the representation as expressed in equation 2.4 and rewritten
below.

Hp,q (ω) = S (σp,q) = S (ασp + [1− α]σq) (13.1)

Naturally this operation is not the only possibility to obtain a spectral envelope as the com-
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bination of two. Notably, we can always perform a convex combination of the spectral envelope
curves directly instead of the parameters, as expressed in equation 13.2. Naturally the result of the
operations de�ned in equations 13.1 and 13.2 usually is not the same for most spectral envelope
representations.

Hp,q (ω) 6= αHp (ω) + [1− α]Hq (ω) = αS (σp) + [1− α]S (σq) (13.2)

In order to exemplify the behavior of the spectral peaks under the interpolation of di�erent
spectral envelope representations, I created an arti�cial example based on an all-pole representation
(equivalent to LPC) with four poles each (which guarantees correspondence between them if we
use the same model order). Figure 13.3 shows the two original arti�cial spectral envelope curves.
At the top we see the spectral envelope curve resulting from the spectral envelope model with
two poles at center frequency F1 = 5KHz and magnitude r1 = 0.91 and two other poles at center
frequency F2 = 10KHz and magnitude r2 = 0.88. At the bottom we see the spectral envelope curve
resulting from placing all four poles at center frequency F3 = 8KHz with magnitude r3 = 0.80
each.

Figure 13.3 also shows the line spectral frequencies resulting from the conversion from the all-
pole �lter coe�cients. Notice how the line spectral pairs tend to concentrate around the peaks of
the spectral envelope curve in both situations, notably when there is only one peak the line spectral
frequencies are distributed fairly equally across the spectrum. Now we are going to convert the all-
pole representation into cepstral coe�cients and compare the behavior of the spectral peaks when
we perform the convex combination of the line spectral frequency and cepstral representations of
these two spectral envelope curves.

Figure 13.4 shows (from two perspectives) the spectral envelope curves resulting from the
interpolation of the line spectral frequencies (LSFs) shown in �gure 13.3 (on the left-hand
side) and their cepstral coe�cient (CC) representation (on the right-hand side). Since we
are interested in the gradual transition, we use several values of interpolation factor α =
[1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0]. At the top of �gure 13.4 all curves are shown super-
imposed, and at the bottom they are shown from the top (as in a topographic map) for each value
of α separately.

The purpose of �gure 13.4 is to exemplify the behavior of the spectral peaks when we inter-
polate the values of parameters of di�erent spectral envelope representations. The bottom plot in
�gure 13.4 shows that the center frequencies of the peaks shift when interpolate LSFs, while the
interpolation of CCs leads to the increase/decrease in magnitude of the peaks while their center
frequencies do not change value. Remark one important detail about the interpolation of LSFs; it
is not only the center frequencies that shift, but also the magnitude values of the peaks also change
accordingly. This is due to how LSFs encode information about the spectral peaks. That is, the
closer a pair, the higher the magnitude.

Figure 13.5 shows the values of the spectral envelope model parameters as a function of the
interpolation factor α for both LSFs and CCs. First of all we should notice that the order of the
representations is di�erent. There are only four LSFs, while there are 50 cepstral coe�cients. The
cepstrum can be seen as information about the rate of change of the Fourier spectrum in di�erent
frequency bands with �xed center frequency and bandwidth. Contrary to the CCs, the LSFs do
not have a �xed position in frequency, adapting their values relative to one another according to
the spectral information they represent. Consequently, when we interpolate the values of the LSFs,
the center frequencies shift as the values of the LSFs shift and the magnitudes of the spectral peaks
vary accordingly as the LSFs get closer/farther apart.

An important requirement when interpolating LSFs is that they do not cross, otherwise the
spectral information they convey would be misinterpreted and the behavior of the spectral envelope
curves under interpolation of the parameters would be unpredictable. However, as long as we have
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Figure 13.3: Original spectral envelope curves. The �gure shows two spectral envelope curves with
di�erent number of peaks that will be used to exemplify the type of transition that we obtain
(spectral peak shift or rise and wane) when we interpolate one linear prediction based and one
cepstral based representation. The goal is to illustrate the behavior of the spectral peaks under
the interpolation of di�erent spectral envelope representations.

the same number of LSFs representing both spectral envelopes, their paths will never cross when
interpolating them one by one in pairs.

Even though this is just an arti�cial example, it is indicative of the behavior of the spectral peaks
under the interpolation of certain representations of spectral envelope models. Like previously
stated, these are not the only possible solutions to the problem of spectral envelope morphing. We
can interpolate the parameters of several di�erent spectral envelope representations and verify that
they all behave di�erently under the same conditions. There are two main types of spectral envelope
models, namely, those based on linear prediction and those based on cepstral representations. Some
representations of spectral envelopes based on linear prediction are, for example, the poles, the
�lter coe�cients, re�ection coe�cients, line spectral pairs, among others. Cepstral coe�cients
include the real cepstrum, the complex cepstrum, mel-frequency cepstral coe�cients (MFCCs),
among other variants.

In general, even though the result of interpolating the parameters of each one of these rep-
resentations is di�erent, they can be grouped together according to the behavior of the spectral
peaks. Linear prediction representations present a general tendency to lead to spectral peak shift-
ing, while cepstral based representations generally result in spectral peak rise and wane. These
are not the only possible spectral envelope morphing approaches. Let us not forget that there
are techniques that use the spectral envelope curves directly, such as dynamic frequency warping
[P�tzinger, 2004, Ezzat et al., 2005] or simply interpolate the curves directly using equation 13.2.
So, the question that remains is which spectral envelope morphing technique is most appropriate.
And the answer is that it depends on the problem. We need to de�ne what characteristics are de-
sirable and select the spectral envelope morphing technique that presents them in most cases. For
the musical instrument sound morphing problem we set out to investigate, a reasonable proposal
seems to be an intermediate balance of spectral energy, measured by the spectral shape features.
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Figure 13.4: Interpolation of line spectral frequency representation.

13.1.5 Balance of Spectral Energy

Now we will consider the application of the spectral envelope morphing techniques presented in
the previous section in our problem of interest, morphing musical instrument sounds. The rea-
soning is that we want a morphed spectral envelope curve that corresponds to a hybrid musical
instrument. If we imagine that a hybrid musical instrument would probably have a resonant cavity
with an intermediate shape, the morphed spectral envelope curve should re�ect that. But even
more importantly, the morphed spectral envelope should correspond to a perceptually intermediate
sound.

According to the evaluation criteria we adopted, the morphed sounds should be not only per-
ceptually intermediate, but the cyclostationary transformation should be perceived as smoothly
as possible. One way of measuring perceptual intermediateness would be to perform a listening
test with morphed sounds synthesized with a given method like Osaka [Osaka, 1998] proposes.
However, this approach is very time consuming and the results are complex to evaluate because
the task of estimating perceptual intermediateness related to morphed spectral envelopes involves
many psychological mechanisms that are not well understood yet. An alternative would be to use
surrogates of perceptual features as measures, such as the spectral shape features presented earlier,
namely, spectral centroid, spread, skewness and kurtosis.

We will focus on the balance of spectral energy as measured by the spectral shape features, and
rely on the correlation between their values and musical instrument sound perception. For now
we will simply require that the interpolation factor α be used to control the transformation. The
principle is fairly simple, we measure the values of the spectral shape features for two sounds we
want to morph between, giving feature vectors δ1 and δ2. Now we require that the values of the
spectral shape features be interpolated according to equation 2.2, that is

δ1,2 = αδ1 + [1− α] δ2 (13.3)

Interestingly, the feature values can also be used to evaluate the smoothness of the results
when they respect equation 13.3. The criterion we adopt to evaluate both intermediateness and
smoothness via the values of the spectral shape features is to calculate a deviation (squared error)
between the theoretical value given by equation 13.3 and the value measured on the corresponding
morphed spectral envelope curve. For example, we want the values of the spectral shape features
of a smooth transformation to be as close to a straight line between δ1 and δ2 as possible when the
morphing factor α varies linearly (α = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0]). This criterion
corresponds to requiring a gradual shift of balance of distribution of energy.

Then we adopt a minimum error approach to select the smoothest spectral envelope morphing
technique. This is explained in detail in chapter 14. The spectral envelope of morphed musical
instrument sounds should re�ect both constraints, that is, it should be intermediate and smooth
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Figure 13.5: Interpolation of spectral envelope parameter values as a function of the interpolation
factor α

concerning the spectral peaks and the balance of spectral energy (measured by the spectral shape
features.) It is a di�cult task to meet either one of these conditions isolated, let alone trying to
meet them both together at the same time. Let us see why.

13.2 Target Feature Values

The spectral peak shifting and spectral peak rise and wane paradigms give rise to at least two
possible solutions for the morphed spectral envelope curves. Therefore, we need to specify a way of
selecting one of these according to some criteria. The balance of spectral energy comes in handy be-
cause of its correlation with the perception of sounds. In most models proposed, linear variation of
interpolation parameters does not produce perceptually linear morphs [Boccardi and Drioli, 2001,
Hikichi, 2001, Hope and Furlong, 1997, Slaney et al., 1996, Tellman et al., 1995]. Thus one inter-
esting requirement to add to spectral envelope morphing is intermediate values of spectral shape
features for the morphed spectral envelopes.

This requirement should restrict cases where more than one possible intermediate shape is
possible. Nevertheless, we still have to be careful to add enough constraints to narrow down the
possible spectral shapes to one single possibility. In other words, specifying only the spectral
centroid is not enough to restrict the possible morphed spectral envelopes. Figure 13.6 illustrates
the case when there are not enough restrictions to specify one single spectral envelope. If we only
take the values of the spectral centroid into consideration, these three spectra would be possible
candidates. But because the spectral peaks are in di�erent absolute positions on the frequency
axis they would still be perceived di�erently.

Naturally, when we specify that the spectra in �gure 13.6 should have the same spectral cen-
troid and the same spectral spread, then not all three spectra shown in the example satisfy the
constraints. The spectral shape features are the statistical moments of the normalized magnitude
spectrum, like presented in chapter 5. The question that arises naturally is about the statistical
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Figure 13.6: Di�erent statistical distributions with the same mean. The �gure illustrates the case
when spectra have peaks in di�erent absolute positions in frequency but have the same value of
spectral centroid.

moments of a given distribution. Is there a series of moments that uniquely de�nes a distribution
by de�ning its probability density function (PDF)? If there is, how many moments do we need
to guarantee that the PDF is unique? Finally, how does it apply to multimodal PDFs? These
questions are related to the problem of moments in statistics, which will be brie�y reviewed next.

13.3 The Problem of Moments

Any statistical distribution can be characterized by the moments µm, which describe the nature of
the distribution [Papoulis, 1991]. The problem of moments arises as the result of trying to invert
the mapping that takes a measure λ to the sequences of moments µm, calculated as

µm =

∞∫
−∞

pm (x) dλ (x) (13.4)

for an arbitrary sequence of probability distribution functions pm. The question appears in
probability theory [Kolassa, 2006], asking whether there is a probability measure having speci�ed
mean, variance and so on, and whether it is unique.

13.3.1 Statistical Moments

The mth central moment and mth moment about zero of a discrete Probability Distribution Func-
tion (PDF) p(k) is de�ned as

µm = E [(X − E [X])m] =
∑

k

(k − µ)m
p (k) ,∀k ∈ S (13.5)

where the sum is evaluated for all k in S, the sample space of the random variable X, whose
Cumulative Distribution Function (CDF) de�nes p(k). E is the expectation operator, de�ned as
E [X] =

∑
k kp (k) = µ, and µ is the expected value or mean of the PDF p(k). The moments

about the origin, on the other hand, are de�ned as

µ′m = E [(X)m] =
∑

k

kmp (k) ,∀k ∈ S (13.6)

and the moment is said to exist if the series is absolutely convergent [Cramér, 1945].
The moment of order zero, or zeroth moment, is simply the sum of p(k) for all k, which, for a

PDF is always 1. The �rst moment about the zero is the mean, µ. The second central moment
is the variance σ2, whose square root gives the standard deviation σ of the PDF. Sometimes it
is convenient to convert moments about the origin to moments about the mean. The general
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equation for converting the mthmoment about the origin to the mth moment about the mean is
[Papoulis, 1991]

µm =
m∑

j=0

(
m
j

)
µ′j (−µ)m−j (13.7)

Similarly

µ′m =
m∑

j=0

(
m
j

)
µjµ

m−j (13.8)

13.3.2 Standardized Moments

The mth standardized moment of a PDF is de�ned as [Cramér, 1945]

µm

σm
(13.9)

where µm is the mth central moment and σ is the standard deviation of the PDF.

• The �rst standardized moment is zero, because the �rst moment about the mean is zero

• The second standardized moment is one, because the second moment about the mean is equal
to the variance (the square of the standard deviation)

• The third standardized moment is the skewness

• The fourth standardized moment is the kurtosis

Note that for skewness and kurtosis alternative de�nitions exist, which are based on the third and
fourth cumulants respectively.

13.3.3 Characteristic Function

In probability theory and statistics, the characteristic function of any random variable completely
de�nes its probability distribution [Cramér, 1945]. Thus it provides the basis of an alternative
route to analytical results compared with working directly with probability density functions or
cumulative distribution functions. The characteristic function always exists when treated as a
function of a real-valued argument, unlike the moment-generating function [Papoulis, 1991]. There
are relations between the behavior of the characteristic function of a distribution and properties
of the distribution, such as the existence of moments and the existence of a density function
[Cramér, 1945]. The characteristic function of a PDF p(k) is the discrete Fourier transform of
p(k), de�ned as

ϕ (ξ) =
N−1∑
k=0

p (k) ejkξ (13.10)

the series being absolutely and uniformly convergent for all ξ, since
∑
k p (k) = 1 [Cramér, 1945].

Each term of the series is a periodic function of ξ. Not every function ϕ (ξ) may be the characteristic
function of a distribution. Various necessary and su�cient conditions are known [Cramér, 1945],
but they will not be discussed at length here.

One important property of the characteristic function is that, if the moment of order m of p(k)
exists, equation (13.10) can be di�erentiated m times with respect to ξ, giving [Cramér, 1945]

dm

dξm
ϕ (ξ) = ϕ(m) (ξ) = jm

N−1∑
k=0

kmp (k) ejkξ (13.11)
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Furthermore, ϕ(m) (ξ) is continuous for all ξ ∈ R [Cramér, 1945], such that

ϕ(m) (0) = jm
N−1∑
k=0

kmp (k) = jmµm (13.12)

In the neighborhood of ξ = 0 there is thus a development in MacLaurin series [Cramér, 1945]

ϕ (ξ) =
∞∑

m=0

ϕ(m) (0)
m!

(ξ)m =
∞∑

m=0

µ′m
m!

(jξ)m = 1 +
M∑

m=1

µ′m
m!

(jξ)m +O (ξm) (13.13)

where the error term O (ξm) divided by ξm tends to zero as ξ → 0 [Cramér, 1945]. An alternative
expression for the error term, given by

O (ξm) =

ξ∫
0

ϕ(m+1) (0)
(ξ − u)m

m!
du = ϕ(m+1) (Ξ)

ξm+1

(m+ 1)!
; 0 < Ξ < ξ (13.14)

If limm−→∞O (ξm) = 0 the series converges and ϕ (ξ) is analytical. An alternative derivation
can be obtained by expanding the complex exponential in equation (13.10) in MacLauren series,
obtaining

ejkξ =
∞∑

m=0

(jkξ)m

m!
(13.15)

and then substituting this expression into (13.10), getting

ϕ (ξ) =
N−1∑
k=0

p (k)
∞∑

m=0

(jkξ)m

m!
=

∞∑
m=0

(jξ)m

m!

N−1∑
k=0

p (k) km =
∞∑

m=0

µ
′

m

m!
(jξ)m (13.16)

It is important to know whether a distribution is uniquely de�ned by the sequence of its
moments. This is known as the moment problem. It can be shown [Cramér, 1945] that the char-
acteristic function is uniquely determined by the sequence of moments µm if the series converges
absolutely near the origin. The moments of a distribution are not arbitrary numbers and must
satisfy various conditions [Papoulis, 1991], such that only certain sequences represent distributions.
The relationship between the characteristic function of a PDF and its moments allows us to write
an analytical formula that establishes the connection between the cepstral coe�cients and the
spectral shape features of a given spectral envelope curve.

13.3.4 Analytical Formulation

Firstly, we observe that the inverse Fourier transform of equation (5.3) can be interpreted as the
characteristic function of p(k) by inspecting equation (13.10) with ξ = ω = 2πn

N ;n = 0...N −1, and
thus it can be expressed as

x̂ (n) =
N−1∑
k=0

p (k) ejkω =
∞∑

m=0

µ
′

m

m!

(
j
2π
N
n

)m

(13.17)

where µ
′

m represents the mth order moment about the origin of p(k). Upon closer examination, the
real cepstrum can also be expressed in terms of a series of moments of the log magnitude spectrum
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if we view the cepstrum as the characteristic function of g(k). So we obtain equation (13.18) simply
by substituting p(k) in equation (13.10) with equation 5.3 in chapter 5, we get

c (n) =
N−1∑
k=0

g (k) ejkω =
∞∑

m=0

µ
′

m

m!

(
j
2π
N
n

)m

(13.18)

where µ
′

m now represents the mth moment about the origin of g (k) = log |X (k)|, and c(n) is
the cepstrum of the sequence x(n). This equation establishes the analytical relation between the
real cepstrum, a model of spectral envelope, and the statistical moments of the spectral envelope
it de�nes, directly related to the spectral shape features we desire to control in transformations.
The moments µ

′

m are directly linked to the spectral shape features by equations (13.8) and (13.9).
Equation (13.18) can be viewed as the z-transform of the series of moments by substituting z−1 =
jω. In words, the cepstral coe�cients can be expressed as the z-transform of the series expansion of
the statistical moments (around zero) of the log-magnitude spectrum evaluated on the imaginary
axis. Schröeder [Schröeder, 1999] suggests a similar correspondence when deriving nonrecursive
relations between the linear prediction coe�cients and the cepstral coe�cients of a sequence x (n).

If we want to guarantee that we have enough constraints to narrow down the possible morphed
spectral envelopes, we must add as many constraints as the number of dimensions we have in the
original space the spectral envelopes reside. In other words, if we need M parameters (cepstral
coe�cients, lienear prediction coe�cients, line spectral frequencies, etc) to specify the spectral
envelope in the parameter space, we need to add at least M linearly independent constraints to
uniquely specify the same spectral envelope in a di�erent space. Supposing that the space we wish
to project the spectral envelopes onto is the space of moments of probability distributions (which
correspond to the spectral shape features), then we would need M moments to uniquely specify
one spectral envelope.

The analytical formulation expressed in equation 13.18 theoretically allows us to obtain the
cepstral coe�cients corresponding to a given sequence of values of spectral shape features, given
the condition that the series of moments is convergent. Nevertheless, spectral envelope curves are
usually multimodal (they present more than one peak), while probability density functions (PDF)
are usually unimodal (they only have one peak).

13.4 Manipulation of Spectral Envelope Representations

I derived the analytical relationship between the real cepstrum representation of a spectral envelope
curve and its spectral shape features in the hopes of being able to perform spectral envelope
transformations in the space of spectral shape features directly, and then retrieve the spectral
envelope (curve or parameters) that corresponds to the speci�ed values of spectral shape features.
However, when this approach seemed to bear no fruit, I decided to adopt an error minimization
approach instead.

Under the intermediateness and smoothness requirements of morphing algorithms, we want
to select the spectral envelope morphing technique that gives minimal quadratic error according
to the variation of the values of spectral shape features. The criterion adopted is that a linear
variation of the morphing factor α should lead to a linear variation of the values of spectral shape
features when we consider intermediateness and smoothness. The derivation of the quadratic error
measure and the complete evaluation procedure will be presented in chapter 14, but right now we
will see the motivation for the error minimization approach.
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13.4.1 Interpolation of Spectral Envelope Representations

Figure 13.7 shows a comparison between many spectral envelope morphing techniques. On
the left-hand side we see the morphed spectral envelope curves corresponding to α =
[1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0], and on the right-hand side we see the corresponding vari-
ation of the spectral shape features measured on the corresponding curves on the left. The solid
lines correspond to the original spectral envelope curves for which α = 0 or α = 1.

Each row in �gure 13.7 corresponds to a di�erent spectral envelope morphing method, namely,
interpolation of spectral envelope curves (ENV), interpolation of linear prediction coe�cients
(LPC), interpolation of cepstral coe�cients (CC), interpolation of re�ection coe�cients (RC), in-
terpolation of line spectral frequencies (LSF), and dynamic frequency warping (DFW). We should
notice that there are spectral envelope morphing methods based on the spectral envelope curve
(ENV and DFW), cepstral based representations (CC) and linear prediction based representations
(LPC, RC, and LSF).

Among these methods, we �nd spectral peak shift (LPC, RC, and LSF) and spectral peak
rise and wane (ENV, CC, and DFW) behavior. The spectral envelope curve was estimated us-
ing true envelope for all the spectral envelope morphing methods and then converted to LPC
using equation 7.129 in section 7.7.2 of chapter 7. We want to investigate which of the spec-
tral envelope morphing methods gives a variation of all spectral shape features as close as pos-
sible to linear when α = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0]. We should bear in mind
that some of the spectral envelope morphing methods shown in �gure 13.7 correspond to the
main spectral morphing methods proposed in the literature. These are the envelope curve
(ENV) [Tellman et al., 1995, Fitz et al., 2003, Osaka, 1995], linear prediction coe�cients (LPC)
[Moorer, 1978], cepstral coe�cients (CC) [Slaney et al., 1996] and dynamic frequency warping
(DFW) [Ezzat et al., 2005, P�tzinger, 2004]. We will delve deeper into the evaluation procedure
in the next chapter, devoted to answering this question.

The apparent di�erence between the original spectral envelope curves (solid lines) of linear
prediction (LPC, RC, and LSF) and cepstral based (ENV, CC, and DFW) representations in
�gure 13.7 is due to the cepstral based estimation (true envelope) and posterior conversion to
linear prediction coe�cients. The conversion from cepstral to linear prediction based spectral
envelope representation introduces distortions in the converted spectral envelope curve because
the conversion method is not exact. The conversion from LPC to RC and LSF, on the other hand,
is exact.

In the context of voice conversion, Villavicencio et al. [Villavicencio et al., 2006] showed that
estimating the spectral envelope with �true envelope� and converting to LPC yields a better spectral
envelope than simply estimating the spectral envelope directly with linear prediction. The rest of
this chapter is dedicated to investigating the conversion between CC obtained with the �true
envelope� estimation, and LPC representation. This conversion is referred to as TENV2LPC and
it is important because the resynthesis step of the SF model uses the LPC representation, as
explained in chapter 11.

13.4.2 Spectral Envelope Model Conversion

Spectral envelope model conversion can be considered as a spectral envelope manipulation tech-
nique whose main requirement is to preserve the spectral envelope curve as accurately as pos-
sible. Naturally there have been proposals to measure spectral distortion or spectral distance
[Itakura and Saito, 1968]. We will analyze the result of conversion techniques using the Itakura-
Saito distance, which is a well known measure of the perceptual di�erence between a given mag-

nitude spectrum |H (ω)| and an approximation
∣∣∣H̃ (ω)

∣∣∣. The Itakura-Saito distance will be used

to evaluate the distortion introduced in the spectral envelope curve when the conversion between
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Figure 13.7: Spectral envelope morphing guided by spectral shape features. The �gure shows the
variation of the values of spectral shape features when morphing spectral envelopes using the main
approaches proposed in the literature. The spectral envelope curves are shown on the left and the
corresponding feature variation on the right. We want the spectral envelope morphing algorithm
that leads to linear variation of spectral shape features.

spectral envelope representations is not exact, as is the case for the conversion between linear
prediction coe�cients (LPCs) and cepstral coe�cients (CCs). The conversion operation allows us
to use one spectral envelope estimation technique, while giving us the �exibility of manipulating
the spectral envelopes using a di�erent representation. So we can use a spectral envelope estima-
tion technique that is optimal in some sense for the estimation problem, and then manipulate the
spectral envelopes using another representation that is more appropriate than the one used in the
estimation.

In the context of voice conversion, Villavicencio [Villavicencio et al., 2006] proposes to estimate
the spectral envelope curves using true envelope [Röbel et al., 2007] and converting the result into
LPCs to improve the quality of the voice conversion task. The idea is that true envelope gives
an accurate estimation of the spectral envelope curve when we compare the distance between the
peaks of the spectrum and the spectral envelope curve estimation at those points. Villavicencio
compares the accuracy of true envelope estimation with other techniques (among them is LPC)
and concludes that we obtain a more accurate spectral envelope curve when we estimate it using
�true envelope� and convert the cepstral coe�cients of the �true envelope� estimation to LPC,
than when we estimate the spectral envelope curve using LPC directly. Let us perform a similar
evaluation for the spectrum of musical instrument sounds. Figure 13.8 shows the spectrum of
di�erent musical instrument sounds and the spectral envelope curves superposed to it. The spectral
envelope curves that we see were obtained by true envelope estimation directly (TENV), by linear
prediction directly (LPC), and the result of the conversion of TENV into a linear prediction based
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representation (TENV2LPC).
Supposing that true envelope gives the most accurate spectral envelope curve, we measure the

Itakura-Saito distance TENV-TENV2LPC and TENV-LPC and compare them. The smallest IS
distance value gives an accurate spectral envelope curve represented as LPC. We can see from the
�gure that the IS distance TENV-TENV2LPC is at least one order of magnitude smaller than
TENV-LPC for all cases. Naturally, when we evaluate the conversion from CC to LPC, we are
implicitly supposing that we will not use the CC representation obtained directly from the true
envelope estimation. It is always the case in this work because the resyntheis of the SF model
always uses the LPC representation of the �lter. Therefore, we obtain more accurate results in the
implementation of the SF model developed in this thesis when we estimate the spectral envelope
with �true envelope� and convert it later to LPC. Chapter 14 will present the result of a listening
test that veri�es whether this statement is true perceptually.
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Figure 13.8: Comparison of the accuracy of spectral envelope representation in the linear prediction
domain. The �gure compares the spectral envelope curves estimated with �true envelope� (TENV)
and (LPC), and the result of the conversion from TE to LPC (TENV2LPC). In the �gure we see
the Itakura-Saito (IS) distance between TENV - LPC and between TENV - TENV2LPC. The
smallest IS distance indicates the most accurate representation in the linear prediction domain.
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Chapter 14

Evaluation

In this chapter, we will see the results of the evaluation of the model and of the transformations we
can obtain with it. The evaluation of the model consists in verifying that the sounds represented
by the implementation of the source-�lter (SF) model developed in this work actually sound the
same as the original recordings. The morphing transformations are evaluated according to the
criteria adopted, correspondence, intermediateness and smoothness, using objective and subjective
(perceptual) criteria.

The main purpose of this chapter is to allow a comparison between the traditional sinusoidal
model and the source-�lter (SF) representation of isolated musical instrument sounds in terms of
the transformations. We want to be able to control the transformation with the morphing factor α
such that, when α varies linearly, the transformation is also linear. First and foremost, I will show
the result of the evaluation of the SF representation of isolated acoustic musical instrument sounds
I proposed. This �rst test, presented next in section 14.1, consists in evaluating whether sounds
resynthesized with parameters derived from the SF representation are perceptually di�erent from
the original recordings. This task consisted in a simple listening test asking the subjects how per-
ceptually similar the original recording and the same sound synthesized from the SF representation
were.

Next, we will see the evaluation procedure concerning the transformation. This task concen-
trates on spectral aspects of the transformation for the sake of simplicity. Since evaluating the
transformation is a much more complex task than the SF model evaluation, we need objective
criteria and subjective perceptual tests for this task. The objective criteria adopted are related to
the behavior of the spectral peaks and of the values of the features under the transformation. The
behavior of the spectral peaks is just qualitatively analyzed in this step, permitting the separation
of the spectral envelope representations into two distinct classes, rise and wane (RW) and peak
shifting (PS). The values of the spectral shape features, on the other hand, are quantitatively evalu-
ated. With the principles of intermediateness and smoothness in mind, we want the spectral shape
features to vary linearly when the morphing factor α changes linearly. The error metric measures
the deviation between the ideal interpolated values and the measured values of the spectral shape
features for each spectral envelope representation studied. In this work, we want the method that
gives minimum error.

Finally, the method with minimum average error was compared with the popular interpolation
of parameters of sinusoidal models in a listening test. The aim of the listening test was to evaluate
the perceptual linearity of the morphing transformation under both methods.

235
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14.1 Evaluation of the Source-Filter Model

Since we know that the implementation of the source-�lter (SF) model proposed in this work does
not represent accurately the spectral information (mostly due to errors in the spectral envelope
estimation and conversion steps), the �rst important step in the evaluation procedure is the per-
ceptual validation of the source-�lter representation. In other words, we need to investigate if the
sounds represented with the SF model are perceptually di�erent from the original recordings (and
if they are, by how much). In general, the sinusoidal model provides a good representation of the
sound on the perceptual sphere. However, the residual part is usually not represented in sinusoidal
modeling.

We already know from section 7.6 that the spectral envelope estimation with �true envelope�
presents small errors in the representation of the amplitudes of the spectral peaks corresponding
to the partials. If we were to do a simple test and substitute the amplitudes of the partials
in the traditional sinusoidal representation of a sound with those given by the �true envelope�
estimation and resynthesize the sound with these small variations, would the resynthesized sound
be perceptually identical to the original? If not, how perceptually similar are they? When we
include the residual modeling, the question becomes even more intriguing. Is the white noise
�ltered with the LPC estimation of the spectral envelope of the residual from a sinusoidal analysis
of a sound a good perceptual representation of the residual?

Naturally, it is the result of the combination sinusoidal plus residual components heard together
that is of interest in this work. Thus we will see the result of a simple listening test that aimed to
evaluate how perceptually similar the sounds resynthesized from the SF representation are to the
original recordings. The quality of the morphing transformation is directly linked to the perceptual
validation of the SF representation. If the the original sounds represented by the SF model are
perceptually very di�erent, then we could argue that we are not morphing between the original
sounds on the perceptual plane when we use the SF model. Rather, we are morphing between the
SF perceptual representation of the original sounds.

The listening test presented 20 pairs of sounds and asked the participant to rate the perceptual
similarity between them. There were 5 possible choices: identical, slightly di�erent, fairly di�erent,
signi�cantly di�erent, and very di�erent. These verbal labels were adapted from the comparison
category rating (CCR) test [ITU-T Recommendation P.800, 1996] (CMOS). Table 14.1 shows the
numerical values associated with each verbal label to compare the similarity assessments quanti-
tatively.

Participants were asked to listen to all the sounds once before starting the test to get used to the
range of di�erences across all pairs. Most pairs contained the original recording on the left and its
SF representation on the right. However, 6 identical pairs were used among the 20 pairs presented.
The participants were not informed of the presence of identical pairs. The listening test is available
online http://recherche.ircam.fr/anasyn/caetano/survey/similarity.html. Appendix F
has the instructions used in the test. After taking the test, the participants were asked whether
they used headphones, whether they listened once to all sounds, and whether they were experienced
in music or audio evaluation. The results of participants who answered �no� to any of the questions
were not used. This does not guarantee uniformity because we don't control the experimental setup,
but at least we can make sure that the results of participants who didn't follow the instructions
are not included. In total, the results of 80 participants aged between 22 and 67 were used.

The identical pairs are important for several reasons, namely, to verify the accuracy of the
similarity judgments, to help calibrate the scale, and to validate the results. First of all, we learn a
lot about how reliable and accurate certain participants' results are simply by con�rming whether
they rated an identical pair as perceptually identical.

Identical pairs also help calibrate the perceptual scale. When the identical pairs are present,
any other pairs that were also judged identical by individuals have the same status. Naturally, the

http://recherche.ircam.fr/anasyn/caetano/survey/similarity.html
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identical slightly di�erent fairly di�erent signi�cantly di�erent very di�erent

5 4 3 2 1

Table 14.1: Numerical scale for similarity test. The table shows the values associated with each
label of the scale.

presence of identical pairs challenges the participants' ability to detect barely noticeable di�erences.
A consequence is that some participants tend to rate pairs that present barely noticeable di�erences
as �slightly di�erent�, which makes the results more reliable.

The other end of the scale is free, though. This means that the most dissimilar pair might
become the reference for some listeners and be consistently rated very di�erently from the other
sounds. Other listeners, however, will use another reference. The introduction of a systematically
degraded version of the sounds (such as low bit encoded mp3) as reference may help make the
results more uniform. However, it would also warp the scale for some users to accommodate the
degraded version.

When the degraded version is de�nitely very di�erent from the original recording, it might
also have the side e�ect of arti�cially raising the mean evaluation of the most dissimilar pair.
For this reason, a degraded version was not included. Finally, the verbal labels might also be
used as reference. In this case, some people might associate them to previous exposures to sound
recordings, especially when quality was important.

Figure 14.1 shows the results of the listening test used to evaluate the SF model representation.
In �gure 14.1 we see the ratings for individual sounds, together with a global average representing
the SF model as a whole. The labels in �gure 14.1 can be found in table 14.2. First of all we notice
in �gure 14.1 that the identical pairs were identi�ed as such for most cases. There is an interesting
di�erence in assessment between the two identical pairs presented right at �rst and the others. In
average, the two �rst identical pairs were found to be a little more di�erent than the others. This
is probably due to the lack of previous context. The perceptual scale tends to be adjusted during
the test as we are exposed to the stimuli.

In general, the implementation of SF model used in this work was rated between `slightly
di�erent' and `fairly di�erent'. Except for the bass trumpet sound, which was very �brassy�. The
global average only includes the 14 pairs with the model (it does not include the assessment of
the identical pairs). The global average was almost four, which corresponds to slightly di�erent.
Thus the results of the similarity test validate the SF model as perceptually similar to the original
sounds.

14.2 Evaluation of the Transformation

The �nal goal of any sound morphing algorithm is to allow control of the transformation with
the morphing factor α. We usually want a morphing algorithm to produce linear morphs when α
varies linearly. Ideally, we would like to have control of perceptual features of the sounds being
morphed by simple manipulation of the morphing factor, such that a morphing factor of α = 0.5
would produce a morphed sound perceptually halfway between source and target. This calls for a
measure of perceptual intermediateness. When we extrapolate this condition and require that the
linear variation of the morphing factor α should lead to a perceptually linear transformation, we
are imposing the requirement of perceptual smoothness.

Therefore, the evaluation of the transformation aims at intermediateness and smoothness of
the morphing algorithm. Both criteria considered together correspond to linearity. Linearity will
be evaluated both objectively and subjectively. The objective evaluation requires that the spectral
shape features vary linearly. The subjective evaluation consisted in a listening test.
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0 Identical
Ce Clarinet
BT Bass Trumpet
Ba Bassoon
Ci Cimbasso
CT Contrabass Tuba
Fl Flute
Vi Viola
DB Double Bass
Ob Oboe
FH French Horn
Tr Trumpet
Vl Violin
BC Bass Clarinet
Tu Tuba
G Global

Table 14.2: Sounds used in the listening test.

Since it is extremely di�cult to objectively evaluate the perceptual impact of a morphing pro-
cedure, I proposed to use perceptually related features instead. Now the morphing transformation
can be quantitatively evaluated using the values of the features. If the features capture perceptually
relevant information, their values should re�ect the perceptual impact of the morphing procedure.
One important question remains, what features are necessary to represent enough perceptually
relevant information about a sound such that the inspection of the behavior of the feature values
alone would point us toward the perceptual impact? Since the answer to this question is out of the
scope of this work, I will present a cross-evaluation method that uses quantitative and qualitative
objective criteria together with a listening test to evaluate the results.

The evaluation of the transformation takes into consideration the spectral and temporal enve-
lope morphing procedures. The temporal alignment procedure is not included in the evaluation
because it is considered preprocessing and is totally independent of the subsequent morphing steps.
In this section we concentrate on the evaluation of the spectral envelope morphing. The evaluation
of the temporal envelope morphing procedure will be seen later on in this chapter because it is
analogous.

14.2.1 Objective Evaluation

This section focuses on the evaluation of the spectral envelope morphing procedure. The objective
evaluation comprises a qualitative and a quantitative analysis. The qualitative analysis consists in
verifying the behavior of the spectral envelope peaks when interpolating di�erent spectral envelope
representations. On the other hand, the quantitative analysis uses the variation of the values of
the spectral shape features when morphing spectral envelopes.

In accordance with the theory of timbre perception, the position of the formant peaks is per-
ceptually relevant. As such, it is important to consider the behavior of the formant peaks of the
spectral envelope morphing techniques we are studying. As presented in chapter 13, the formant
peaks can present two distinct behaviors when the parameters of the spectral envelope represen-
tation are interpolated, spectral peak shifting (PS) and spectral peak rise and wane (RW). In this
work, we postulate that the spectral peaks of hybrid musical instruments should be in intermediate
positions between those of the sounds being morphed. This hypothesis means that we favor the
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Figure 14.1: Perceptual similarity.

spectral peak shifting (PS) transition rather than the spectral peak rise and wane (RW). Therefore,
the qualitative evaluation consists in classifying the spectral envelope morphing techniques studied
into two groups, labeled PS and RW.

The variation of the values of the spectral shape features when the parameters of a given spectral
envelope representation are interpolated is an important aspect of the morph. When the features
used to guide the transformation capture perceptually relevant information, sounds whose features
are intermediate should be perceived as intermediate regarding those features. The spectral shape
features are a measure of the balance of the distribution of spectral energy. Chapter 5 explained
the correlation between the distribution of spectral energy and the perception of timbre. In this
work, the values of the spectral shape features are considered as an objective measure of the
perceptual impact of the morphing transformation. Thus, under the assumption that the spectral
shape features we chose to monitor (namely spectral centroid, spread, skewness and kurtosis) are
correlated to salient dimensions of timbre perception [McAdams et al., 2005], we want the feature
values to vary as close to linearly as possible when the interpolation factor is varied in equal steps
(i.e, linearly) to guarantee that the morphing factor α controls perceptually relevant aspects of the
morphing transformation.

The criterion of linearity stems from the intermediateness and smoothness requirements dis-
cussed earlier. The linearity criterion adopted allows us to introduce an error metric that objec-
tively measures the deviation between the values of the transition considered ideal and the actual
values measured for each spectral envelope representation. In this work, under the constraints of
intermediateness and smoothness adopted, we postulate that the ideal transition corresponds to
�tting a straight line between the values of the spectral shape features of the sounds used in the
morph. Then, the error measure adopted is simply the distance between the ideal interpolated
value and the value measured for each spectral envelope morphing method. A spectral envelope
morphing method corresponds to interpolating between the parameters of a particular representa-
tion of a spectral envelope model. Therefore, we will study the spectral shape feature interpolation
properties of the spectral envelope representations to investigate if there is one representation that
consistently gives a small error when compared to the others.
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14.2.1.1 Qualitative Analysis: Spectral Peaks

In this section, we will see some �gures with examples of spectral envelope morphing techniques
applied to di�erent musical instrument sounds from the Vienna sound database. Each �gure will
present morphed spectral envelopes using several techniques for one speci�c pair of sounds on the
left, and the corresponding variation of the values of the spectral shape features on the right.
The morphing factor varies linearly α = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The spectral
envelopes of the sounds used in the morph are shown as solid lines and correspond to α = 0 and
α = 1. The nine intermediate curves shown correspond to the intermediate values of α.

In this section, the aim of the �gures is to qualitatively analyze the behavior of the spectral
envelope peaks and the variation of the values of the spectral shape features for each representation.
We can classify the representations into the peak-shift (PS) or rise and wane (RW) paradigms
according to the behavior of the formant peaks. We can qualitatively evaluate if the spectral shape
features present a tendency to vary linearly or not.

The behavior of the formant peaks under the spectral envelope morphing operation is intrinsi-
cally dependent on the way a particular spectral envelope representation encodes information. For
example, cepstral coe�cients represent the oscillations of the spectral envelope curve at di�erent
frequencies and it is the combination of the values of the coe�cients representing the amplitude of
oscillation for each frequency that results in the spectral envelope peaks and valleys. Changing the
value of one coe�cient will most likely have the e�ect of increasing or decreasing the amplitude of
peaks or valleys, but it will de�nitely not shift them in frequency. Thus, when interpolating the
values of cepstral coe�cients, we would expect the peaks to behave under the rise and wane (RW)
fashion rather than peak shift (PS).

LSFs, on the other hand, present a tendency to encode information directly about each spectral
envelope peak. Each pair of LSFs usually represents the absolute position of the peaks (or valleys)
of the spectral envelope in frequency and the distance between each line spectral pair (LSP) is
proportional to the amplitude of the peaks (or valleys). Therefore, changing the value of one pair
of LSFs equally usually shifts a speci�c spectral peak (or valley) in frequency and changing the
distance between a pair of LSFs increases the amplitude of a peak (or decreases the depth of a
valley). So, we can expect the interpolation of LSFs to lead to spectral peak shift (PS) rather than
rise and wane (RW).

Figures 14.2 to 14.9 compare spectral envelope morphing techniques corresponding to several
proposals found in the literature. The techniques are interpolation of the spectral envelope curve
(ENV) [Osaka, 1995, Tellman et al., 1995, Hatch, 2004, Fitz and Haken, 1996, Fitz et al., 2003],
interpolation of linear prediction coe�cients (LPC) [Moorer, 1978], interpolation of re�ection
coe�cients (RC) [Moorer, 1978], interpolation of line spectral frequencies (LSF) [Itakura, 1975,
Itakura and Saito, 1970, Caetano and Rodet, 2011b], interpolation of cepstral coe�cients (CC)
[Slaney et al., 1996], and dynamic frequency warping (DFW) [Ezzat et al., 2005, P�tzinger, 2004].
Notice that the linear prediction based techniques LPC, LSF, and RC are presented at the bottom
row of �gures 14.2 to 14.9, while the techniques that use the spectral envelope curve obtained
directly from the �true envelope� estimation CC, DFW, and ENV are shown at the top. The
original envelope curves for LPC, LSF, and RC are slightly di�erent from their counterparts at
the top because of the conversion from cepstral base to linear prediction based representation.
Notice that the conversion between linear prediction based representations (LPC to LSF and LPC
to RC) does not present distortions. Finally, interpolating the amplitudes of partials in sinusoidal
models corresponds to interpolating the spectral envelope curve (ENV) in this case. Therefore,
the conclusions for ENV will be extrapolated to sinusoidal models in general. Let us evaluate each
�gure in turn.

Figure 14.2 shows that CC and ENV produce morphed envelope curves that �t the RW
paradigm, while DFW clearly shifts the spectral envelope peak (PS). LPC and RC do not give
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Peak Shift (PS) Rise and Wane (RW)

DFW, RC, LPC, and LSF ENV and CC

Table 14.3: Behavior of spectral envelope peaks. The table shows which paradigm (PS or RW) �ts
best each spectral envelope morphing technique.

envelope curves that gradually change. In this case, LSF produces gradually changing curves that
�t the PS paradigm. Except for kurtosis, the spectral shape features present a general tendency
to vary rather linearly.

Figure 14.3 shows a challenging example. Once again, CC and ENV present a typical RW
behavior, while DFW, LPC, LSF and RC present PS behavior. In this case the spectral shape
features present a tendency to vary linearly for all representations.

Figure 14.4 shows a convincing example of the RW behavior of CC and ENV on the one hand,
and PS behavior for DFW, LSF, and RC on the other hand. Again, LPC produced morphed
envelope curves with unexpected shapes. Here again the spectral kurtosis is the only feature to
present an odd behavior.

Figure 14.5 con�rms once again the RW behavior of CC and ENV, and PS behavior for DFW,
LSF and RC. It is interesting to examine �gure 14.5 more carefully, though. We can see an
interesting di�erence between the PS behavior of DFW and LSF in �gure 14.5 when we examine
which peaks are matched. DFW and LSF give very di�erent morphed spectral envelopes for this
particular case. Apart from LPC, most methods present a general tendency to give linear variation
of spectral shape features.

Figure 14.6 shows a case where only DFW presents a behavior that varies radically from the
other methods. In this particular case, the RW behavior of CC and ENV does not contrast very
much from the result we get with LPC, LSF, or RC when compared to the previous examples.
Interestingly though, this is also re�ected in the variation of the spectral shape features. CC and
ENV tend to behave rather nonlinearly in this case.

Figure 14.7 shows clearly the contrast between the RW behavior of CC and ENV and the PS
behavior of DFW and LSF. Upon close inspection though, we see again a di�erent peak matchin
between DFW and LSF. The variation of the spectral shape features re�ects the di�erence between
the DFW and LSF morphed spectral envelope curves.

Figure 14.8 con�rms the RW behavior of CC and ENV, and PS of DFW, LPC, LSF, and
RC. Again the peak matching di�ers between DFW and LPC, LSF, and RC, but this does not
seem to a�ect much the variation of the spectral shape descriptors. Finally, �gure 14.9 presents
an interesting example where all representations give similar results both in terms of behavior of
spectral peaks and variation of spectral shape descriptors.

From the �gures 14.2 to 14.9, we can broadly classify the representations according to the
general behavior of the spectral peaks, as can be seen in table 14.3, which shows that DFW, RC,
LPC, and LSF present PS behavior, and ENV and CC present RW behavior. It is not evident to
decide which transition would sound �more natural� for morphed musical instrument sounds. The
variation of the values of spectral shape features will be used to help decide. In this work, we are
looking for the representation that gives linear variation of the spectral shape descriptors.

14.2.1.2 Quantitative Analysis: Spectral Shape Feature Values

The main objective in this section is to use the feature values to guide the transformation. The
principles of intermediateness and smoothness dictate that the values of the features should vary
linearly when the morphing factor α varies linearly. The requirement of linearity led to the adoption
of a simple objective error measure that uses the quadratic deviation between the measured feature
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values and the ideal interpolated ones, as illustrated in Figure 14.10. The requirement of linearity
allows us to investigate which representation of the spectral envelope leads to the smallest error
when interpolated, which is considered the closest to linear.

Figure 14.10 shows the error calculation applied to each spectral frame. For each spectral shape
feature δ used as guide, we obtain a straight line that connects the values of that particular feature
for the source and target sounds, represented as a capital �X� for α = 0 and α = 1 in �gure 14.10.

Next we calculate the ideal interpolated values of the feature for each value of the morphing
factor α considered using the straight line as linear regression. These are represented as small case
�x� in �gure 14.10. Then we calculate the values of the features for the spectral envelopes obtained
as the interpolation of the parameters of a given spectral envelope representation, using the same
values of the morphing factor α as before. These values are represented as small �o� in �gure 14.10.
Finally, we measure the deviation presented by the values of �x� and �o� for each spectral envelope
representation used, as illustrated in �gure 14.10.

The error calculation can be seen as a measure of the deviation between the calculated feature
values (represented by �o� in �gure 14.10) and the target interpolated values (represented by �x�
in �gure 14.10).

ε (δi) =

√√√√ M∑
m=1

(
δ̂i (m)− δi (m)

)2

=

√√√√ M∑
m=1

ε2m (14.1)

Where ε represents the error measure, δ is a particular feature (i.e, centroid, kurtosis, etc), M
is the number of equal steps the morphing factor α has between 0 and 1, and δi (m) represents
the mth measured value of the ith spectral shape feature (whose m values are represented by �o�
in �gure 14.10) while δ̂i (m) is the mth interpolated value of the same ith feature (whose m values
are represented by �x� in �gure 14.10) for the same value of α.

From equation 14.1, we obtain an estimate of the error measure ε (δi) for each ith spectral shape
descriptor δi. One important thing to notice is that each spectral shape feature has a di�erent
range of values. The spectral centroid, for example, is measured is Hertz, while the spectral spread
in Hertz squared and both spectral skewness and kurtosis are nondimensional. This fact would
make the error evaluation meaningless because the range of values of each individual error ε (δi)
depends intrinsically on the spectral shape feature δi used in the calculation. However, we can
normalize the range of values of each spectral feature between 0 and 1 using equation 14.2 below

∆i (m) =
δi (m)−min δi (m)

max [δi (m)−min δi (m)]
= λ [δi (m)− η] (14.2)

where λi = 1
max[δi(m)−min δi(m)] and η = min δi (m) are two scalar constants. Equation 14.2

is thus simply a linear transformation of the values of the spectral shape features and a new
normalized error measure can be de�ned with it as below

ε̃i = ε (∆i) =

√√√√ M∑
m=1

(
∆̂i (m)−∆i (m)

)2

=

√√√√ M∑
m=1

ε2m (14.3)

where ε̃i is the normalized error of the ith spectral shape feature, ∆i (m) is the mthnormalized
measured value of the ith spectral shape feature and∆̂i (m) is the mth normalized interpolated
value of the same ith feature. It is interesting to notice that the normalized interpolated values of
each feature ∆i coincide with the values of the mophing factor α (m), such that equation 14.3 can
be rewritten as
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ε̃i =

√√√√ M∑
m=1

(
∆̂i (m)− α (m)

)2

(14.4)

It can be shown that there is a simple linear relationship between the normalized error measure
ε̃i calculated from equation 14.4 and ε (δi) calculated from equation 14.1, given below

ε̃i = λiε (δi) (14.5)

Equation (14.5) tells us that the individual normalized error ε̃i calculated from the normalized
spectral feature values ∆i is simply the error calculation ε (δi) for each feature value δi normalized
by the factor λi. The individual normalized error ε̃i is calculated for each frame of the source-�lter
representation and then averaged over the frames as shown in equation 14.11

ε̃N (i) =
1
N

N∑
n=1

ε̃i (n) (14.6)

where ε̃N (i) is the averaged individual normalized error of the ith spectral shape feature, and
ε̃i (n) is the individual normalized error for the ith spectral shape feature of the nth spectral frame.

Figure 14.11 exempli�es the calculation. Now we can de�ne the total error εT simply as a
weighted average of the averaged individual normalized errors ε̃N (i) for each descriptor as expressed
below.

εT =
K∑

i=1

ωiε̃N (i) (14.7)

In equation 14.7, εT is the total error computed for the K spectral shape features from each
individual error ε̃N (i) weighted by ωi. The weights ωi give us the possibility of adjusting the
individual in�uence of each descriptor in the �nal error, such that if we decide that the in�uence
of the centroid is more important than that of the other descriptors in the �nal result, we would
adjust the weights ωi to re�ect this. In this thesis the weights are the same.

The averaged individual normalized errors ε̃N (i) is a measure of the linearity of the spectral
envelope morph for a given spectral shape feature for each pair of sounds. The total error εT is a
measure of the linearity of the spectral envelope morph for a given spectral envelope representation
for each pair of sounds. For both, the smaller the error, the more linear the spectral envelope
morphing transformation.

The objective evaluation then becomes a simple comparison of the averaged individual nor-
malized error values ε̃N (i) together with the total error εT estimated for each spectral envelope
representation for each pair of sounds. The objective criterion adopted is to determine which
spectral envelope representation leads to the minimum error value for a large collection of pairs
of sounds. The idea is to study the spectral shape feature interpolation properties of the spectral
envelope representations to investigate if there is one representation that consistently gives a small
error when compared to the others.

Figure 14.12 compares the values of the averaged individual normalized error values ε̃N (i)
together with the total error εT estimated for each spectral envelope representation for di�erent
pairs of sounds. Notice that for each spectral shape feature δ we compare the mean value of
ε̃N over N frames, and the con�dence interval, calculated as 1.96 σ√

N
, where σ is the standard

deviation of the the averaged individual normalized error values ε̃N (i). On the righ-hand side of
each �gure we see the total error for the pair of sounds in question. The rightmost bottom plot
is the average value of the total error εT for all pairs of sounds tested. This plot is of utmost
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importance because its lowest bar indicates the most linear spectral envelope morphing method
for all spectral shape features for all sounds. After analyzing �gure 14.12, we conclude that the
spectral envelope morphing technique with minimum error is interpolation of LSFs. Therefore
interpolation of LSFs was the most linear spectral envelope morphing technique concerning the
variation of spectral shape features. Interpolation of LSFs was adopted as the spectral envelope
morphing technique in this thesis.

The minimal error only takes the spectral shape features into consideration, independently of
the behavior of the spectral peaks. Therefore, an online listening test was performed to cross-
validate the result of the qualitative and quantitative analyses. In this listening test, we compare
the SF model with a sinusoidal model. For the SF model, LSFs were used as the spectral enve-
lope morphing method. Notice that ENV represents the interpolation of sinusoidal models, very
popular in the literature. The listening test investigates which sound morphing algorithm leads
to a more perceptually linear transformation. The minimum feature interpolation error criterion
is considered the objective evaluation procedure, while the listening test is regarded as a mean
subjective perceptual evaluation.

14.2.2 Subjective Perceptual Evaluation

The main purpose of the subjective perceptual evaluation is to verify whether the cyclostationary
morphs obtained with the SF model are perceptually linear when the morphing factor varies
linearly. This would mean that the morphing factor α allows perceptual control of the morph
and that the spectral shape features selected to guide the transformation do measure perceptually
relevant information concerning the morphing transformations performed. Naturally, the result
of the minimum error evaluation presented previously was used to select the spectral envelope
morphing technique used in the morph.

Evaluating the linearity of the morph can be a very di�cult task, depending on how we choose
to do it. Hikichi and Osaka [Hikichi, 2001] compare the perceptual distance between the steps of
the morph and use MDS spaces to verify if the result is a straight line. Their conclusion is that
generally the morph gives a rather curved line in the MDS space. This implies that the results
were not intermediate. However, it may also be due to perceptual phenomena. This experimental
setup seems to raise more questions than it answers, so a simple comparison betwen the popular
interpolation of sinusoidal models and the SF model was chosen instead.

The listening test compares the linearity of morphing transformations between musical instru-
ment sounds obtained with sinusoidal analysis and the SF model. The SF model used LSFs to
morph the spectral envelopes, while the sinusoidal morphing used the standard interpolation of
partials frequency and amplitude values. The temporal alignment step is the same for both meth-
ods (and uses markers annotated by hand), only the spectral morphing procedure changes. The
test is available online (http://recherche.ircam.fr/anasyn/caetano/survey/smoothness.html).

The listening test presented 11 pairs of cyclostationary morphs and asked the participants
which was �smoother�. Participants could either choose a method, or have no preference. The
instructions presented an example of a cyclostationary morph with uneven perceptual intervals
between steps, and another one that was considered �smoother� to explain what the participants
should listen for. The example sounds were not used in the test, and the �uneven� morph used
sounds from the �smoother� cyclostationary morph shu�ed in order.

The instructions also explicitly said that one column did not correspond to an algorithm to
avoid biasing the results. Appendix G has the instructions used in the test. After taking the test,
the participants were asked whether they used headphones, and whether they were experienced in
music or audio evaluation. The results of participants who answered �no� to any of the questions
were not used. This does not guarantee uniformity because we don't control the experimental setup,
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but at least we can make sure that the results of participants who didn't follow the instructions
are not included. In total, the results of 58 participants aged between 22 and 53 were used.

Figure 14.13 shows the results of the listening test used to evaluate the linearity of the morphing
algorithms. In �gure 14.13 we see the mean of percentage ratings of each pair, together with a
global average representing the performance of the models for all sounds. The labels in �gure
14.13 can be found in table 14.2, and the legend stands for source-�lter model (SF), no preference
(=), and sinusoidal model (Sin). First of all we notice in �gure 14.13 that the performance of the
algorithms depends on the pair of sounds used. It is also important to notice that, for some pairs,
many participants manifested no preference. In fact, �gure 14.13 shows that there is no clearly
predominant algorithm, especially when we see that the result of the global average shows that the
SF model outperforms the sinusoidal model by a narrow margin. Also, no preference represents
a signi�cant percentage of the choices for most sounds, as well as for the global average. If the
participants were forced to choose between one algorithm or the other, we would probably produce
arti�cial results because there was no clear preference.

14.2.3 Temporal Envelope Morphing

In this section we will see the results of morphing the temporal envelope. The temporal envelope
curves were estimated using RMS and then morphed. The temporal envelope morphing techniques
compared in this section are morphing the temporal envelope curve directly or interpolating the
cepstral coe�cients that represent it. Since the techniques for estimation and representation of
temporal envelope curves used in this thesis are analogous to spectral envelope, the objective
evaluation presented will be similar.

Figure 14.14 shows the morphed temporal envelope curves and the variation of the temporal
centroid for the interpolation of curves and CCs for the instruments marked. Figure 14.15 shows
the the same information for other instruments. Finally, �gure 14.16 compares the linearity error
of the temporal centroid between both temporal envelope morphing techniques. The result of
the comparison shown in �gure 14.16 indicates that the interpolation of the cepstral coe�cient
representation of the temporal envelope is the most linear temporal envelope morphing technique
when we consider linearity of the temporal centroid.
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Figure 14.2: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods
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Figure 14.3: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods
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Figure 14.4: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods
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Figure 14.5: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods
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Figure 14.6: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods
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Figure 14.7: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods.
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Figure 14.8: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods
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Figure 14.9: Behavior of spectral peaks. The �gure compares the behavior of the spectral peaks
for several spectral envelope morphing methods.
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Figure 14.10: Error calculation. This �gure depicts the calculation of the feature interpolation
error. The ideal values obtained as a linear regression are represented as �x�, while the calculated
values are represented as �o�.

Figure 14.11: Error calculation for each spectral frame of the source-�lter representation. The
�gure shows that the normalized error ε̃i is calculated for each spectral frame.
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Figure 14.12: Error analysis. The �gure shows the deviation between the ideal and the measured
values of spectral shape features for each sound.
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Figure 14.13: Perceptual linearity. The �gure shows the percentage of participants who rated the
SF algorithm smoother, the sinusoidal algorithm (Sin) smoother, or manifested no preference (=)
for all pairs of sounds and a global average.
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Figure 14.14: Morphing the temporal envelope curve directly. The �gure shows the temporal
envelope curves on the left-hand side and the corresponding variation of the temporal centroid on
the right-hand side.
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Figure 14.15: Morphing the temporal envelope cepstral coe�cient representation. The �gure shows
the temporal envelope curves on the left-hand side and the corresponding variation of the temporal
centroid on the right-hand side.
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Figure 14.16: Error analysis for temporal envelope morphing. The �gure shows the deviation be-
tween the ideal and calculated values of the temporal centroid for both temporal envelope morphing
methods.
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Chapter 15

Conclusions and Future Perspectives

This thesis was about morphing isolated quasi-harmonic acoustic musical instrument sounds guided
by perceptually motivated features. The focus was on timbral features of musical instrument
sounds and how to control them . The ultimate goal was to develop a method that gives the user
perceptually intuitive control of the morph by means of the morphing factor alone. So, when the
morphing factor varies linearly, we wanted the morph to be as perceptually linear as possible.

The usual approach to morphing sounds uses the interpolation principle, which consists of rep-
resenting the sounds with a model, interpolating the parameters of the model representation, and
resynthesizing the morphed sound with the interpolated parameter values. When the parameters
of the model capture perceptually relevant features of sounds, the morphed sound might be per-
ceptually intermediate. However, most models used in sound morphing tend to produce nonlinear
morphs, so this work aimed to develop a method to obtain more perceptually linear morphs guided
by perceptually motivated features.

There seems to be no consensus in the literature about what sound morphing is, or equivalently,
what transformations can be considered morphing. This thesis approached this question from a
theoretical and technical perspectives, discussing thoroughly the requirements of morphing and the
di�erence between morphing and other hybridization processes. This thesis reviewed thoroughly
the di�erent transformations usually referred to as morphing in the literature, and proposed a
classi�cation system according to conceptual criteria. The cyclostationary morph �gures promi-
nently among the di�erent morphing transformations considered very challenging because we need
to accurately control temporal and spectral aspects of the morph to obtain a perceptually linear
result. Transformations that happen during the course of a sound are more artistically appealing,
but do not allow investigation of temporal aspects such as attack time.

The formalization of morphing proposed does not exclude more than one possible morphing
transformation between sounds and this can render the evaluation of the results very di�cult. A
very challenging aspect of evaluating morphed sounds lies in the subjectivity usually applied in
the evaluation. Usually, listeners have their own expectations about morphing, and the evalua-
tion re�ects merely whether the morph met those expectations or not. This work proposed to
adopt evaluation criteria to evaluate morphing, namely, correspondence, intermediateness, and
smoothness.

This thesis formalized the concept of morphing sounds, proposed a general algorithm, and a
framework to objectively evaluate morphing using the criteria adopted. There were two important
steps considered before actually performing the morphing itself, temporal alignment followed by
spectral modeling. In this thesis, a temporal alignment procedure based on a perceptually moti-
vated temporal segmentation model was proposed. Then, the spectral modeling was introduced,
along with the motivation for the development of a model dedicated to morphing sounds, namely,
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the source-�lter (SF) model.
This thesis presented a SF model for musical instrument sounds that gives independent control

of the spectral envelope and frequency of the partials to perform the transformations. The sounds
to be morphed are decomposed into a sinusoidal and a residual parts, which are represented
independently with the SF model. The sinusoidal component comprises a time-varying spectral
envelope model (�lter) and the frequencies of the partials (source), while the residual component
is modeled as white noise (source) shaped by a time-varying spectral envelope model (�lter). The
SF representation was validated with a perceptual similarity test. Participants were presented the
original and SF representation of sounds and asked to rate their perceptual similarity.

With a few exceptions, most works about morphing in the literature skip the evaluation of the
results, usually considered too di�cult and subjective. The evaluation is considered a crucial part
of this work, responsible for the validation of the results. In this thesis, the evaluation consisted in
verifying the linearity of the morph using objective measures and subjective tests. Three criteria
were adopted to evaluate the results, namely, correspondence, intermediateness, and smoothness.
This thesis proposed to use perceptually related features to objectively evaluate the linearity of
the morph. There was a clear focus on morphing the spectral envelope, an important part of the
SF model used to represent the sounds that is related to the perception of the timbral subset of
attributes called sound color. A major part of the evaluation lay in the comparison of the linearity
across several spectral envelope morphing techniques found in the literature together with others
prosed in the scope of this thesis.

Lastly, perhaps the most essential aspect of sound morphing to be taken into consideration
is the perceptual impact. Morphing depends essentially on perceptual phenomena, and the key
to a perceptually relevant morph seems to lie in tricking the ear and the brain into forming a
convincing auditory image. However, the creation of this apparent �auditory illusion� involves
other questions about the perceptual or conceptual distance between the mental representation
of sounds. The evaluation criteria adopted implicitly supposes that the mental representation of
musical instruments sounds is metric, just like the MDS timbre spaces proposed to represent it.
The evaluation criteria also implicitly supposes that the perception of musical instrument sounds
is continuous rather than categorical when it assumes that it is always possible to obtain an
intermediate representation of two sounds or a gradual transition between them.

The conclusions and future perspectives of this thesis should re�ect how important perception
is in sound morphing. The comments and remarks made by the participants of the listening tests
seem to be a good starting point to evaluate the perceptual impact of the method proposed. Let
us see why.

15.1 Comments and Remarks

Both tests met with a very positive response. Apart from the data, the participants also gave some
extremely important feedback on the task and how they performed it. Some of it can be found
below.

15.1.1 Perceptual Similarity

A natural consequence of adopting the source-�lter (SF) model to perform the morphs is that the
SF representation is morphed rather than the original musical instrument sounds. Thus I performed
an online listening test to evaluate the perceptual similarity between the original recordings and
their SF representations. The SF model is appropriate for sound morphing (among other sound
transformations) if the original sounds and their SF representations are indeed perceptually similar.
The result of this test validated the SF representation of the sounds in general. Some sounds were
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found to be perceptually closer than others. It was generally agreed that the woodwinds are well
represented. Some interesting comments included:

• �The di�erences in `slightly di�erent' meant that I had to listen a couple of times in a di�erent
order to sense and con�rm minor di�erences in spectrum.�

• �The horns and winds were generally better than the strings, but that's to be expected.�

• �The string instruments were almost always di�erent on the whole. The wind instruments
seem to be reproduced rather nicely.�

• �I tried really hard, but often I couldn't hear any di�erences at all. With some of the wind
instruments, the model doesn't get the onset quite right.�

• �For some instruments, the attack envelope is not perfectly identical, and for some the vibrato
seems to be stronger in the model than in the original recording. Other than that, the timbre
is modeled so well that I could not �nd a di�erence for most samples.�

• �Often, `slightly di�erent' comes because the attack is less �abrupt� or �shar� �

• �I believe string instruments are reproduced with an impressive similarity. In my ears, the
brass instruments tend to di�er more. I believe this is due to the fact that the start of the
blow is not reproduced accurately and therefore sounds more arti�cial.�

• �I would say the sounds di�er the most in their attack segments and this gives the modeled
one a di�erent touch.�

• �The subjective similarity classes are a bit hard to handle, so I put `signi�cantly di�erent' only
to the one I thought wasn't even resembling the same thing (although possibly simulating
the same instrument)�

• �I chose `fairly di�erent' for some sounds to use the full range of the �ve choices given. But,
fundamentally, the pairs are very close. I would say that the 'very di�erent' are rather 'fairly
di�erent� '

• �In my understanding of English, `signi�cantly di�erent' is not as strong a di�erence as `very
di�erent'. I rated some sounds as slightly di�erent based on my perception of slight di�erences
in attack.�

• �I would say (as a native English speaker) that `signi�cantly di�erent` is LESS strong than
`very di�erent'. I've ticked the `very di�erent boxes' in the sense of them being di�erent on
a 4 out of 5 scale, even though orally I would have described them as `signi�cantly' rather
than `very' di�erent.�

It is important to bear in mind that the instructions did not warn the participants of the
presence of identical pairs. A number of participants rated identical pairs slightly di�erent. Inter-
estingly, even though the names of the instruments were not explicitly written on the web page,
most participants still refer to the sounds by instrument family.

Some participants reported di�culty in �tting the proposed similarity scale into their cognitive
representations of di�erences. The labels used in the subjective scale con�icted with the inter-
pretation of the scale, which can be confusing. Also, the number of divisions was mentioned as a
possible factor that impaired judgment.
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15.1.2 Perceptual Linearity

The aim of this thesis is to develop a method that gives the user perceptually intuitive control of
the morph by means of the morphing factor alone. That is, the morph should be perceptually linear
when the morphing factor varies linearly (in equal steps). Additionally to objectively evaluating
the objective linearity of several spectral envelope morphing techniques, it is important to evaluate
the perceptual linearity of the results. Therefore, an online listening test was proposed in which
the SF model is compared to a sinusoidal model. The perceptual linearity test was overall judged
to be too di�cult. Some people found that other perceptual cues, such as loudness di�erences,
impaired the assessment of the timbral di�erences.

• �For some of the sequences, the perceived loudness of the tones seemed to di�er between
renderings, making it sound bumpy although the timbre might have been good... I think my
judgment may have been in�uenced by this, don't know if this is in your interest or not.�

• �I found myself identifying instruments and then listening for when I noticed their sound
disappear or appear in the sequence.�

• �The method relies a lot on memory, as well as discrimination. It took a little bit to familiarize
myself with the task. I think it would be better if it didn't automatically repeat. It would be
helpful to be able to play the endpoints so that you would know where the morph is supposed
to be going. In many cases, it didn't seem like the morph was changing the sound very much.
The sounds were very synthetic. Have you tried morphing high quality instrument sounds?�

• �The task was pretty di�cult. Needed a few listenings for some of the pairs.�

• �Some of the transitions are not evenly spread over the scale (0.1-1), to my ear both algorithms
have a slight preference to make "bumpy" transitions later (near 1) - maybe it is a pure
perceptual issue.�

• �Sounds like you are morphing string, brass, and woodwinds by attack and overtones.�

• �I feel like the results are less accurate towards the last tasks because it's hard to keep
concentrated.�

• �Quite a di�cult test! Some sound examples had clicks in the beginning, which may cause
the transitions to sound unsmooth (I assume that was not intended).�

• �The di�erence is too subtle to tell.�

• �The artifacts were sometimes annoying and may have had an in�uence on some occasions.
I listened to the `curve' of the entry (or suppression) of the upper partials for most of my
judgments. I preferred the upper partials to start to change with the �rst transformation
rather than being delayed.�

• �I have to say that the task wasn't very easy for me to do as I didn't have a very obvious
preference in most cases. One thing I would have liked was to have source and target sound
equalized in loudness. In most cases I thought that they were di�ering in terms of loudness
and I was mostly judging smoothness in loudness change rather than in the overall timbre.�

• �I found it very hard to judge, and I believe it's due to three factors. 1: The timbres
themselves are pretty dull. 2: The morphing is done in sequence, rather than seamlessly over
a period of time. 3: The frequency remains constant, i.e. no melodic elements.�

• �I found it hard to judge smoothness.�
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• �For most examples that I don't specify a preference, both series sound de�nitely smooth to
me, and I can't choose the smoother�

• �This was tough. I tried to go on gut instinct when I wasn't sure why I thought one was
better than the other. Often they sounded the same.�

Again, many participants still refer to the sounds by instrument family even though the names
of the instruments were not explicitly written on the web page. The task was generally considered
very di�cult or too di�cult. There are many likely reasons. Firstly, the task itself was di�cult
to understand. For cyclostationary morphs, the evaluation of perceptual linearity implies judging
and comparing the intervals between the steps of the morph. To avoid the cumbersome task
of evaluating each step individually, the proposed task was to compare two di�erent morphing
algorithms. Evaluation of perceptual linearity involves judging several characteristics of sounds at
the same time and remembering them for comparison across steps. The evaluation of the intervals
between steps of the transformation might use one single feature (e.g., attack time) or mutiple
criteria (attack time, spectrum, etc).

The big cognitive load of the task compromised the evaluations in some cases. The task of
judging the intervals between steps is already di�cult, and the comparison across all steps can be
complex. Moreover, the participants were asked to perform this task twice for each pair of sounds
(there were 11 pairs) and compare them, which relies heavily on memory. Another key factor was
that the number of steps used was considered too big. The more steps, the more the task relies on
memory to perform the comparison.

The sound material used in the test also in�uenced the evaluation for some participants. In
general, the source and target sounds were considered very similar, which made the task even
more di�cult. For some participants, even the terminology was considered confusing. The term
perceptual linearity was avoided in the instructions and replaced by �smoothness�, considered more
appropriate for the task. However, most participants seemed to have grasped well the concept of
�smoothness�, probably thanks to the example.

There are di�erent aspects to be discussed. First of all, the type of sound transformation
investigated, cyclostationary morphing, is particularly challenging in many respects because it
involves temporal and spectral manipulations. This choice a�ects not only the techniques needed
to achieve the transformations, but also the impact of the result and consequently its evaluation.

Secondly, the sounds are decomposed into a sinusoidal and residual parts that are modeled
separately. This decomposition permits to treat both sinusoidal and residual parts independently,
but also needed the development of separate models. One important part of the work concentrated
on the implementation of di�erent instances of the source-�lter model for the sinusoidal and residual
components. The perceptual quality of the SF representation plays a fundamental role on the
quality of the morphed sounds.

The automatic segmentation model developed in the scope of this work together with the
temporal alignment technique also have a signi�cant impact on the quality of the results. The
temporal alignment technique focuses on four perceptually inspired regions of musical instrument
sounds, and a simple time stretch/compress procedure.

A large e�ort in this work, however, concerned the investigation of spectral morphing tech-
niques. The linearity of the transformation obtained with several spectral envelope morphing
techniques was investigated. Linearity was measured using acoustic correlates of timbre dimen-
sions obtained from psychoacoustic studies. The choice of sound material and how it in�uenced
the evaluation of the results will be discussed.

Finally, the choice of evaluation criteria deserves some comments, given that most previous
work on sound morphing hardly evaluate the results.
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15.2 Type of Transformation

Cyclostationary morphs are very challenging sound transformations because they involve temporal
and spectral manipulations. Dynamic transformations are more artistically appealing, but do not
allow the investigation of manipulations of global temporal aspects such as attack time. When the
transformation occurs during the course of a sound (such that the sound changes while we hear it),
it usually changes only the steady state portion. This thesis developed techniques to independently
manipulate the global temporal and spectral characteristics of the musical instrument sounds being
morphed.

The attack is responsible for one of the most perceptually salient dimensions of timbre percep-
tion. Consequently, manipulations of the attack usually have a major impact on the perception of
musical instrument sounds. In a cyclostationary morph, di�erent steps of the morph are expected
to present intermediate perceptual features that gradually change from source to target sound.
The constraint that the transformation must be perceptually linear requires that the perceptual
di�erence across steps of the morph be the same. Thus the attack time needs to be manipulated
accordingly to be perceived as linearly varying from source to target.

However, manipulation of the attack is not enough to obtain a perceptually linear cyclosta-
tionary morph. The interpolation of spectral information also has a signi�cant impact on the
perception of linearity. The spectral centroid, a measure of the baricenter of the distribution
of spectral energy, was found to be correlated with a perceptually salient dimension of timbre
perception in studies of musical instrument sound (dis)similarity. This is an indication that the
distribution of spectral energy has to be controlled appropriately.

15.3 Sinusoidal plus Residual Decomposition

The attack is the only event that is present in all sounds, be they environmental, acoustic, synthetic,
etc. For musical instrument sounds, the attack contains transients that take place between the onset
and the moment when more sustained vibrations occur. These transients are not very well modeled
by sinusoids, such that the sinusoidal component of a musical instrument sound notoriously lacks
the noisy sudden attack characteristics.

The inclusion of a SF model of the residual was therefore considered vital to achieve a percep-
tually similar representation of the musical instrument sounds used in the morphs. The residual
component was represented as white noise shaped by a time-varying �lter that models the residual
from the sinusoidal component. The residual component was morphed independently from the
sinusoidal component using the same spectral envelope morphing technique.

In the similarity test, many participants reported using the onset or attack cues to di�erentiate
between the sounds. Specially important seemed to be the noisy cues such as blowing or bowing,
which most participants used to assess the dissimilarity between the sounds. Although it con�rms
the well established fact that the attack is essential in musical instrument sound perception, it also
implies that the residual component does not capture perfectly the perceptual noisiness. It might
be interesting to perform listening tests to evaluate the SF representation of the sinusoidal and
residual components separately.

15.4 Source-Filter Model

Most sound morphing techniques found in the literature apply the interpolation principle directly
on the parameters of a sinusoidal model. Sinusoidal models are very popular in part due to the
quality of the representation of a broad class of sounds. The perceptual similarity between the
sinusoidal representation and the original sound is well known. However, a drawback of using



15.5. TEMPORAL PROCESSING 267

sinusoidal models in sound transformations is that the number of parameters is proportional to
the number of partials. Each partial is modeled independently, and the number of parameters to
control can grow fast.

The SF representation, in turn, models the amplitude of the partials with a spectral envelope
curve, which has a limited number of parameters that depend solely on the fundamental frequency
of the spectrum, not on the number of partials. The partials, on the other hand, are modeled as
sinusoids that sample the spectral envelope curve at certain frequency values. When the spectral
envelope is represented as a linear shift-invariant (LSI) system upon resynthesis, the amplitudes
of the partials are readily retrieved because sinusoids are the eigenfuctions of LSI systems.

Perceptually, the SF representation must be as close as possible to the original recordings.
The are several studies on the perception of sounds with slight alterations [Horner et al., 2009,
Grey and Gordon, 1978, McAdams et al., 1999]. Usually, the authors of these studies are inter-
ested in investigating whether alterations to the sounds can be perceived or not, using discrimi-
nation tests [McAdams et al., 1999]. Each of these studies proposes speci�c alterations, and the
analysis of the results is application and domain dependent. The SF representation of sounds
proposed in this thesis corresponds mainly to modi�cations to the amplitudes of the partials on
each frame. Instead of looking at each frame individually, we can focus on the temporal evolution
of the amplitude of each partial. In this case, the SF representation corresponds to alterations to
the amplitude envelope of each partial. Grey [Grey and Gordon, 1978] proposed a similar inves-
tigation where he approximated the amplitude envelope of the partials by straight line segments.
He concluded that these alterations generally are not perceptually relevant. The perceptual test
presented in this thesis also showed that the SF representation of the musical instrument sounds
tested was generally considered perceptually accurate enough.

The SF model is very appropriate for sound transformations because of its independent and
compact spectral representation. One advantage of the SF model over traditional sinusoidal models
is the independent representation of the amplitudes and frequencies of the partials. The amplitudes
of the partials are represented as a spectral envelope curve, whose parameters normally give smooth
continuous transformed spectral envelope curves when manipulated. The manipulation of the
amplitudes of the partials via the spectral envelope model can also be bene�cial for transformations
guided by features. Di�erent spectral envelope representations will generally lead to di�erent
behaviors when manipulated, and we are free to choose whatever representation is more appropriate
to a certain application or to obtain a desired e�ect.

15.5 Temporal Processing

The temporal processing steps are responsible for many perceptually important parts of the mothod
developed in this work. The temporal processing happens in two distinct steps, before spectral
morphing in a pre-processing step called temporal alignment, and during spectral morphing the
temporal envelope procedure modulates the morphed frames. Each one of them will be considered
separately.

15.5.1 Automatic Segmentation

The segmentation task consisted in automatically detecting the boundaries between perceptually
motivated segments of musical instrument sounds, such as attack and steady state, according to an
underlying model. The automatic segmentation task uses a model to de�ne the regions and their
boundaries, and identi�es the boundaries using detection functions. The behavior of the detection
function must stand out during the events to be detected. It is notoriously di�cult to �nd a robust
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model of segmentation of musical instrument sounds and detection functions that present good
performance for a broad range of sounds.

The model used to de�ne the regions and their boundaries plays an essential role in the re-
sults of the automatic segmentation task. For example, the attack/decay/sustain/release (ADSR)
model supposes that there is always a decay region after the attack, which might impair the
segmentation results when the sound being segmented does not �t the model. In this thesis,
the amplitude/centroid trajectory (ACT) model of segmentation of musical instrument sounds
[Hajda, 1996] was adopted.

The ACTmodel, which was originally proposed for sustained sounds, uses the temporal envelope
and temporal variation of spectral centroid as detection functions. In general, for sustained musical
instrument sounds, both the temporal envelope and the spectral centroid behave as the model
predicts. In this work, it was empirically veri�ed that percussive sounds do not �t the model
well and render generally poor segmentation results. The temporal envelope and centroid tend to
behave di�erently than predicted by the model for these cases. The same applies to most plucked
string sounds, with a few exceptions, such as guitar sounds. For these sounds, the spectral centroid
behaves like predicted by the model, but the temporal envelope does not.

Even for sustained musical instrument sounds, it was veri�ed that it is very di�cult to achieve
robust automatic detection of the boundaries for a broad class of musical instruments. The results
depend on instrument family and even pitch. The behavior of the spectral centroid, in particular,
�t the model well for some cases, while others revealed to be more challenging. The results of
the automatic segmentation algorithm proposed in this work were compared with the baseline
AR model [Peeters, 2004]. In general, the algorithm proposed outperformed the baseline method.
However, only empirical tests were used to compare the segmentation results. Formal validation
of the segmentation results would require a more careful comparison.

15.5.2 Temporal Alignment

First of all, it is important to note that he temporal alignment procedure developed in this work
is totally independent of the temporal segmentation task. All the temporal alignment technique
needs as input is the time markers corresponding to the boundaries of the regions of both sounds,
and the output will be two sounds whose corresponding regions will be properly aligned in time.
Therefore, we can annotate the sounds by hand, for example, if we choose to use sounds that are
not very well handled by the automatic segmentation method presented.

Naturally, the temporal alignment procedure needs a reliable time stretch/compress algorithm
to work properly, specially when we consider the accuracy of the results. That is, to guarantee
that the boundaries of the regions will be accurately aligned, we need a time stretch/compress
algorithm that is capable of delivering the required accuracy. For instance, we cannot expect the
time-aligned sounds to have the same number of samples if we are using a time stretch/compress
algorithm that only guarantees accuracy down to the frame level.

Also, the temporal alignment procedure supposes that the time stretch/compress algorithm
will give similar results when stretching and compressing the di�erent portions of the sounds. This
was not the case in this work, especially during the attack and transient parts. When longer
attacks were compressed, the results were quite satisfactory. Time-stretching shorter attacks,
however, produced more arti�cially sounding results. This does not constitute a problem when
morphing because the temporally aligned sounds are never heard. They are just intermediaries
used to combine the corresponding segments during the spectral morphing procedure. Given the
perceptual salience of the attack in musical instrument sound perception, it might be bene�cial
to apply other time stretch/compress manipulation techniques that handle the attack transients
di�erently.
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15.5.3 Temporal Envelope Estimation

The temporal envelope is estimated twice, before and after temporal alignment of the sounds being
morphed. Before temporal alignment, the estimated temporal envelope is used in the automatic
segmentation step. After temporal alignment, the temporal envelope is morphed and the result is
used to modulated the morphed frames. In both cases the RMS energy envelope was used in the
estimation to account for temporal evolution of spectral energy.

The true amplitude envelope (TAE) introduced in this work gives very responsive and robust
estimation of the amplitude envelope. However, estimations of amplitude take phase into consider-
ation, and phase information has little perceptual impact. TAE can easily be adapted to calculate
instantaneous energy envelope using the instantaneous energy signal x2 (t) instead of the signal
x (t). But the instantaneous energy does not take perceptual e�ects such as the ear integration
time into consideration. RMS was found to be the best choice of temporal envelope estimation
algorithm.

15.5.4 Temporal Envelope Morphing

The representation of the temporal envelope is important in the temporal envelope morphing step.
Analogously to the spectral envelope techniques investigated, this work proposed to represent
the temporal envelope (obtained with any available estimation method) with di�erent models.
So the temporal envelope estimation and manipulation procedures are independent. This thesis
investigated two temporal envelope morphing techniques, interpolation of the temporal envelope
curves directly, and interpolation of the cepstral representation of the temporal envelope curve. The
temporal centroid was used to evaluate the linearity of the temporal envelope morphing techniques.

It was found that the interpolation of the cepstral coe�cients representing the temporal en-
velope generated intermediate temporal envelopes whose temporal centroid varies more linearly
than simply interpolating the curves. Thus interpolation of the cepstral representation of the
temporal envelope was adopted as the temporal envelope morphing procedure. It would be inter-
esting to investigate the temporal envelope morphing procedure for sounds that present tremolo,
for example.

15.6 Spectral Morphing

A perceptually important aspect of any sound morphing algorithm lies in how it represents spectral
information and how it handles the spectral morphing task. The accuracy of representation is an
important factor when we want to achieve high-quality results. On the other hand, the spectral
morphing algorithm itself should produce morphed spectral envelopes that are perceived as a
gradual transition between those of the source and target sounds.

15.6.1 Spectral Envelope Estimation

In the SF model, the spectral envelope models the �lter. An accurate representation of the ampli-
tudes of the partials for the sinusoidal component is very important to guarantee quality results.
The residual component, however, requires a spectral envelope curve that follows the distribution
of spectral energy without matching the spectral peaks. This thesis proposed to use �true enve-
lope� to estimate the parameters of the spectral envelope of the sinusoidal component, and linear
prediction for the residual component.

For the sinusoidal component, the �lter represents the amplitudes of the partials independently
from their frequencies. The robustness and accuracy of the �true envelope� estimation guaranteed
a spectral envelope curve that matches well the amplitudes of the partials.
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�True envelope� proved to be an appropriate choice also on the perceptual level. The residual,
on the other hand, was found to be more dissimilar. The online similarity test asked participants
to assess the similarity between the original recordings of musical instrument sounds and their
SF representation. The aim of the test was to investigate whether the SF representation was
perceptually similar to the original recordings, thus validating the model. The result con�rmed
that the representations are indeed similar, validating perceptually the SF representation of musical
instrument sounds.

15.6.2 Spectral Envelope Morphing

This thesis presented a strong focus on the spectral morphing procedure and devoted a great deal
of research e�ort to the investigation of di�erent spectral envelope morphing algorithms. The
main goal was to determine which spectral morphing algorithm leads to the most perceptually
linear spectral transitions. The main spectral morphing algorithms proposed in the literature
were compared. Among them, dynamic frequency warping, interpolation of the amplitudes of
the partials, and interpolation of parameters of di�erent spectral envelope representations. The
representations compared were cepstral coe�cients (CC), re�ection coe�cients (RC), line spectral
frequencies (LSF), and linear prediction coe�cients (LPC).

Linearity (or �spectral smoothness�, as it was referred to in the listening test) was measured
objectively and perceptually. The objective measure used the values of the spectral shape features,
which measure the distribution of spectral energy and were found to be correlated with timbre
perception in psychoacoustic studies. The perceptual evaluation, on the other hand, asked partic-
ipants to compare pairs of transformations that only di�ered in the spectral morphing algorithm
used.

The result of the objective spectral linearity evaluation indicated that interpolation of line spec-
tral frequencies (LSF) are the spectral envelope morphing procedure that leads to the variation of
spectral shape features closest to linear. On the other hand, the result of the �spectral smoothness�
test was inconclusive. The participants reported that the task was too di�cult and it was veri�ed
that, in fact, it relied too heavily on memory.

15.7 Sound Material

All the samples used in this work were taken from the Vienna symphonic library sound database,
which is generally considered very high quality. The samples were recorded in controlled conditions
to be used in (sample based) synthesizers. So it is possible to select a set of sounds that corresponds
to rigid criteria. In this work, the focus on timbre demands several musical instruments to be
compared. The sounds should be equalized in pitch, loudness (dynamics), and duration to allow
comparison of timbral features due to temporal and spectral di�erences only.

I selected the dullest versions whenever possible so the di�erences would be due to spectral
envelope (color as de�ned by Slawson) and attack times mainly. This means that the sounds had no
vibrato (except the strings) or other ornaments. There were di�erent attacks for most instruments
(such as long, normal, and staccato) and di�erent durations. Normal attack and short duration
were selected. All the pairs had the same pitch (C3 or C4) and dynamics (forte or fortissimo).
Especially for the �spectral smoothness� (linearity) listening test, I wanted the di�erences to be
due mainly to spectral envelope changes to allow comparison between the two algorithms. Such
controlled experimental setup had a negative impact for some participants. In musical contexts,
expressivity plays an essential role, so the performance of model should be evaluated with expressive
sounds.
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15.8 Formalization

One of the main contributions of this thesis lies in the formalization of morphing to standardize
musical instrument sound morphing, address the lack of consensus in the literature about many
aspects of morphing, and help promote communication in the morphing community. This work
proposed a standardization of nomenclature, algorithm, morphing transformations, and more im-
portantly, evaluation.

A standardized terminology will de�nitely promote communication by establishing common
grounds for future research. We need to make sure we are talking about the same things when
we are using the same terms to further the scienti�c knowledge in any �eld, otherwise most of the
e�ort will gravitate around trying to understand each other. This applies to the more technical
issues as well. We need a clear terminology to address speci�c steps of the morphing process and
the results.

The most important contribution of this thesis concerns the formalization of the evaluation.
After a thorough review of the literature, it became evident that most works about morphing pro-
posed models and techniques, bu rarely addressed the formal evaluation of the results. Therefore,
this work proposed a formal framework to evaluate morphing results according to three criteria,
correspondence, intermediateness, and smoothness.

15.8.1 Correspondence

Correspondence is key to a quality morph. When there is no correspondence, the unmatched
feature tends to stand out during the transformation. In general, it is very di�cult to guarantee
correspondence in every step of the morphing algorithm. There are many levels to be considered,
and correspondence is necessary in all of them. For example, correspondence between sound objects
(notes of a melody, sound events in a soundscape, etc), between perceptually salient events during
the course of the sound, between spectral peaks, etc. In this thesis, each of those levels was
addressed.

First of all, this work investigates morphing between isolated sounds, which guarantees cor-
respondence between sonic events. Temporal correspondence was approached as correspondence
between perceptually salient events during the course of the sound, such as attack, steady state,
etc. This speci�c problem was the subject of the temporal segmentation procedure developed,
explained in chapters 8 and 12. Naturally, the temporal segmentation model adopted, called ACT,
applies to a restricted class of musical instruments, namely sustained instruments.

Spectral correspondence was quite successfully achieved with the SF model. Sinusoidal models
call for correspondence of number of partials, due to the intrinsic representation of each partial
individually. For quasi-harmonic musical instrument sounds, correspondence between partials can
be established with partial number. But that naturally restricts the result to contain only partials
that have a match. The SF model solves elegantly the correspondence between partials by adopting
a spectral envelope curve to represent the amplitudes of the partials. In the SF model, spectral
correspondence is guaranteed as long as both spectral envelopes are represented with the same
order (number of coe�cients).

Moreover, the spectral envelope representation solves intrinsically the question about corre-
spondence of spectral envelope peaks during the morphing transformation. The spectral envelope
morphing technique used leads to a particular behavior of the spectral peaks, without the need to
explicitly establishing correspondence between the formant peaks of the spectral envelope curve.
Many di�erent representations of the spectral envelope were investigated (envelope curve, LPC,
CC, LSF, RC, CC). Two paradigms were proposed to explain the behavior of the spectral peaks
during morphing, spectral peak shift (PS), and spectral peak rise and wane (RW). Cepstral repre-
sentations were found to present RW behavior in general, while linear prediction representations
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tend to present PS behavior.
Finally, the spectral envelope morphing technique proposed in this work only addresses the

magnitude of the spectral representation. The frequency values of the partials in the morphed
spectrum can depend on the correspondence between the number of partials. In this work, the
sounds used in the morph were restricted to be quasi-harmonic, which means that we can use a
simple approximation of the frequency of any partial using the fundamental frequency and the
partial number for unmatched partials. Use of the interval in cents between the frequency of the
matched partials makes it easy to handle the interpolation between quasi-harmonic and slightly
inharmonic spectra, such as the piano. In this case, the frequency of the morphed partial will be
a fraction of the interval in cents between the partials being combined.

15.8.2 Intermediateness

Intermediateness can become a complex issue conceptually. What needs to be measured or in-
cluded when evaluating morphed sounds to guarantee intermediatess? This question was only
partially addressed in this work because intermediateness was only considered from a spectral
point of view. To guarantee temporal intermediateness, events such as attack time must be taken
into consideration. Intermediateness for the attack times was implicitly assumed to result from the
temporal alignment procedure. By using the log attack times in the temporal alignment procedure,
each step would be perceptually linear because attack time was found to be perceived logarith-
mically [Caclin et al., 2005, Krimpho� et al., 1994, Luce and Clark, 1965, McAdams et al., 2005,
Krumhansl, 1989, Grey and Gordon, 1977].

Spectral intermediateness was measured via the values of the spectral shape features. The
variation of the spectral shape features was compared across spectral envelope morphing techniques
with the aim of determining which technique leads to the most linear variation when the morphing
factor varies linearly. A simple quadratic error measure was used after a fruitless attempt to use an
analytic formulation of the relationship between the parameters of a spectral envelope model and
the associated spectral envelope curve. The minimum quadratic error across several traditional
instruments revealed that interpolation of line spectral frequencies (LSFs) outperforms all the
others in average, and individually for most cases tested. The conclusion was that interpolation of
LSFs is the best spectral envelope morphing strategy tested.

Partial frequency intermediateness was obtained by interpolating the interval in cents between
each pair of partials. In this case, even when interpolating between musical instruments that
present slightly inharmonic spectra, such as the piano, intermediate steps would be gradually
more or less inharmonic. The same goes for e�ects that appear in the temporal variation of the
frequencies of the partials, such as vibrato. These would gradually appear or disappear. Naturally,
the inclusion of a speci�c model of vibrato would make the transitions between vibrato and no
vibrato more gradual.

15.8.3 Smoothness

Smoothness was the term adopted to refer to the gradual change required when the morphing factor
varies gradually. When combined with intermediateness, the much stronger constraint of linearity
is achieved. Smoothness was investigated using the values of the spectral shape features and
perceptually. One of the listening tests asked participants to compare the �smoothness� between
two morphing algorithms. The sounds were annotated by hand to guarantee that the results of
the automatic segmentation procedure would not interfere. The sounds were temporally aligned
before the application of the algorithms, so the di�erences between the morphs were mainly due
to the spectral morphing step. The algorithms compared used the SF and sinusoidal model for the
spectral morphing procedure.
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The results of the comparison was rather inconclusive. The preference for each pair of sounds
varied signi�cantly across participants, and was close to half in average. Most participants found
the task too di�cult, which might partially explain why the test failed to provide a de�nitive
answer.

15.9 Memory E�ect

One surprising conclusion was that the cyclostationary morph is perceived di�erently depending
on the direction of the transformation. That is, we hear the sequences from A to B and from B to
A di�erently even though they have the same sounds. One of the participants reported that both
algorithms have the tendency to be nonlinear, increasing the rate of change toward the end of the
transformation. Interestingly, it was empirically veri�ed that this phenomenon is somewhat linked
to a memory e�ect, whereby the transition changes more radically near the end independent of the
order of presentation of the sounds. This memory e�ect should de�nitely be explored to study the
cognitive mechanisms associated with musical instrument sound perception and representation.

15.10 Categorical perception

Sound morphing could help answer one intriguing question about musical instrument sound
perception: �Is musical instrument sound perception categorical or continuous?� We might
never be able to achieve perceptually linear transformations if the answer is categorical sim-
ply because perceptually linear transformations require continuous perception. An important
part of the evaluation of the linearity of the morphs was done using the acoustic correlates
of timbres spaces proposed by McAdams and others (spectral centroid, log attack time, etc)
[Grey and Gordon, 1977, Krimpho� et al., 1994, Krumhansl, 1989, McAdams et al., 2005]. A very
important consequence of guiding the morph using the acoustic correlates of timbre spaces is the
possibility to investigate whether the morphed sounds validate the correlates of timbre dimensions.
In this case the question to be answered is �Would (morphed) sounds with intermediate values of
correlates be placed in intermediate positions in the underlying timbre space?� We could probably
repeat the MDS space using the original and the morphed sounds and check the resultant space.

15.11 Conceptual Distance

The idea of conceptual distance in morphing, brie�y introduced in chapter 2, may be explored
further. Chapter 2 states that there is an inversely proportional relationship between the quality
of the morph and the conceptual distance between the objects being morphed. However true for
most cases, this is hardly a precise description of the whole morphing scenario. There are two
key elements to consider, the initial conceptual distance between the objects, and the conceptual
distances between the morph and the original objects.

When the objects being morphed are initially far apart conceptually (or perceptually), we need
more steps to �ll in the space between them equally. That is, to have the same distance across steps
as when they are closer. Naturally, if we want each division to be one centimeter long, one meter
will have more divisions than, say, ten centimeters. However, when the objects being morphed are
initially close together, the more steps it takes to transition between source and target, the less they
seem to change across steps. This was clearly the case for some of the transitions in the listening
test. One participant remarked that �in many cases, it didn't seem like the morph was changing
the sound very much.� This is probably due to the choice of sound material (no expressivity, etc)
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and focus on timbral features. That is, in many cases, there wasn't a big di�erence between the
source and target sounds to begin with.

15.12 Timbre Spaces and Morphing

Another interesting perceptual phenomenon to be explored concerns the morphing space, where
the original and the morphed objects reside. However, there is a much more di�cult question about
the di�erent possible hybrids concerning their conceptual distance. It is known that perceptual
and conceptual spaces are usually nonmetric, which means that the sum of the distances between
a perceptually intermediate objects and the objects combined to produce it are not equal. Let us
explore further this question with an example. In �gure 15.1 we see that the distance between the
man and the horse (d1) is much larger than the sum of the distances between the man and the
centaur (d2) and the horse and the centaur (d3). In other words, the triangle inequality does not
hold in this case, and the perceptual/conceptual space is nonmetric.

15.12.1 Is Perception of Morphing Metric?

What is the result of the morph between a man and a horse? Is it a centaur? In chapter 2 we saw
that there are di�erent possible hybridization processes. A centaur uses the natural hybridization
process that takes parts from the the man and from the horse to compose the result. In morphing,
on the other hand, each part should be the result of the combination of the corresponding parts
from the man and from the horse.

The question about whether the perceptual/conceptual space in which these combinations
exist is metric or not is extremely relevant in the context of morphing. For example, an intriguing
question is: Is there any other hybrid for which the space is metric? Or, alternatively, if we morph
between the man and the horse, is the resultant space metric? In this thesis we assumed that the
morph follows a straight line. Therefore, implicitly we assume that the morph space is metric,
just like the underlying MDS timbre spaces (shown in �gure 15.2) used to guide the morphing
transformation. If we use the acoustic correlates of timbre dimensions from these spaces (log
attack time, spectral centroid, etc) to guide the morph, will the morphed sounds follow a straight
line between them in the underlying timbre space?

The question of similarity of objects in (non)metric spaces is crucial in multimedia databases
and information retrieval. For sounds, music information retrieval is a possible candidate. Inter-
estingly, the cross evaluation of the feature values under the morphing transformation could also
be used to validate the features themselves in MDS studies, for example. But this is unfortunately
also out of the scope of this work.



15.12. TIMBRE SPACES AND MORPHING 275

Figure 15.1: Nonmetric representation of conceptual objects. The �gure shows a man, a horse,
and a centaur, a mental representation of a hybrid between the man and the horse. The �gure
illustrates the case when the conceptual space in which the mental representations of the three is
nonmetric.

Figure 15.2: Example of multidimensional timbre spaces. After Grey [Grey and Gordon, 1977]
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Appendix A

Linear Prediction

Here we will see the stability of the all-pole �lter, the spectral conversion characteristics, and the
error analysis.

A.0.2 Filter Stability

After the predictor parameters are computed, the question of the stability of the resulting �lter
H (z) arises. Filter stability is important for many applications. A causal all-pole �lter is stable
if all its poles lie inside the unit circle (in which case it is also a �lter with minimum phase). The
poles of H (z) are simply the roots of the denominator polynomial A (z), where

A (z) = 1 +
p∑

k=1

a (k) z−k (A.1)

and

H (z) =
G

A (z)
(A.2)

A (z) is also known as the inverse �lter.
If the coe�cients R (i) in equation 7.16 are positive de�nite (which is assured if R (i) is computed

from a nonzero signal using equation 7.21 or from a positive de�nite spectrum, i.e., a spectrum
that can be zero at most at a �nite set of frequencies), the solution of the autocorrelation equation
7.16 gives predictor parameters which guarantee that all the roots of A (z) lie inside the unit circle.
In other words, it gives a stable H (z) [Makhoul, 1975]. This result can also be obtained from
orthogonal polynomial theory. In fact, if one denotes the inverse �lter at step i in iteration 7.36 by
Ai (z), then it can be shown that the polynomials ziAi (z) for i = 0, 1, 2, · · · , form an orthogonal
set over the unit circle, as expressed below

1
2π

π∫
−π

P (ω)An

(
ejω
)
Am

(
e−jω

)
ej(n−m)ωdω = Enδnm, n,m = 0, 1, 2, · · · (A.3)

where En is the minimum error for an nth order predictor, and P (ω) is any positive de�nite
spectrum whose Fourier transform results in the autocorrelation coe�cients R (i) that are used in
equation 7.16. The recurrence relation for these polynomials is as follows

Ai (z) = Ai−1 (z) + kiz
−iAi−1z

−1 (A.4)
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which is the same as the recursion in equation 7.38.
The positive de�niteness of R (i) can often be lost if one uses a small word length to represent

R (i) in a computer. Also, roundo� errors can cause the autocorrelation matrix to become illcon-
ditioned. Therefore, it is often necessary to check for the stability of H (z). Checking if the roots
of A (z) are inside the unit circle is a costly procedure that is best avoided One method is to check
if all the successive errors are positive. In fact, the condition Ei > 0, 1 ≤ i ≤ p, is a necessary
and su�cient condition for the stability of H (z). From equations 7.39 and 7.42 it is clear that an
equivalent condition for the stability of H (z) is that

|ki| < 1, 1 ≤ i ≤ p (A.5)

Therefore, the recursive procedure in equations 7.35 through 7.39 also facilitates the check for
the stability of the �lter H (z).

The predictor parameters resulting from a solution to the covariance matrix equation 7.22
cannot in general be guaranteed to form a stable �lter. The computed �lter tends to be more
stable as the number of signal samples N is increased, i.e., as the covariance matrix approaches an
autocorrelation matrix. Given the computed predictor parameters, it is useful to be able to test
for the stability of the �lter H (z). One method is to compute the re�ection coe�cients ki from
the predictor parameters by a backward recursion, and then check for stability using equation A.5.
The recursion is as follows

ki = a
(i)
i

a
(i−1)
j =

a
(i)
j −a

(i)
i ai−j

(i)
i

1−k2
i

, 1 ≤ j ≤ i− 1
(A.6)

where the index i takes values p, p− 1, · · · , 1 in that order. Initially, a(p)
j = aj , 1 ≤ j ≤ i− 1.

It is interesting to note that this method (or checking the stability of H (z)) is essentially the same
as the Lehmer-Schur method [Makhoul, 1975] for testing whether or not the zeros of a polynomial
lie inside the unit circle. An unstable �lter can be made stable by re�ecting the poles outside the
unit circle inside, such that the magnitude of the system frequency response remains the same.
Filter instability can often be avoided by adding a very small number to the diagonal elements in
the covariance matrix.

A question always arises as to whether to use the autocorrelation method or covariance method
in estimating the predictor parameters. The covariance method is quite general and can be used
with no restrictions. The only problem is that of the stability of the resulting �lter, which is not a
severe problem generally. In the autocorrelation method, on the other hand, the �lter is guaranteed
to be stable, but problems of parameter accuracy can arise because of the necessity of windowing
(truncating) the time signal. This is usually a problem if the signal is a portion of an impulse
response. For example, if the impulse response of an all-pole �lter is analyzed by the covariance
method, the �lter parameters can be computed accurately from only a �nite number of samples
of the signal. Using the autocorrelation method, one cannot obtain the exact parameter values
unless the whole in�nite impulse response is used in the analysis. However, in practice, very good
approximations can be obtained by truncating the impulse response at a point where most of the
decay of the response has already occurred.

A.1 Frequency Domain Formulations

In Section A, the stationary and nonstationary methods of linear prediction were derived from a
time domain formulation. In this section we show that the same normal equations can be derived
from a frequency domain formulation. It will become clear that linear prediction is basically a



A.1. FREQUENCY DOMAIN FORMULATIONS 293

correlation type of analysis which can be approached either from the time or frequency domain.
The insights gained from the frequency domain analysis will lead to new applications for linear
predictive analysis.

A.1.1 Stationary Case

The error en between the actual signal and the predicted signal is given by equation 7.11. Applying
the z-transform to equation 7.11, we obtain

E (z) =

[
1 +

p∑
k=1

a (k) z−k

]
S (z) = A (z)S (z) (A.7)

where A (z) is the inverse �lter de�ned in equation A.1, and E (z) and S (z) are the z-transforms
of e (n) and s (n), respectively. Therefore, e (n) can be viewed as the result of passing s (n) through
the inverse �lter A (z). Assuming a deterministic signal s (n), and applying Parseval's theorem,
the total error to be minimized is given by

E =
∞∑

n=−∞
e2 (n) =

1
2π

π∫
−π

∣∣E (ejω
)∣∣2 dω (A.8)

where E
(
ejω
)
is obtained by evaluating E (z) on the unit circle z = ejω. Denoting the power

spectrum of the signal s (n) by P (ω) ,where

P (ω) =
∣∣S (ejω

)∣∣2 (A.9)

we have from equations A.7 through A.9

E =

π∫
−π

P (ω)A
(
ejω
)
A
(
e−jω

)
dω (A.10)

Following the same procedure as in Section 7.2.1.1, E is minimized by applying equation 7.13
to A.10. The result can be shown to be identical to the autocorrelation normal equations 7.16,
but with the autocorrelation R (i) obtained from the signal spectrum P (ω) by an inverse Fourier
transform

R (i) =

π∫
−π

P (ω) cos (iω) dω (A.11)

Note that in equation A.11 the cosine transform is adequate since P (ω) is real and even. The
minimum squared error Ep can be obtained by substituting equations 7.16 and A.10 in A.11, which
results in the same equation as in 7.17.

A.1.2 Nonstationary Case

Here the signal sn and the error en are assumed to be nonstationary. If R (t, t′) is the nonstationary
autocorrelation of sn, then we de�ne the nonstationary two-dimensional (2D) spectrum Q (ω, ω′)
of sn by [Makhoul, 1975]

Q (ω, ω′) =
∞∑

t′=−∞

∞∑
t=−∞

R (t, t′) exp [−j (ωt− ω′t′)] (A.12)
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R (t, t′) can be recovered from Q (ω, ω′) by an inverse 2D Fourier transform

R (t, t′) =
(

1
2π

)2
π∫

−π

π∫
−π

Q (ω, ω′) exp [j (ωt− ω′t′)] dωdω′ (A.13)

As in the time domain formulation, we are interested in minimizing the error variance for time
n = 0, which is now given by

E =
(

1
2π

)2
π∫

−π

π∫
−π

Q (ω, ω′)A
(
ejω
)
A
(
e−jω

)
dωdω′ (A.14)

Applying equation 7.13 to A.14 results in equations identical to the nonstationary normal
equations 7.31, where R (t, t′) is now de�ned by equation A.13. The minimum error is then obtained
by substituting 7.31 and A.13 in A.14. The answer is identical to 7.32.

A.1.3 Linear Predictive Spectral Matching

In this section we shall examine in what manner the signal spectrum P (ω) is approximated by the
all-pole model spectrum, which we shall denote by P̂ (ω). From equation 7.9 and A.2

P̂ (ω) =
∣∣H (ejω

)∣∣2 =
G2

|A (ejω)|2
=

G2

|1 +
∑p

k=1 a (k) e−jkω|2
(A.15)

From equations A.7 and A.9 we have

P (ω) =

∣∣E (ejω
)∣∣2

|A (ejω)|2
(A.16)

By comparing equations A.15 and A.16 we see that if P (ω) is being modeled by P̂ (ω), then
the error power spectrum

∣∣E (ejω
)∣∣2 is being modeled by a �at spectrum equal to G2. This means

that the actual error signal e (n) is being approximated by another signal that has a �at spectrum,
such as a unit impulse, white noise, or any other signal with a �at spectrum. The �lter A (ω) is
sometimes known as a �whitening �lter� since it attempts to produce an output signal e (n) that
is white, i.e., has a �at spectrum.

From equations A.8, A.15, and A.16, the total error can be written as

E =
G2

2π

π∫
−π

P (ω)
P̂ (ω)

dω (A.17)

Therefore, minimizing the total error E is equivalent to the minimization of the integrated
ratio of the signal spectrum P (ω) to its approximation P̂ (ω). An equivalent formulation using
maximum likelihood estimation has been given by Itakura [Itakura and Saito, 1970]. Now, we can
back up and restate the problem of linear prediction as follows. Given some spectrum P (ω), we
wish to model it by another spectrum P̂ (ω) such that the integrated ratio between the two spectra
as in equation A.17 is minimized. The parameters of the model spectrum are computed from
the normal equations 7.16, where the needed autocorrelation coe�cients R (i) are easily computed
from P (ω) by a simple Fourier transform. The gain factor G is obtained by equating the total
energy in the two spectra, i.e., R̂ (0) = R (0), where



A.1. FREQUENCY DOMAIN FORMULATIONS 295

R̂ (i) =
1
2π

π∫
−π

P̂ (ω) cos (iω) dω (A.18)

Note that R̂ (i) is the autocorrelation of the impulse response of H (z).
The manner in which the model spectrum P̂ (ω) approximates P (ω) is largely re�ected in

the relation between the corresponding autocorrelation functions. From A.11, we have R̂ (i) =
R (i) , 0 ≤ i ≤ p. Since P̂ (ω) and P (ω) are Fourier transforms of R̂ (i) and R (i), respectively, it
follows that increasing the value of the order of the model p increases the range over which R (i)
and R̂ (i) are equal, resulting in a better �t of P̂ (ω) to P (ω). In the limit, as p→∞, R̂ (i) becomes
identical to R (i) for all i, and hence the two spectra become identical. This statement says that
we can approximate any spectrum arbitrarily closely by an all-pole model. Arbitrary frequency
resolution in computing P̂ (ω) can be obtained by simply appending an appropriate number of
zeros to this sequence before taking the FFT. An alternate method of computing P̂ (ω) is obtained
by rewriting equation A.15 as

P̂ (ω) =
G2

ρ (0) + 2
∑p−i

i=1 ρ (i) cos (iω)
(A.19)

where

ρ (i) =
p−i∑
k=0

a (k) a (k + i) , a (0) = 1, 0 ≤ i ≤ p (A.20)

is the autocorrelation of- the impulse response of �lter A (z). From equation A.19,
P̂ (ω) can be computed by dividing G2 by the real part of the FFT of the sequence
[ρ (0) , 2ρ (1) , 2ρ (2) , · · · , 2ρ (p)]. Note that the slope of P̂ (ω) is always zero a t ω = 0 and ω = π .

Another property of P̂ (ω) is obtained by noting that the minimum error Ep = G2, and,
therefore, from equation A.17 we have

1
2π

π∫
−π

P (ω)
P̂ (ω)

dω = 1 (A.21)

This relation is a special case of the more general result A.3 relating the fact that the polyno-
mials [A0 (z) , A1 (z) , · · · , Ap (z) , · · · ], form a complete set of orthogonal polynomials with weight
P (ω). Equation A.21 is true for all values of p. In particular, it is true as p → ∞, in which
case equation A.21 becomes an identity. Another important case where equation A.21 becomes an
identity is when P (ω) is an all-pole spectrum with p0 poles, then P̂ (ω) will be identical to P (ω)
for all p ≥ p0. Relation A.21 will be useful in discussing the properties of the error measure in
Section IV.

The transfer functions S (z) and H (z) corresponding to P (ω) and P̂ (ω) are also related. It
can be shown that as p→∞, H (z) is given by

H∞ (z) =
G

1 +
∑p

k=1 a (k) z−k
=

N−1∑
n=0

h∞ (n) z−n, p→∞ (A.22)

where h∞ (n) , 0 ≤ n ≤ N − 1 is the minimum phase sequence corresponding to s (n) , 0 ≤ n ≤
N − 1. Note that the minimum phase sequence is of the same length as the original signal.

Another important conclusion is that since linear predictive analysis can be viewed as a process
of spectrum or autocorrelation matching, one must be careful how to estimate the spectrum P (ω)
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or the corresponding autocorrelation that is to be modeled. Since the signal is often weighted or
windowed' before either the autocorrelation or the spectrum is computed, it can be quite important
to properly choose the type and width of the data window to be used. The choice of window depends
very much on the type of signal to be analyzed. If the signal can be considered to be stationary
for a long period of time (relative to the e�ective length of the system impulse response), then
a rectangular window su�ces. However, for signals that result from systems that are varying
relatively quickly, the time of analysis must necessarily be limited. For example, in many transient
speech sounds, the signal can be considered stationary for a duration of only one or two pitch
periods. In that case a window such as Hamming or Hanning is more appropriate.

A.1.4 Modeling Discrete Spectra

Thus far we have assumed that the spectrum P (ω) is a continuous function of frequency. More
often, however, the spectrum is known at only a �nite number of frequencies. For example, FFT-
derived spectra and those obtained from many commercially available spectrum analyzers have
values at equally spaced frequency points. On the other hand, �lter bank spectra, and, for example,
third-octave band spectrum analyzers have values at frequencies that are not necessarily equally
spaced. In order to be able to model these discrete spectra, only one change in our analysis need
be made. The error measure E in equation A.17 is de�ned as a summation instead of an integral.
The rest of the analysis remains he same except that the autocorrelation coe�cients R (i) are now
computed from

R (i) =
1
M

M−1∑
m=0

P (ωm) cos (iωm) (A.23)

where M is the total number of spectral points on the unit circle. The frequencies ω, are those
for which a spectral value exists, and they need not be equally spaced. Below we demonstrate the
application of LP modeling for �lter bank and harmonic spectra.

A.2 Error Analysis

An important aspect of any �tting or matching procedure is the properties of the error measure
that is employed, and whether those properties are commensurate with certain objectives. In this
section we shall examine the properties of the error measure used in LP analysis and we shall discuss
its strengths and weaknesses in order to be able to fully utilize its capabilities. The analysis will be
restricted to the stationary (autocorrelation) case, although the conclusions can be extrapolated
to the nonstationary (covariance) case. The error measure used in Section 7.2.1.2 to determine
the predictor parameters is the least squares error measure due to Gauss, who �rst reported on
it in the early 1800's. This error measure has been used extensively since then, and is quite well
understood. Its major asset is its mathematical tractability. Its main characteristic is that it puts
great emphasis on large errors and little emphasis on small errors. Purely from the time domain,
it is often di�cult to say whether such an error measure is a desirable one or not for the problem
at hand. Many would probably agree that it does not really matter which error measure one uses
as long as it is a reasonable function of the magnitude of the error at each point. For the linear
prediction problem, we are fortunate that the error measure can also be written in the frequency
domain and can be interpreted as a goodness of �t between a given signal spectrum and a model
spectrum that approximates it. The insights gained in the frequency domain should enhance our
understanding of the least squares error criterion.
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A.2.1 The Minimum Error

For each value of p, minimization of the error measure E in equation A.17 leads to the minimum
error Ep in equation 7.17, which is given in terms of the predictor and autocorrelation coe�cients.
Here we derive an expression for Ep in the frequency domain, which will help us determine some of
its properties. Other properties will be discussed when we discuss the normalized minimum error.

Let

ĉ (0) =
1
2π

π∫
−π

log P̂ (ω) dω (A.24)

be the zeroth coe�cient (quefrency) of the cepstrum (inverse Fourier transform of log spectrum)
[Childers et al., 1977] corresponding to P̂ (ω). From equation A.15, equation A.24 reduces to

ĉ (0) = logG2 − 1
2π

π∫
−π

log
∣∣A (ejω

)∣∣2 dω (A.25)

A (z) has all its zeros inside the unit circle. Therefore, the integral in equation A.25 is equal to
zero. Since G2 = Ep, we conclude from equation A.25 that

Ep = eĉ(0) (A.26)

From equations A.26 and A.24, Ep can be interpreted as the geometric mean of the model
spectrum P̂ (ω). From equation 7.42 we know that Ep decreases as p increases. The minimum
occurs as p→∞ and is equal to

Emin = E∞ = ec0 (A.27)

where c0 is obtained by substituting P (ω) for P̂ (ω) in equation A.24. Therefore, the absolute
minimum error is a function of P (ω) only, and is equal to its geometric mean, which is always
positive for positive de�nite spectra. This is a curious result, because it says that the minimum
error can be nonzero even when the matching spectrum P̂ (ω) is identical to the matched spectrum
P (ω). Therefore, although Ep is a measure of �t of the model spectrum to the signal spectrum, it
is not an absolute one. The measure is always relative to Emin. The nonzero aspect of Emin can
be understood by realizing that, for any p, Ep is equal to that portion of the signal energy that
is not predictable by a pth order predictor. For example, the impulse response of an all-pole �lter
is perfectly predictable except for the initial nonzero value. It is the energy in this initial value
that shows up in Ep. (Note that in the covariance method one can choose the region of analysis
to exclude the initial value, in which case the prediction error would be zero for this example.)

A.2.2 Spectral Matching Properties

The LP error measure E in equation A.17 has two major properties, a global property and a local
property.

1. Global Property: Because the contributions to the total error are determined by the ratio
of the two spectra, the matching process should perform uniformly over the whole frequency
range, irrespective of the general shaping of the spectrum. This is an important property for
spectral estimation because it makes sure that the spectral match at frequencies with little
energy is just as good, on the average, as the match at frequencies with high energy. If the
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error measure had been of the form
∫ ∣∣∣P (ω)− P̂ (ω)

∣∣∣ dω, the spectral matches would have

been best at high energy frequency points.

2. Local Property: This property deals with how the match is done in each small region of the
spectrum.

Let the ratio of P (ω) to P̂ (ω) be given by

E (ω) =
P (ω)
P̂ (ω)

(A.28)

Then from equation A.21we have

1
2π

π∫
−π

E (ω) dω = 1, ∀p (A.29)

E (ω) can be interpreted as the �instantaneous error� between P (ω) and P̂ (ω) at frequency ω.
Equation A.29 says that the arithmetic mean of E (ω) is equal to 1, which means that there are
values of E (ω) greater and less than 1 such that the average is equal to l. In terms of the two
spectra, this means that P (ω) will be greater than P̂ (ω) in some regions and less in others such
that equation A.29 applies. However, the contribution to the total error is more signi�cant when
P (ω) is greater than P̂ (ω) than when P (ω) is smaller, e.g., a ratio of E (ω) = 2 contributes more
to the total error than a ratio of 1/2. We conclude that after the minimization of error, we expect a
better �t of P̂ (ω) to P (ω) where P (ω) is greater than P̂ (ω), than where P (ω) is smaller (on the
average). For example, if P (ω) is the power spectrum of a quasi-periodic signal, then most of the
energy in P (ω) will exist in the harmonics, and very little energy will reside between harmonics.
The error measure in equation A.21 insures that the approximation of P̂ (ω) to P (ω) is far superior
at the harmonics than between the harmonics. If the signal had been generated by exciting a �lter
with a periodic sequence of impulses, then the system response of the �lter must pass through all
the harmonic peaks. Therefore, with a proper choice of the model order p, minimization of the LP
error measure results in a model spectrum that is a good approximation to that system response.
This leads to one characteristic of the local property, minimization of the error measure E results
in a model spectrum P̂ (ω) that is a good estimate of the spectral envelope of the signal spectrum
P (ω). It should be clear from the above that the importance of the local property is not as crucial
when the variations of the signal spectrum from the spectral envelope are much less pronounced.

In the modeling of harmonic spectra, we can encounter examples where, although the all-
pole spectrum resulting from LP modeling is a reasonably good estimate of the harmonic spectral
envelope, it does not yield the unique all-pole transfer function that coincides with the line spectrum
at the harmonics. This is a signi�cant disadvantage of LP modeling, and is an indirect re�ection of
another characteristic of the local property, the cancellation of errors. This is evident from equation
A.29 where the instantaneous errors E (ω) are greater and less than 1 such that the average is 1.
To help elucidate this point, let us de�ne a new error measure E′ that is the logarithm of E in
equation A.17

E′ = log

 1
2π

π∫
−π

P (ω)
P̂ (ω)

dω

 (A.30)

where the gain factor has been omitted since it is not relevant to this discussion. It is simple
to show that the minimization of E′ is equivalent to the minimization of E. For cases where P (ω)
is smooth relative to P̂ (ω) and the values of P (ω) are not expected to deviate very much from
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P̂ (ω), the logarithm of the average of spectral ratios can be approximated by the average of the
logarithms, i.e.,

E′ ' 1
2π

π∫
−π

log
P (ω)
P̂ (ω)

dω (A.31)

From equation A.31 it is clear that the contributions to the error when P (ω) > P̂ (ω) cancel
those when P (ω) < P̂ (ω). The above discussion suggests the use of an error measure that takes
the magnitude of the integrand in equation A.31. One such error measure is

E′′ =
1
2π

π∫
−π

[
log

P (ω)
P̂ (ω)

]2

dω =
1
2π

π∫
−π

[
logP (ω)− log P̂ (ω)

]2
dω (A.32)

E′′ is just the mean squared error between the two log spectra. It has the important property
that the minimum error of zero occurs if and only if P̂ (ω) is identical to P (ω). However, while
the error measure E solves one problem, it introduces an other. Note that the contributions to
the total error in equation A.32 are equally important whether P (ω) > P̂ (ω) or vice versa. This
means that if the variations of P (ω) are large relative to P̂ (ω), the resulting model spectrum will
nor be a good estimate of the spectral envelope. In addition, the minimization of E′′ in equation
A.32 results in a set of nonlinear equations that must be solved iteratively, thus increasing the
computational load tremendously.

Our conclusion is that the LP error measure in equation A.21 is to be preferred in general,
except for certain special cases where an error measure such as E′′ in equation A.32 can be used,
provided one is willing to carry the extra computational burden.

The global and local properties described here are properties of the error measure in equation
A.21 and do not depend on the details of P (ω) and P̂ (ω). These properties apply on the average
over the whole frequency range. Depending on the detailed shapes of P (ω) and P̂ (ω), the resulting
match can be better in one spectral region than in another. For example, if P̂ (ω) is an all-pole
model spectrum and if the signal spectrum P (ω) contains zeros as well as poles, then one would
not expect as good a match at the zeros as at the poles. This is especially true if the zeros
have bandwidths of the same order as the poles or less. (Wide bandwidth zeros are usually well
approximated by poles.) On the other hand, if P̂ (ω) is an all-zero spectrum then the preceding
statement would have to be reversed.

A.2.3 The Normalized Error

The normalized error has been a very useful parameter for the determination of the optimal number
of parameters to be used in the model spectrum. This subject will be discussed in the following
section. Here we shall present some of the properties of the normalized error, especially as they
relate to the signal and model spectra.

1. Relation to the Spectral Dynamic Range

The normalized error was de�ned in Section 7.2.1.8 as the ratio of the minimum error Ep to the
energy in the signal R (0). Keeping in mind that R (0) = R̂ (0), and substituting for Ep from
equation A.26, we obtain

Vp =
Ep

R (0)
=

eĉ0

R̂ (0)
(A.33)

Also, from equation A.27, we have in the limit as p→∞
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Vmin = V∞ =
ec0

R (0)
(A.34)

Therefore, the normalized error is always equal to the normalized zero quefrency of the model
spectrum. From equations 7.42 and A.33 it is clear that Vp is a monotonically decreasing function
of p, with V0 = 1 and V∞ = Vmin in equation A.34.

It is instructive to write Vp as a function of P̂ (ω). From equations A.18 and A.24, equation
A.33 can be rewritten as

Vp =
exp

[
1
2π

∫ π

−π
log P̂ (ω) dω

]
1
2π

∫ π

−π
P̂ (ω) dω

(A.35)

It is clear from equation A.35 that Vp depends completely on the shape of the model spectrum,
and from equation A.35, Vmin is determined solely by the shape of the signal spectrum. An
interesting way to view equation A.35 is that Vp is equal to the ratio of the geometric mean of the
model spectrum to its arithmetic mean. This ratio has been used in the past as a measure of the
spread of the data. When the spread of the data is small, the ratio is close to 1. Indeed, from
equation A.35 it is easy to see that if P̂ (ω) is �at, Vp = 1. On the other hand, if the data spread
is large, then Vp becomes close to zero. Again, from equation A.35 we see that if P̂ (ω) is zero for
a portion of the spectrum (hence a large spread), then Vp = 1. (Another way of looking at Vp is
in terms of the �atness of the spectrum [Makhoul, 1975].) Another measure of data spread is the
dynamic range. We de�ne the spectral dynamic range d as the ratio of the highest to the lowest
amplitude points on the spectrum

d = H/L (A.36)

where

H = max
ω

P̂ (ω) L = min
ω
P̂ (ω) (A.37)

A.2.4 A Measure of Ill-Conditioning

In solving the autocorrelation normal equations 7.16, the condition of the autocorrelation matrix is
an important consideration in deciding the accuracy of the computation needed. An ill-conditioned
matrix can cause numerical problems in the solution. An accepted measure of ill-conditioning in a
matrix is given by the ratio

d′ = λmax/λmin (A.38)

where λmax and λmin are the maximum and minimum eigenvalues of the matrix. It is possible
to show [Makhoul, 1975] that all the eigenvalues of an autocorrelation matrix lie in the range
λi ∈ [H,L] , 1 ≤ i ≤ p, where H and L are de�ned in equation A.37. In addition, as the order of
the matrix p increases, the eigenvalues become approximately equal to P̂ (ω) evaluated at equally
spaced points with separation 2π/(p+1). Therefore, the ratio d′ given in equation A.38 can be well
approximated by the dynamic range of P̂ (ω)

d′ ' d (A.39)

Therefore, the spectral dynamic range is a good measure of the ill-conditioning of the auto-
correlation matrix. The larger the dynamic range, the greater is the chance that the matrix is
illconditioned.
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But in the previous section we noted that an increase in d usually results in a decrease in
the normalized error Vp. Therefore, Vp can also be used as a measure of ill-conditioning: the ill-
conditioning is greater with decreased Vp. The problem becomes more and more serious as Vp → 0,
i.e., as the signal becomes highly predictable.

If ill-conditioning occurs sporadically, then one way of patching the problem is to increase the
values along the principal diagonal of the matrix by a small fraction of a percent. However, if the
problem is a regular one, then it is a good idea if one can reduce the dynamic range of the signal
spectrum. For example, if the spectrum has a general slope, then a single zero �lter of the form
1 + az−1 applied to the signal can be very e�ective. The new signal is given by

s′ (n) = s (n) + as (n− 1) (A.40)

An optimal value for a is obtained by solving for the �lter A (z) that �whitens� (�attens) s′ (n).
This is, of course, given by the �rst order predictor, where

a = −R (1)
R (0)

(A.41)

R (1) and R (0) are autocorrelation coe�cients of the signal s (n). The �ltered signal s′ (n) is
then guaranteed to have a smaller spectral dynamic range. The above process is usually referred
to as preemphasis.

One conclusion from the above concerns the design of the low-pass �lter that one uses before
sampling the signal to reduce aliasing. In order to ensure against aliasing, it is usually recommended
that the cuto� frequency of the �lter be lower than half the sampling frequency. However, if the
cuto� frequency is appreciably lower than half the sampling frequency, then the spectral dynamic
range of the signal spectrum increases, especially if the �lter has a sharp cuto� and the stop band
is very low relative to the pass band. This increases problems of ill-conditioning. Therefore, if one
uses a lowpass �lter with a sharp cuto�, the cuto� frequency should be set as close to half the
sampling frequency as possible.
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Appendix B

Discrete All-Pole Model

In this appendix we will discuss the properties of the error measure for the discrete all-pole model.

B.1 Properties of The Error Measure

The Itakura-Saito (IS) error measure was de�ned originally for continuous spectra
[Itakura and Saito, 1968], [Itakura and Saito, 1970]. However, it can be adapted to the discrete
case as follows

EIS =
1
N

N∑
m=1

P (ωm)
P̂ (ωm)

− ln
P (ωm)
P̂ (ωm)

− 1 (B.1)

where, just like before, P (ωm) is the given discrete spectrum de�ned at N frequencies ωm

and P̂ (ωm) is the all-pole model spectrum de�ned in equation A.15 and evaluated at the same
frequencies. This error measure is always nonnegative and is equal to zero only when P̂ (ωm) =
P (ωm) , ∀ωm ∈ Ω. Notice that P̂ (ωm) = P (ωm) gives a minimum for EIS but not necessarily for
ELP , as demonstrated in the previous section.

The continuous form of this error measure was originally presented as part of a maximum
likelihood approach to linear prediction and was shown to produce the same result as LP for
continuous spectra. Later, the discrete version shown in equation B.1 was derived by McAuley
[McAuley, 1984] for the maximum likelihood spectral modeling of periodic speech signals with
Gaussian statistics.

A spectral �atness interpretation of this discrete error measure makes it a very reasonable
choice for the problem of �tting an envelope to a set of discrete spectral values. It can be shown
that minimizing the error in equation B.1 is equivalent to maximizing the spectral �atness of the
error spectrum P̂ (ωm)/P (ωm), where the spectral �atness is de�ned as the geometric mean of the
spectral samples divided by their arithmetic mean. The proof parallels the one for the continuous
case given by Markel and Gray [Markel and Gray, 1976]. The major consequence of this property
is that our optimal model is the one which makes the residual (error) spectrum as �at as possible.

It has been shown that, for small values of EIS , the IS error approximates the mean-squared
distance between log spectra [Itakura and Saito, 1968]. Based on this property, El-Jaroudi de�nes

EdB = 6.142
√
EIS ≈

√√√√ 1
N

N∑
m=1

[
10 log10 P (ωm)− 10 log10 P̂ (ωm)

]2
(B.2)

303
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for small EIS , such that we can use EdB when comparing error values since it provides an
approximate estimate of the spectral error in decibels. It is important to note that, for the con-
tinuous case of the IS measure, the optimal all-pole model is the same as the one produced by LP.
Therefore, by using this error measure, we do not sacri�ce any of the advantages or performance
of LP in unvoiced segments of speech.

B.1.1 Error Minimization

First, we will minimize the error measure in equation B.1 with P̂ (ω) expressed as

P̂ (ω) =
1

D (ω)
=

1∑p
k=0 dk cosωk

(B.3)

where {dk} can be shown to be equal to

d0 =
p∑

k=0

a2
k (B.4)

di = 2
p−i∑
k=0

akak+1, 1 ≤ i ≤ p (B.5)

Note that di is twice the autocorrelation of {ak} for 1 ≤ i ≤ p, and d0 is equal to the zero-lag
autocorrelation. We then set ∂EIS/∂di = 0 for i = 0, · · · , p. The result can be shown to yield a set
of correlation matching conditions, given by

R̂ (i) = R (i) , 0 ≤ i ≤ p (B.6)

where R (i) is the autocorrelation corresponding to the given discrete spectrum de�ned in
equation A.23 and R̂ (i) is the autocorrelation corresponding to the all-pole model sampled at the
same discrete frequencies as the given spectrum

R̂ (i) =
1
N

N∑
m=1

P̂ (ωm) cosωmi (B.7)

Equation B.6 looks deceptively similar to the matching condition expressed in equation 7.52.
The major di�erence, however, is that in LP, R̂LP (i) is the autocorrelation of the continuous all-
pole spectrum P̂ (ω), while here, R̂ (i) in equation B.7 is the autocorrelation of a discrete sampling
of the all-pole spectrum. From equation B.6, we see that DAP requires matching the given aliased
autocorrelation to the autocorrelation of the all-pole model aliased in the same manner. According
to El-Jaroudi and Makhoul [El-Jaroudi and Makhoul, 1969], it is this improved correlation match-
ing condition, which incorporates the autocorrelation aliasing, that makes DAP better suited than
LP for analyzing discrete spectral.

While the matching condition B.6 provides us with insight into the solution of the modeling
problem, it does not give us a way of computing the parameters of the optimal all-pole model.
The all-pole model is obtained by using the de�nition of P̂ (ω) in equation A.15 and setting
∂EIS/∂ai = 0, i = 0, · · · , p. This yields the following set of equations relating the predictor
coe�cients {ak} to the autocorrelations of the given discrete spectrum and the sampled all-pole
model

2
p∑

k=0

ak

[
R (i− k)− R̂ (i− k)

]
= 0, 0 ≤ i ≤ p (B.8)
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The conditions in equations B.8 can be expressed in matrix notation as

2
(
R−R̂a

)
= 0 (B.9)

where a is the column vector of predictor coe�cients, and R and R̂ are symmetric Toeplitz
matrices with elements R (i− j) and R̂ (i− j) , 0 ≤ i, j ≤ p, respectively. Since R̂ is a function
of a, equation B.9 constitutes a set of p + 1 unknowns. In the next section we will derive the
minimum error, followed by the solution to equation B.9.

B.1.2 Minimum Error

The expression for minimum error is obtained by substituting the condition for minimization in
equation B.9 into equation B.1. We begin by simplifying the �rst term in the error measure B.1

1
N

N∑
m=1

P (ωm)
P̂ (ωm)

=
p∑

k=0

p∑
j=0

akajR (k − j) = aT Ra = aT R̂a (B.10)

and

aT R̂a =
p∑

k=0

p∑
j=0

akajR̂ (k − j) =
1
N

N∑
m=1

P (ωm)
P̂ (ωm)

= 1 (B.11)

Consequently, from equation B.1 we have

EISmin =
1
N

N∑
m=1

− ln
P (ωm)
P̂ (ωm)

= ln

[∏N
m=1 P̂ (ωm)

]1/N

[∏N
m=1 P (ωm)

]1/N
(B.12)

We conclude from equations B.11 and B.12 that, at the minimum, the energy in the residual
spectrum P (ωm)/P̂ (ωm) is automatically normalized to 1 and the minimum error is equal to the
logarithm of the ratio of the geometric mean of the model spectrum and the geometric mean
of the given spectrum. Both these properties have their equivalent in continuous spectrum LP
[Makhoul, 1975]. Based on the similarities between the two methods (DAP and LP) and the fact
that DAP reduces to LP for the continuous spectrum case while LP does not reduce to DAP for
discrete spectra, El-Jaroudi concludes that LP is just a special case of DAP modeling where the
number of spectral points goes to in�nity.

B.1.3 The Solution and its Uniqueness

Now we focus on the solution of the minimization conditions B.9. These equations allow one of
two possible solutions:

1. A matching solution in which R̂ = R and the model satis�es the conditions in equation B.6;

2. A singular solution in which R̂ 6= R, and therefore the predictor vector a will be an eigen-

vector of the di�erence matrix
(
R−R̂a

)
corresponding to an eigenvalue equal to 0. Also,

note that the trivial solution a = 0 is not possible since it produces unbounded values for R̂.

Consequently, the optimal all-pole model will belong to one of these two classes of solutions. It
will either have an aliased autocorrelation equal to that of the given discrete signal (corresponding
to the matching solution), or it will not (corresponding to the singular solution). El-Jaroudi and
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Makhoul [El-Jaroudi and Makhoul, 1969] examine the properties of the error function and of the
optimal all-pole model. He concluded that the error function is convex and that the optimal all-
pole model is unique depending on the number N of spectral points. Following, he presents an
iterative algorithm to �nd the solution to equations B.8 and evaluates its convergence properties.



Appendix C

Cepstral Smoothing

This appendix examines the e�ect of several common procedures applied to the calculation of
Fourier spectra on the cepstrum, such as phase unwrapping, windowing, zero-padding, and spec-
trum notching. We will also see the results of the above, such as aliasing and oversampling.

C.1 The Phase Cepstrum

The inverse transform of the phase of the complex logarithm yields peaks at multiples of the echo
arrival time in much the same way that the inverse transform of the log magnitude does. This can
be shown as follows for the single additive echo case:

X̂
(
ejω
)

= log
(
X1

(
ejω
))

+ log
([

1 + ae−jωn0
])

=

log
∣∣X1

(
ejω
)∣∣+ jphase

(
X1

(
ejω
))

+
1
2

log
(
1 + a2 + 2a cos (ωn0T )

)
+

j arctan
(
− a sin (ωn0T )

1 + a cos (ωn0T )

) (C.1)

The fourth term on the right produces ripples in the phase, just as the third term produces
ripples in the log magnitude. Since X̂

(
ejω
)
is obtained from the transform of a real sequence,

its real part (magnitude of the transform of the real sequence) is an even function of ω, and its
imaginary part (phase of the transform of the real sequence) is an odd function of ω. Thus the

inverse transform of <
{
X̂
(
ejω
)}

will yield the even portion of the complex cepstrum and the

inverse transform of j=
{
X̂
(
ejω
)}

ill produce the odd portion of the complex cepstrum. Since the

inverse transform of the term log
(
1 + ae−jωn0T

)
produces peaks on one side of the origin only,

the peaks produced by its real and imaginary parts must be equal in magnitude and opposite in
sign on one side of the origin but of the same sign on the other side of the origin (depending upon
whether the echo amplitude a is less or greater than unity).

From these observations we formally de�ne the phase cepstrum of a data sequence as the
square of the inverse z-transform of twice the phase (the imaginary part of the logarithm) of the
z-transform of the data sequence. This may be written as

x∠ (n) =
{
Z−1 [2 logX (z)− 2 log |X (z)|]

}2
(C.2)
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where the factor of 2 has been introduced to eliminate any normalization factors in the relation
between the phase and complex cepstra and x∠ (0) = 0. From equations 7.67, 7.70, and 7.73 the
phase cepstrum can be easily shown to be

x∠ (n) = [x̂ (−n)− x̂ (−n)]2 (C.3)

Thus the phase cepstrum is to the phase as the power cepstrum is to the log magnitude.
Once again the �nal squaring operation could be changed to magnitude squared or eliminated.
Empirically, it has been determined that the phase cepstrum is less useful than the power cepstrum
in the determination of echo arrival times [Childers et al., 1977]. This is apparently due to the
phase unwrapping errors produced by additive noise and linear phase terms. The phase cepstrum
is as di�cult to compute as the complex cepstrum, since both require phase unwrapping. However,
the phase cepstrum has proven valuable in evaluating the e�ects of noise on the signal phase.
Signi�cant di�erences in the appearance of the phase and power cepstra can be indicative of phase
unwrapping problems which might otherwise go unnoticed [Childers et al., 1977]. Many problems
arise in the computation of the phase sequence for the complex cepstrum. Here we address several
of these problems along with their alleviation.

C.2 Linear Phase Components

The presence of a linear component in the phase sequence introduces rapidly decaying oscillations
in the complex cepstrum, e.g., let the spectrum of such a signal be represented as X

(
ejω
)

=
e−jrωX ′ (ejω

)
or X (z) = z−rX ′ (z). Then the cepstrum of the linear phase term alone is

x̂∠ (n) =

{
0, n = 0
−r
nT cosnπ = −r

nT (−1)n
, n 6= 0

(C.4)

This term is added to the cepstrum of the remaining portion of the data being analyzed. Note
that it changes sign at each sample and although it does decay, it may be quite large depending
upon r. Such a term may mask echo peaks in the complex cepstrum, and should be removed by
subtraction from the composite signal phase. Basically, this is just trend removal, which is standard
practice for improving spectral estimates. The removed linear phase term can be recorded and
then reinserted during the inversion process if necessary.

The presence of a linear phase term may in�uence the choice of liftering to be applied to the
complex cepstrum. If the echo is to be removed and the basic wavelet is to be recovered, then
the echo peaks should not be notch liftered (removed) by simply replacing them with the average
of their adjacent points, since these adjacent points have contributions from the linear phase
component (if it has not been completely removed) which are opposite in sign to the contribution
of the echo point to be removed. Instead, if the echo is located at n0 in the complex cepstrum
then this point should be replaced with the average of the n0 + 2 and n0 − 2 points. This form
of liftering results in a smaller mean-square error (MSE) in the recovered wavelet than when the
average of the points adjacent to the echo peak is used. This has been found to be the case
even when the linear phase component has been completely removed [Childers et al., 1977]. This
liftering procedure is not claimed to be optimum. In fact the liftering procedure is undoubtedly
signal and noise dependent and would in general involve averaging more than just two points in
the complex cepstrum.

A serious problem in phase unwrapping is encountered when discontinuities in the phase oc-
cur in calculating the phase modulo 2π via the arctan routine. The phase unwrapping algorithm
previously described removes these discontinuities provided the phase changes by less than π be-
tween samples. Recently, it has been pointed out that a linear phase component with a large
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slope will cause errors in this unwrapping procedure [Childers et al., 1977]. If the phase changes
between samples are greater than π due to the presence of a linear phase term, then this un-
wrapping problem can be alleviated by increasing the record length with the addition of zeros
[Childers et al., 1977]. This is equivalent to sampling the z-transform more frequently. If one is
unsure whether the phase change between samples is less than π, then one can check such an hy-
pothesis with the above procedure by comparing the unwrapped phase before and after the record
length has been appended with zeros.

One example of where the linear phase component gives problems is when x (n) =
x1 (n− n0) , [0, N − 1] , zero otherwise, then X

(
ejω
)

= e−jωn0X1

(
ejω
)
. As expected the phase of

x is the sum of a linear phase component and the phase of x1. If ω is the minimum rate ω = n2π/NT

then X
(
ejn(2π/N)

)
= ej2πn(n0/N)X1

(
ejω
)
. If n0 > N/2 the linear phase component will change by

more than π between samples and unless the phase of x1 counteracts this change, the phase un-
wrapping algorithm will yield erroneous results. This has been observed in computer experiments
when the composite signal is delayed by more than half the record length. As expected this not only
reduces the echo detectability in both the phase and complex cepstra, but also severely distorts
the recovered wavelet.

C.3 Spectrum Notching

It should also be noted that zeros near the unit circle in the z-transform of the echo sequence result
in notches in the spectrum sequence wherein additive noise may dominate. We have seen earlier
that one phase unwrapping algorithm requires that the changes in phase between samples must be
less than ±π, i.e., the derivative of the phase with respect to frequency must be less than ±π.

Consider the z-transform of the data sequence evaluated on the unit circle, then

X
(
ejω
)

=
∣∣X (ejω

)∣∣ ej∠X(ejω) = X<
(
ejω
)

+ jX=
(
ejω
)

(C.5)

or

dX
(
ejω
)

dx1
=
X<

(
ejω
) [

dX=(ejω)/dx1

]
−X=

(
ejω
) [

dX<(ejω)/dx1

]
|X (ejω)|2

(C.6)

Thus the change in phase is inversely proportional to the magnitude squared of the spectrum.
If a notch occurs in the spectrum, then the change in the phase may be quite large, and, therefore,
proper phase unwrapping may be di�cult to achieve. Further, the phase may change sign rapidly
in these spectrum notches. This represents a serious problem even in the absence of noise as the
above example illustrates. Therefore, it is quite possible for the unwrapped phase curve to contain
discontinuities (jumps or steps) in the vicinity of a spectrum notch.

As was pointed out earlier spectral nulls can be caused physically by π phase reversals in re�ec-
tions at boundary interfaces. Nulls in the spectrum may be an important aid to data interpretation.
The investigator needs to understand the physical situation under which the data are collected and
to model it well.

C.4 Aliasing

Aliasing of the cepstrum is of course an ever present problem since the nonlinear complex logarithm
introduces harmonics into X̂ (z). The appending of zeros to the input data sequence reduces
aliasing as will selecting the data record length NT to be as large as possible. This latter choice
is subject to the constraints imposed by the investigator on the number of points that can be
analyzed and the minimum sampling rate. If the total data record length exceeds the duration of
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the composite signal contained within the record, then it is questionable if the total data record
length should be further extended with still more �data.� The reason for this doubt is that the
spectral samples will increasingly re�ect the e�ect of the noise rather than the signal as the total
data record length surpasses that of the composite signal duration.

C.5 Oversampling

Oversampling of the data record when noise is present is also a problem. Outside the signal
band, noise dominates the spectrum. This usually presents no problem in ordinary spectrum
analysis since these components frequently contain little power but this may not be the case for
the cepstrum. Because of the nonlinear logarithmic operation, the regions of low power in the
spectrum may contribute as much or more to the cepstrum as the regions which contain the
signal in the spectrum. When this occurs it a�ects both echo detectability and wavelet recovery.
Oversampling also aggravates phase unwrapping and aliasing since it shortens the data record (if
the total number of data points or samples is �xed), which in turn implies that the samples of the
log spectrum are spaced farther apart.

C.6 Zero-Padding

It is well known that appending zeros to a data sequence increases the sampling �rate� of its discrete
Fourier transform. This bene�ts the computation of the cepstrum in two ways. First, the increased
sampling �rate� in the frequency domain reduces aliasing of the cepstrum. Second, increasing
the �neness with which the phase curve is sampled reduces the number of phase unwrapping
errors (which result from jumps greater than π between samples). Childers [Childers et al., 1977]
indicated that extending the record length with zeros results in a modest improvement in the
recovered wavelet even when aliasing and phase unwrapping errors do not appear to be a problem.
It should be noted that unless the record length is extended with zeros, then aliasing causes an
ambiguity in the determination of the echo epoch (arrival time) and amplitude. This is due to the
fact that there is no way to distinguish between an echo of relative amplitude a and delay n0 and
one with amplitude 1/a and delay N − n0 where N is the total number of samples.

Mathematically, these statements are veri�ed as follows: let us consider the z-transform of the
sequence x (n) where x (n) = 0 outside [0, N − 1]

X (z) =
N−1∑
n=0

x (n) z−n (C.7)

which when evaluated on the unit circle gives

X
(
ejω
)

=
N−1∑
n=0

x (n) e−jωnT (C.8)

If we sample at uniformly spaced intervals around the unit circle, we obtain

X (k) =
N−1∑
n=0

x (n) e−j2πk n
N (C.9)

which is just the discrete Fourier transform (DFT) of x (n). It follows that

X̂ (k) = logX (k) (C.10)
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Since the logarithm (which is a zero memory nonlinearity) of a sampled function is equivalent
to sampling the logarithm of the function, then with a little additional e�ort it follows that the
complex cepstrum of the DFT of x (n) (or the z-transform of x (n) sampled on the unit circle) is
just the periodic extension of the complex cepstrum of the original data sequence. We see that
the e�ect of appending zeros is to increase N . This implies we sample the log spectrum at smaller
intervals, since the spacing between these samples is proportional to 1/N. As described above, the
errors introduced by a linear phase component or aliasing are reduced by increasing N through
zero-padding.

C.7 E�ects of Windowing

Echo detection and extraction are degraded by applying to the data record a window ordinarily
used to reduce leakage, e.g., Hamming, Hanning, Tapering (Tukey window), unless the window is
relatively constant (�at) over that portion of the data record containing the composite signal. In
speech processing this is not the case. Here the data are highly nonstationary. And the investigator
is frequently interested in analyzing the speech signal over one pitch period (or at most three pitch
periods). In this case windowing is of considerable bene�t.

One can see for the single echo case that windowing the input data record normally prevents
the logarithmic operation from fully separating the basic wavelet and the echo series as follows:

x (n) = w (n) [x1 (n) + ax1 (n− n0)] (C.11)

or

X (z) = W (z) ∗
[
X1 (z)

(
1 + az−n0

)]
(C.12)

For arbitrary W (z), the contributions of the basic wavelet and the echo cannot generally be
separated by taking the logarithm of equation C.12 since the term in brackets is convolved with
W (z). Fortunately, as will be discussed more fully below, in practice the cepstrum procedure can
still be applied with e�ectiveness even though there is some error.

Schafer [Schafer, 1968] suggested a window which does preserve the separability of the basic
wavelet and echo series and which has proven extremely useful in cepstrum analysis. This window
denoted as

w (n) =

{
αnT , 0 ≤ n ≤ N − 1, 0 < α < 1
0, otherwise

(C.13)

was proposed to reduce the error associated with truncating the echo when it extended beyond
the end of the record [Schafer, 1968]. Childers [Childers et al., 1977] indicated that this window
is quite useful because it reduces the aliasing of the echo impulse train in the complex cepstrum
by imposing an

(
αn0T

)n
weighting on the impulses. This follows directly from a calculation of the

z-transform of equation C.11 with equation C.13 used for w (n), i.e., for this case

X (z) = X1

(
α−T z

) [
1 + aαn0T z−n0

]
(C.14)

provided no truncation error is present and that the basic wavelet begins at n = 0.
From equation C.12 we see that when no window is used and a is near unity and the echo delay

is a substantial portion of the record length NT , the higher order peaks may not decrease rapidly
enough to avoid aliasing. This problem can be overcome with the window under consideration.
Childers [Childers et al., 1977] suggests that the choice of α is data dependent and α should be
chosen as close to unity as possible, consistent with the desired reduction in aliasing. The closer
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the data sequence is to a maximum phase sequence, the more one can reduce α, e.g., from 0.99
to 0.98 or 0.96. The choice of α is also dependent on the echo delay time which is discussed more
fully later.

The exponential window can introduce some distortion into the recovered wavelet even if the
data are unweighted by the inverse window in the recovery process. This is primarily due to the
distortions introduced into the data that extend beyond the duration of the wavelet of interest.

In summary the exponential window performs nearly as well as the rectangular window when no
noise is present but does introduce some distortion as noted above. Further, the echo arrival time
can be determined even when wavelet recovery cannot be e�ected. Also if rectangular windowing
is judiciously applied, then the cepstrum can be used to detect similar but not necessarily identical
wavelets. We suspect that if the exponential window is used to make the composite signal minimum
phase, then the echo, most probably, will be lost.

Finally, it should be noted that the exponential window may be used to alter the SNR of a data
record more e�ectively than the rectangular window. This can be e�ected when the composite
signal occupies only a portion of the total record. In this case the window may weight the signal
more or less heavily than those portions of the record containing the noise. However, caution
should be exercised in echo detection and extraction when the signal (wavelet) of interest occurs
near the end of the data record and thus will be greatly reduced by the exponential window.

Recently it has been proposed that the exponential window be generalized to include complex
exponential weighting, i.e., αnT ejφnT . It may at �rst appear that this phase factor will have no
signi�cant e�ect on the complex cepstrum, i.e., it will introduce only a phase shift. However, the
procedure can be used to change the phase relation of the echo (multipath re�ection) by π. This
may make it easier to detect a peak in the cepstrum. The complex exponential factor φ can be
varied in a prescribed fashion so that it may be used as a hypothesis tester. Thus trial sweeps of
the complex weight can be generated to con�rm or deny a priori estimates of the echo delay. It
appears that this technique may prove to be a powerful investigative tool to assist the researcher
in interpreting his data.

C.7.1 The E�ect of Windowing the Log Spectrum

One might be motivated to window the log spectrum in order to reduce leakage in the complex
cepstrum which could be falsely interpreted as peaks due to echoes. Windowing of the log spectrum
will, of course, introduce some loss in time resolution in the cepstrum domain. Then, if the echo
contributions can be liftered from the complex cepstrum and if the recovered log spectrum can be
corrected (by multiplying by the inverse of the windowing series), we should be able to recover
the basic wavelet. Our results have, however, indicated that such windowing of the log spectrum
raises the echo detection threshold by around 12 dB and severely distorts the recovered wavelet
when additive noise is present [Childers et al., 1977]. This is apparently due to the fact that
windowing the log spectrum is equivalent to smoothing the complex cepstrum. Thus, it appears
that windowing the log spectrum may smooth out the very peaks one wishes to detect in the
complex cepstrum. The distortion introduced into the recovered wavelet is undoubtedly due to
this windowing of the log spectrum (or smoothing of the complex cepstrum).

C.7.2 The E�ect of Windowing the Complex Cepstrum

Since noise is usually interspersed throughout the data record and the composite signal may occupy
only a portion of the record, it seems reasonable that the high quefrency components of the complex
cepstrum may frequently contain more noise than signal information. Our results have shown that
by judiciously zeroing the high quefrency components of the complex cepstrum we may signi�cantly
improve the �delity of the recovered wavelet in a noisy environment [Childers et al., 1977]. At
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low SNR the MSE can be reduced by a factor of 2 by a judicious rectangular windowing of the
complex cepstrum. This is essentially short pass liftering [Kemerait, 1971, Oppenheim et al., 1968,
Schafer, 1968] in which the aim is not to eliminate the echo peaks (which are generally notch �ltered
prior to the windowing) but rather to eliminate the high quefrency noise dominated sections of
the complex cepstrum. This concurs with the results of Kemerait [Kemerait, 1971] in which it is
reported that a Hanning smoothing of the log spectrum (which is equivalent to Hanning windowing
of the complex cepstrum) improves wavelet recovery. It appears that there is little to choose
between the rectangular or Hanning window of the complex cepstrum to improve the �delity
(MSE) of the recovered wavelet. We mention once again that these observations are probably data
dependent and are in�uenced by the duration of the window as well.
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Appendix D

Discrete Cepstrum

In this appendix we will discuss the regularized estimation of the discrete cepstrum proposed by
Cappé [Cappé et al., 1995, Cappé and Moulines, 1996].

D.1 Regularized Estimation of the Discrete Cepstrum

Cappé revisited the problem of estimation of a cepstrum based spectral envelope from a set of
discrete frequency points and proposed many improvements not only in notation and formalization,
but also to the method itself. Firstly, they reformulate the problem as obtaining a set of cepstral
coe�cients ck such that the log amplitude envelope log |P (ω)| evaluated at frequencies ωk is
maximally close to the desired amplitudes of log |X (ωk)|. Using this formulation, the source
S (ω) can be neglected and equation 7.82 can be expressed in matrix form as

ε = h ‖a−Mc‖2 = (x−Mc)T
H (x−Mc) (D.1)

where

x = [log x1 · · · log xN ]T (D.2)

and

M =

 1 2 cos (2πf1) 2 cos (2πf12) . . . 2 cos (2πf1L)
...

...
...

1 2 cos (2πfN ) 2 cos (2πfN2) . . . 2 cos (2πfNL)

 (D.3)

and c is the vector of unknown cesptral coe�cients c = [c0 · · · cL]T that represent the parameters
that minimize the error. H is a diagonal matrix whose elements are [h1 . . . hN ] . Then, the least
squares solution is easily found to be

c =
(
MTHM

)−1
MTHx (D.4)

such that, under this formulation, the cepstral coe�cients are obtained by a simple matrix
inversion, provided that the matrix is invertible (nonsingular), that is, we must have more equations
than unknowns, expressed by the condition L < N .

When used as described above, the standard discrete cepstrum method is known to yield mean-
ingless results because the matrix

(
MTHM

)
is frequently poorly conditioned [Cappé et al., 1995].

This means that non-signi�cant perturbations of the data such as machine rounding errors can
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induce very large variations of the estimated cepstrum coe�cients and of the log-amplitude
envelope log |P (ω)|. To overcome the problems associated with the standard discrete cep-
strum method, Galas [Galas and Rodet, 1990] suggested to increase the number N of frequency
points by replacing the original ωk by clusters of neighboring points. Cappé [Cappé et al., 1995,
Cappé and Moulines, 1996] proposed an alternative solution based on a well-known regularization
technique which consists of imposing additional constraints on the log-amplitude envelope. The
idea consists in seeking an envelope which, in addition to minimizing the least-squares criterion in
equation D.1, is also smooth, in a sense that will be formulated below. The least-squares criterion
is modi�ed as follows

εr =
N∑

n=1

hn ‖log (xn)− log |P (ωn)|‖2 + λΓ [log |P (ωn)|] (D.5)

where Γ [log |P (ωn)|] is a penalty functional: Γ is small if the envelope is smooth, and large
otherwise and λ is the regularization parameter which controls the relative importance of the
smoothness constraint in the criterion to be minimized. As indicated by equation D.5, the new
criterion favors envelopes that are close to the speci�ed frequency points (�rst term in the right
member of D.5) while exhibiting some degree of smoothness (second term in the right member of
D.5).

A possible smoothness criterion is

Γ [log |P (ωn)|] =

1/2∫
−1/2

[
d

df
log |P (ωn)|

]2
df (D.6)

which is null when log |P (ωn)| is constant. This smoothness criterion can be expressed as a
quadratic form of the cepstral coe�cients by substituting equation 7.79 into equation D.6. The
result is

Γ [log |P (ωn)|] = cTRc (D.7)

where R is the following diagonal matrix

R =


0 0 0 0 0
0 12 0 0 0
0 0 22 0 0

0 0 0
. . .

...
0 0 0 · · · L2

 (D.8)

Finally, the solution to the modi�ed criterion expressed in equation D.5 is given by

c =
(
MTHM + λR

)−1
MTHa (D.9)

Cappé [Cappé and Moulines, 1996] states that the use of the penalty functional D.6 induces
virtually no additional computational cost; it amounts to adding to the diagonal elements of the
matrix to be inverted a term which is proportional to the square of the cepstrum rank. However,
in order to impose a certain tilt to the spectral envelope, they [Cappé et al., 1995] propose to use
an alternative penalty functional of the following form:

Γ [log |P (ωn)|] = 2

1/2∫
0

[
d

df
log |P (ωn)| − gα (ωn)

]2
df (D.10)
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where gα (ωn) is a function de�ned for positive frequencies which forces the envelope to vary
with slope α ∝ 6dB per octave.

A possible choice of gα (ωn) is α/ω which necessitates a modi�cation of the de�nition in equation
D.10 due to the diverging behavior of the integral term in ω = 0. Truncated versions of α/ω (such
as gα (ωn) = α/ω if ω ≥ ωc and gα (ωn) = α/ωc if ω < ωc) can also be considered although
they generally lead to more complex solutions. Moreover, it is preferable to use more regular
functions (at least derivable) for gα (ωn). Other choices of gα (ωn) include w (ω) α/ω where w (ω) is
a properly chosen window function. In practice, a convenient choice is gα (ωn) = −α (2/log 2) logω,
which behaves approximately like α/ω only in the high-frequency part (for normalized frequencies
above 0.25). Minimization of equation D.10 with this choice of the penalty functional yields

c =
(
MTHM + λR

)−1 (
MTHa+ λrα

)
(D.11)

where vector rα = α (16π/log 2)
[

0 J (1) J (2) · · · J (L)
]T

and R is de�ned as in equation
D.8. The J (i) are integral terms given by

J (i) =

{∫ i/2

0
sin (2πf) log (f) df if i is even∫ i/2

0
sin (2πf) log (f) df − 1

π log i if i is odd
(D.12)

that need to be precomputed by numerical integration.
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Appendix E

Line Spectral Frequencies

In this appendix we will see the fundamental theorem of palindromic polynomials, which is the
theoretical bias for the line spectral pair (LSP) representation.

E.1 The Fundamental Theorem of Palindromic Polynomials

Given a polynomial a (x) of degree M , let ar (x) denote its reciprocal, i.e., ar (x) = xMa (1/x).

a (x) =
M∑

m=0

amx
m = a0 + a1x+ a2x

2 + · · ·+ aM−2x
M−2 + aM−1x

M−1 + aMxM (E.1)

ar (x) =
M∑

m=0

amx
M−m = aM + aM−1x+ aM−2x

2 + · · ·+ a2x
M−2 + a1x

M−1 + a0x
M (E.2)

If a polynomial has real coe�cients and is equal to its reciprocal, we call it a palindromic
polynomial since the coe�cients are the same when read backwards or forwards. In other words,
if a (x) has real coe�cients {am}, it is called palindromic if am = aM−m and antipalindromic if
am = −aM−m. It is not hard to show that the product of two palindromic or two antipalindromic
polynomials is palindromic, while the product of an antipalindromic polynomial with a palindromic
one is antipalindromic. It is possible to prove that every polynomial with real coe�cients that has
all of its zeros on the unit circle is either palindromic or antipalindromic. The simplest cases are
x+ 1 and x− 1, which are obviously palindromic and antipalindromic, respectively. Next consider
a second degree polynomial with a pair of complex conjugate roots on the unit circle(

x− ejφ
) (
x− e−jφ

)
= x2 −

(
ejφ + e−jφ

)
x+ ejφe−jφ = x2 − 2 cosφx+ 1 (E.3)

which is palindromic. Any polynomial with real coe�cients that has k pairs of complex conju-
gate roots will be the product of k palindromic polynomials, and thus palindromic. If a polynomial
has k pairs of complex conjugate roots and the root x = 1 it will also be palindromic, while if it has
the root x = −1 it will be antipalindromic. The converse of this statement is not necessarily true;
not every palindromic polynomial has all its zeros on the unit circle [Konvalina and Matache, 2004].
The idea behind the LSFs is to de�ne palindromic and antipalindromic polynomials that do obey
the converse rule.
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Any arbitrary polynomial a (x) can be written as the sum of a palindromic polynomial p (x)
and an antipalindromic polynomial q (x)

am =
1
2

(pm + qm) (E.4)

where {
pm = am + aM−m

qm = am − aM−m

(E.5)

(ifM is even the middle coe�cient appears in pm only). When we are dealing with polynomials
that have their constant term equal to unity, we would like the polynomials pm and qm to share
this property. To accomplish this we need only pretend for a moment that am is a polynomial of
order M + 1 and use the above equation with aM+1 = 0.

am =
1
2

(pm + qm) (E.6)

{
pm = am + aM+1−m

qm = am +−aM+1−m

(E.7)

Now a0 = p0 = q0 = 1 but pm and qm are polynomials of degree M + 1.
Formally we can write the relationships between the polynomials

a (x) =
1
2

(p (x) + q (x)) (E.8)

where (
p (x)
q (x)

)
= a (x)± xM+1a

(
x−1

)
(E.9)

and it is not hard to show that if all the roots of a (x) are inside the unit circle, then all the
roots of p (x) and of q (x) are on the unit circle [Soong and Juang, 1984]. Furthermore, the roots of
p (x) and q (x) are intertwined, i.e., between every two roots of p (x) there is a root of q (x) and vice
versa. Since these roots are on the unit circle they are uniquely speci�ed by their angles. For the
polynomial in the denominator of the LPC frequency response these angles represent frequencies,
and are called the line spectral frequencies. Why are the LSFs a useful representation of the all-pole
�lter? The LPC coe�cients are not a very homogeneous set, the higher-order being more sensitive
than the lower-order ones. LPC coe�cients do not quantize well; small quantization error may lead
to large spectral distortion. Also the LPC coe�cients do not interpolate well; we can't compute
them at two distinct times and expect to accurately predict them in between. The errors of the
LPC polynomial are a better choice, since they all have the same physical interpretation. However,
�nding these zeros numerically entails a complex two-dimensional search, while the zeros of p (x)
and q (x) can be found by simple one-dimensional search techniques. In speech applications it has
been found empirically that the LSP frequencies quantize well and interpolate better than all other
parameters that have been tried.



Appendix F

Perceptual Similarity for Musical

Instrument Sound

The aim of this listening test is to compare the perceptual similarity between the original recording
and a model of musical instrument sounds.

F.1 Sound Representations

There are many di�erent possible representations of sounds. Some representations sound di�erent
from the original recording, depending on the model. The mp3 compression is a popular example
of a lossy encoding that may sound di�erent from the original. One important aspect of sound
representations is the perceptual similarity between the original sound and its representation.

F.2 The Test

In this listening test you will be asked to compare the perceptual similarity between the original
recording and a representation for musical instrument sounds. Below, you will �nd a table with
20 lines. Each line contains

• the original sound;

• the model.

Notice that each line has di�erent versions of the same sound. These versions might sound di�erent
from one another, but they come essentially from the same recording.

F.3 Framework

For each line of the table, you will hear two sounds. The original recording and the model.
Listen once to all the sounds to get used to the range of di�erences between them. Only after

listening to all of the sounds once should you start the test.
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F.4 Perceptual Similarity

When we judge the perceptual similarity of sounds, we are trying to assess how close the sounds are
on the perceptual plane. In other words, we want to determine if they sound the same or di�erent.
Naturally, when they sound di�erent we can additionally judge how di�erent, just a little or a lot.

F.5 Your Task

Your task is to listen to the original sound and to the model and rate their perceptual similarity
using the scale given

• identical;

• slightly di�erent;

• fairly di�erent;

• very di�erent;

• signi�cantly di�erent.

Before taking the test, listen once to all the sounds to get used to the range of di�erences.

F.6 Recommendations

• Check that the Flash plug-in works correctly and the sound level is properly set;

• Use headphones;

• Do the test in a quiet place;

• Before running the test, do not hesitate to send me an e-mail if you have questions.

Thank you for participating! This experiment won't take you more than 5 minutes.

F.7 Listening conditions

Did you use headphones?

• yes

• no

Did you listen to all the sounds once before taking the test?

• yes

• no

Expertise (are you familiar with a domain related to music, such as acoustic signal processing,
music technology, ... ?)

• yes

• no



Appendix G

Evaluation of the Spectral

Smoothness of Sound Morphing

Algorithms

The aim of this listening test is to compare the smoothness of two di�erent morphing algorithms
applied to musical instrument sounds.

G.1 Sound Morphing

The principle of sound morphing is to gradually transform a source sound to become more and
more similar to a target sound. One important factor when judging the quality of a sound morphing
algorithm is the smoothness of the transformation.

G.2 The Test

In this listening test you will be asked to compare the smoothness of two di�erent morphing
algorithms. Below, you will �nd a table with 11 pairs of morphing transformations. Each pair is a
morph between the same source and target sounds using one of the algorithms. The transformation
on the lefthand side is always labeled Morph A, and the transformation on the righthand side is
always labeled Morph B. However, sometimes Morph A corresponds to one algorithm, sometimes
to the other, in order not to bias the results.

G.3 Framework

For each morphing algorithm, you will hear eleven sounds. The source sound labeled 0.0, nine
intermediate versions labeled 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and the target sound labeled
1.0. The intermediate versions are a morphing transformation from the source sound labeled 0.0
to the target sound labeled 1.0, and they should start similar to the �rst sound and become more
and more similar to the second sound as the labels increase from 0.1 to 0.9.

323



324

APPENDIX G. EVALUATION OF THE SPECTRAL SMOOTHNESS OF SOUND
MORPHING ALGORITHMS

G.4 Smoothness

A smooth morphing algorithm should produce intermediate versions that become gradually or
smoothly similar to the target sound. In other words, the intervals between successive sounds
should be the same, without bumps or sudden discontinuities.

As an example of a bumpy morph, listen to the following transformation paying careful attention
to the di�erence between the intervals. In this example, all the intervals sound very di�erent from
one another.

• Bumpy Morph

Now listen to an example of a smoother morph between the same sounds.

• Smoother Morph

G.5 Your Task

Your task is to listen to both morphs on each row of the table below and compare their smoothness.
Click on the button corresponding to the morph that you judge to be the smoother between the
two, Morph A or Morph B. If they both sound as smooth to you then click on the no preference
button.

Remember that sometimes Morph A corresponds to one morphing algorithm being compared,
sometimes to the other in order not to bias the results. In other words, if you always prefer Morph
A this does NOT mean that you always prefer one morphing algorithm.

Notice that you should try to judge only the smoothness of the morph, not the synthesis quality
(possible synthesis artifacts must NOT a�ect your judgment).

G.6 Recommendations

• Check that the Flash plug-in works correctly and the sound level is properly set;

• Use headphones or earphones;

• Do the test in a quiet place;

• Before running the test, do not hesitate to send me an e-mail if you have questions.

Thank you for participating! This experiment won't take you more than 10 minutes.
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