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Abstract 

In this paper, we present a sound synthesis method that 
utilizes evolution as generative paradigm. Such sounds will 
be thereon referred to as evolutionary sounds. Upon 
defining a population of complex sounds, i.e. sound 
segments sampled from acoustical instruments and speech; 
we generated sounds that resulted from evolution applied to 
those populations. The methodology presented here is an 
extension to the Evolutionary Sound Synthesis Method 
(ESSynth) created recently. In ESSynth, a set of waveforms, 
the Population, is evolved towards another set, the Target, 
through the application of a Genetic Algorithm (GA). 
Fitness evaluation is a mathematical distance metric. We 
enhance features of the previous implementation herein and 
present the codification. The genetic operators and selection 
criterion applied are depicted together with the relevant 
genetic parameters involved in the process. To evaluate the 
results we present a sound taxonomy based on an objective 
and a subjective criterion. Those criteria are discussed, the 
experimental procedure is explained and the results are 
depicted and evaluated. 

 
Introduction 

 
Motivation 
Music composition is a creative process that, here, can be 
described in terms of an aesthetical search in the space of 
possible structures which satisfy the requirements of the 
process (Moroni 2002); in this case, to generate interesting 
music. In a broad sense, our view of sound synthesis is a 
digitally controlled process that produces signals that can 
be used in musical applications. The main objective of our 
research is to verify the musical potential of a specific set 
of mathematical tools used to implement objective 
functions and search operators in evolutionary computation 
processes. 
Complex sounds are remarkably difficult to generate for 
they pertain to a distinctive class of sounds that present 
certain characteristics. Such sounds usually have dynamic 
spectra, i.e. each partial has a unique temporal envelope 
evolution. They are slightly inharmonic and the partials 
possess a certain stochastic, low-amplitude, high-frequency 
deviation. The partials have onset asynchrony, i.e. higher 
partials attack later than the lower ones. Our ears are highly 
selective and often reject sounds that are too 
mathematically perfect and stable. 

Dawkins (1986) describes lucidly how natural selection 
can lead to a building up of complexity, beauty and 
efficiency of design. Dawkins also extends this notion to a 
form of “Universal Darwinism” (Dawkins 1989) in which 
the creative generation of intellectual ideas itself derives 
from such process of iterative refining of ideas competing 
with one another, or “memes”. Compositions tend to 
exhibit various structural degrees, where the composer 
sculpts the initial idea to transform it into satisfactory final 
products. In this work, we are viewing music composition 
as a process that can be adequately modeled by the 
evolutionary paradigm manipulating the generation of 
complex sounds, driving the sonic process to potentially 
the same diversity found in nature. 
 
Evolution 
The first attempt at representing Darwin’s theory by means 
of a mathematical model appeared in the book “The 
Genetic Theory of Natural Selection” (Fisher 1930). Later 
on, Holland (1975) devoted himself to the study of 
adaptive natural systems with the objective of formally 
studying the phenomenon of adaptation as it occurs in 
nature. Genetic Algorithms (GAs), were proposed by 
Holland (1975) to indicate that adaptation mechanisms 
could be used in computers. 
Success in the employment of evolutionary techniques is 
best found in the work of William Latham and his systems 
Mutator and Form Grow to create sculptures in 3D on the 
computer (Latham and Todd 1992). Thywissen (1993), 
inspired by the works of Dawkins and Latham, describes a 
successful attempt at transferring these evolutionary 
concepts to the domain of music composition guiding the 
composer through the sample space of possibilities. 
Evolutionary mechanisms, not restricted to GAs, have 
demonstrated to be extremely efficient means of “blindly” 
searching an acceptable structural candidate in large 
sample spaces. 
An application of GAs to generate Jazz solos is described 
by Biles (1994) and this technique has also been studied as 
a means of controlling rhythmic structures (Horowits 
1994). There is also a description of an algorithmic 
composition procedure in Vox Populi (Moroni et al. 2000) 
based on the controlled production of a set of chords. It 
consists in defining a fitness criterion to indicate the best 
chord in each generation. Vox Populi was capable of 



producing sounds varying from clusters to sustained 
chords, from pointillist sequences to arpeggios, depending 
upon the number of chords in the original population, the 
duration of the generation cycle and interactive drawings 
made by the user on a graphic pad.  
Fornari et al. (2001) worked on a model of Evolutionary 
Sound Synthesis using the psychoacoustic curves of 
loudness, pitch and spectrum, extracted from each 
waveform that represents an individual of the population. 
The psychoacoustic curves map genotypic into phenotypic 
characteristics. That is, they relate physical aspects of the 
chromosomes to the corresponding psychoacoustic 
attributes. Reproduction and selection are done on the 
phenotypic level, similarly to what is done in nature, 
instead of in genotype. 
 
Paper Structure 
In the next section we focus on the generation of 
evolutionary sounds. There is a brief overview of GAs and 
the biological concepts that inspire this approach. 
Interactive Genetic Algorithms (IGAs) are briefly 
explained and their association with exploratory creative 
processes is discussed, along with the possibility that our 
system also be regarded as a creative process. The genetic 
parameters and operators are also presented, along with the 
codification. Then, we emphasize the different aspects to 
be considered when evaluating evolutionary sounds. We 
propose a tentative sound taxonomy as a means of 
classifying the results. Finally, the results are shown and 
analyzed according to the criteria adopted along the 
development of the method. 
 

Generating Evolutionary Sounds 
 
Genetic Algorithms 
GAs are the most commonly used paradigm of 
Evolutionary Computation (EC) due to the robustness with 
which they explore complex search spaces. GAs are 
techniques of computational intelligence that imitate nature 
in accordance with Darwin’s survival of the fittest 
principle. They (qualitative or quantitative) codify physical 
variables via digital DNA on computers. The resulting 
search space contains the candidate solutions, and the 
evolutionary operators will implement exploration and 
exploitation of the search space aiming at finding quasi-
global optima. The evolutionary process combines survival 
of the fittest with the exchange of information in a 
structured yet random way. The better its performance in 
the solution of a determined problem, the more efficient a 
GA is considered, no matter the degree of fidelity to 
biological concepts. In fact, the majority of the algorithms 
that follow this approach are extremely simple on the 
biological point of view, though they are associated with 
extremely powerful and efficient search tools. 
The GA iteratively manipulates populations of individuals 
at a given generation by means of the simple genetic 
operations of selection, crossover and mutation. Taking the 

reproduction rate of the individuals directly proportional to 
performance, the fittest individuals tend to eventually 
dominate the population. Therefore its superior genetic 
content is allowed to disseminate in time. 
We understand applications of GAs in computer music as a 
means of developing aesthetically pleasant musical 
structures. The user will be responsible for the subjective 
evaluation of the degree of adaptability, thus implementing 
a kind of fitness function. 
 
Existence of a Target Set 
The method consists of the generation of two distinct sets 
of waveforms, Population and Target (Manzolli et al. 
2001b). Previously, these sets were initialized at random 
(Manzolli et al. 2001a). Presently, the user is allowed to 
load up to 5 waveforms to each of these sets. Each 
individual in these sets is codified as a chromosome 
composed of 1024 samples of a given waveform at a 
sampling frequency of 44100 samples per second. This is 
equivalent to a wave-format sound segment of 
approximately 0.0232s. 
Evolution drives the individuals in the Population towards 
the individuals in the Target set. In ESSynth, the waveform 
is the genetic code that carries all the information regarding 
the sound and can be manipulated. The resultant timbre, or 
the way the sound distinguishes from others, is the 
characteristic that can be perceived. In this sense, the 
genotype (i.e. the waveforms in the populations) is 
changed, but the phenotype (i.e. the overall timbre) is 
preserved producing a variant. Therefore, these two 
elements are integrated as in biological evolution, which 
uses genetic information to generate new individuals. 
 
Parametric Control of Sound Generation 
In traditional GAs fitness can be encoded in an algorithm, 
but in artistic applications, fitness is an aesthetic judgment 
that must be made by a human, usually the artist. The idea 
of using EC with a human loop first occurs in the works of 
Dawkins (1989) and Latham and Todd (1992). This 
approach was entitled Interactive Genetic Algorithm 
(IGA), where a human mentor must experience the 
individuals in the population and provide feedback that 
either directly or indirectly determines their fitness values. 
Like Biles (1994) observed, this is frequently the 
bottleneck in a GA based system because they typically 
operate in relatively great populations of candidate 
chromosomes, where the listener must evaluate each 
individual. 
When one considers the implementation of a GA, the 
challenge is to find an interesting representation that maps 
the characteristics of the chromosome in musical features 
such that music can be gradually evolved. The fitness 
function, previously objective, is to be reinterpreted as 
subjective; the taste and judgment of the composer start to 
dictate the relative success of musical structures competing 
among themselves. 
In ESSynth, the fitness function is given by a mathematical 
metric to avoid the burden of evaluating each individual 



separately in each generation. However, the user is free to 
explore the search space by choosing the Population and 
Target sets. This can be used both to search the space of 
possible structures in an exploratory way, and to search the 
space for a particular solution. The former considers an 
evolvable Target set, and the latter makes use of a fixed 
Target set. The idea of adopting static or dynamic 
templates has since been applied in music, in computer-
aided design (Bentley 1999) and in knowledge extraction 
from large data sets (Venturini et al. 1997). 
It is the genetic operators that transform the population 
along successive generations, extending the search until a 
satisfactory result is reached. A standard genetic algorithm 
evolves, in its successive generations, by means of three 
basic operators, described as follows. 
Selection: The main idea of the selection operator is to 
allow the fittest individuals to pass its characteristics to the 
next generations (Davis 1991). In ESSynth, fitness is given 
by the Hausdorff (multidimensional Euclidean) distance 
between each individual and the Target set. The individual 
in the Population with the smallest distance is selected as 
the best individual in that generation (Manzolli et al. 
2001a). 
Crossover: It represents the mating between individuals 
(Holland 1975). The central idea of crossover is the 
propagation of the characteristics of the fittest individuals 
in the population by means of the exchange of information 
segments between them, which will give rise to new 
individuals. In ESSynth, crossover operation exchanges 
chromosomes, i.e. a certain number of samples, between 
the best individual in each generation and each individual 
in the Population. The segments are windowed to avoid 
glitch noise. After the operation of crossover, each 
individual in the Population has sound segments from the 
best individual. 
Mutation: It introduces random modifications and is 
responsible for the introduction and maintenance of genetic 
diversity in the population (Holland 1975). Thus, mutation 
assures that the probability of arriving at any point of the 
search space will never be zero. In ESSynth, mutation is 
performed by adding a perturbation vector to each 
individual of the population. The amplitude of this vector 
is given by the coefficient of mutation. This operator 
introduces a certain noisy distortion to the original 
waveform. 
 
Genetic Parameters 
The user will adjust the search according to predefined 
requirements achieved by the manipulation of the 
parameters that follow. 
Size of the Population: The size of the population directly 
affects the efficiency of the GA (Davis 1991). A small 
population supplies a small covering of the search space of 
the problem. A vast population generally prevents 
premature convergences to local solutions. However, 
greater computational resources are necessary (Davis 

1991). We used five individuals in the Target and 
Population sets. 
Coefficient of Crossover: The higher this coefficient, the 
more quickly new structures will be introduced into the 
population. But if it is very high, most of the population 
will be replaced, and loss of structures of high fitness can 
occur. With a low value, the algorithm can become very 
slow (Davis 1991). In this implementation of ESSynth, the 
coefficient of crossover is an internal parameter and cannot 
be affected by the user. It defines how much of the best 
individual will be introduced in each individual in the next 
generation. 
Coefficient of Mutation: It determines the probability of 
mutation. A properly defined coefficient of mutation 
prevents a given position from stagnating in a particular 
value besides, making it possible for the candidate 
solutions to explore the search space. A very high 
coefficient of mutation causes the search to become 
essentially random and increases the possibility of 
destroying a good solution (Davis 1991). In ESSynth, the 
coefficient of mutation ranges from 0 to 1. 
 

Evaluating Evolutionary Sounds 
 
Sound Taxonomy 
The process of sound perception is remarkably non-trivial. 
Schaeffer (1966) introduced the idea of timbre 
classification distinguishing sounds between form and 
matter in the context of concrete music. Later, Risset 
(1991) associated the concept of form to the loudness curve 
and matter to the magnitude of the frequency spectrum of 
the sound. Risset (1991) stated that Schaeffer’s concept of 
form is the amplitude envelope of the sound and matter the 
contents of the frequency spectrum. This has perhaps been 
the first attempt at describing the timbre nature of sound. 
Nowadays it is known that the frequency spectrum of 
sound varies dynamically with time (Risset 1966), and 
cannot be adequately defined by such a static concept as 
matter. The dynamic changes of the frequency spectrum 
carry important information about the sound itself. Smalley 
(1990) declared that the information contained in the 
frequency spectrum cannot be separated from the time 
domain once “spectrum is perceived through time and time 
is perceived as spectral motion”. Risset (1991) declared 
that sound variants produced by changes in the synthesis 
control parameters are intriguing in the sense that usually 
there is not an intuitive relation between parametric control 
and sound variation. We feel it is extremely important for 
the user to be able to relate subjective characteristics of 
sound to the input parameters of the method in order to 
better explore the sound-space towards a desired result. For 
such, an Objective Criterion and a Subjective Criterion 
were chosen to classify the results. Finally, the outcome of 
both experiments was cross-correlated. This analysis shall 
serve as the basis for future applications of ESSynth in 
musical composition. Thus we defined: 



Objective Criterion: evolution of the partials in time 
(spectrogram) and energy displacements. 
Subjective Criterion: classification made by trained 
listeners in accordance with a scale of values that relates 
sounds with qualitative aspects. 
The scale of values was inspired by the works of 
Gabrielsson (1981) and Plomp (1970) and represents some 
timbre dimensions that are commonly adopted. 
 

Results 
The output sound set resulting from a run of the program 
will be shown and discussed. The result of both the 
Objective and Subjective analyses will be presented 
individually and then cross-correlated. 
We expected the output sound to be a timbral merger of the 
individuals in the Population and Target sets. So, the 
results of neither criterion alone shall suffice the 
classification purposes. Only by combining the analyses 
will one be able to decide whether the output sound 
actually presents characteristics from both Population and 
Target sets, representing a variant. 
The genetic parameters adopted were 20 interactions 
(generations), 5 individuals in both the Population and 
Target sets and coefficient of mutation of 0.87. The 
coefficient of mutation is rather high and was chosen so as 
to reinforce the transformations induced by the method. All 
these values were obtained empirically by running the 
program a number of times and analyzing the results. 
 
Objective Criterion 
A case study will be presented with quite a significant 
result that is thought to represent the transformations 
generated by the method. The Population waveforms 
utilized are tenor sax sounds shown in Figure 1 a. The 
Target waveforms are cicada sounds shown in Figure 1 b. 

 
Figure 1a: Population waveforms. Z-axis represents amplitude scaled in 
the interval [-1,1], Y-axis is the number of individuals (5 in each 
population) and X-axis is the number of samples (time scale) 

Notice that although the individuals in Figure 1 appear as a 
surface they are actually separate entities along the axis 
labeled individuals. 

 
Figure 1b: Target waveforms. Z-axis represents amplitude scaled in the 
interval [-1,1], Y-axis is the number of individuals (5 in each population) 
and X-axis is the number of samples (time scale) 

These particular sounds were chosen so as to highlight the 
transformations once the characteristics of both the 
Population and Target sets are thought of as distinctively 
different. The Population is sonorous and has spectral 
contents harmonically distributed, because they are derived 
from an acoustic musical instrument, while the individuals 
in the Target set are rather noisy and inharmonic. 
Next, the spectrograms of one of the individuals of the 
Population (B_orig5) and Target (T1) sets are shown in 
Figure 2.  

 

 
Figure 2: Spectrogram of B_orig5 (top), and of T1 (bottom). X-axis is 
time in seconds, Y-axis is frequency in Hertz (increasing from top to 
bottom) and intensity is represented in the scale shown below the figure 



The resultant waveforms obtained after 20 generations are 
shown below in Figure 3, as well as a representative 
spectrogram. 

 

 

 
Figure 3: Result after 20 generations. All the individuals of the Modified 
Population, i.e. output sound (top), thereon denominated B_modified, are 
shown. The frequency spectrogram of the first individual of B_modified, 
denominated B1, is shown (bottom) 

It is interesting to notice that the waveforms were sculpted 
by the program due to the fact that crossover is applied, in 
average, in the middle of the waveform. The spectrogram 
features characteristics from the Population and from the 
Target. The result is a merger of aspects of similar nature 
to B_orig5 and T1, shown in Figures 1 and 2. One 
individual from B_modified (B1) was chosen to represent 
the spectral transformations. 
 

Subjective Criterion 
The results of the Subjective experiment are presented 
concerning the scale of qualitative values. Although 
subjective, the chosen scale is part of the perceptional 
context of the individuals used in the experiment. The 
estimation of a subject is shown in Table 1 and was chosen 
to represent the overall result. The individuals taken into 
consideration throughout the text are highlighted in the 
table. The result of this analysis is only considered for B1, 
i.e. the individual whose spectrogram is shown at the 
bottom of Figure 3. 
Figure 4 shows the different levels each dimension was 
quantified into. Figure 5 depicts the result of the subjective 
experiment highlighting the characteristics passed on to B1 
and from which of the sets, Population or Target, it 
probably inherited them. 
Cross-correlating the information of the spectral analysis 
with the information from the qualitative analysis, it can be 
inferred that the output wave presents an intermediate  
spectrogram with an intermediate subjective evaluation. 
This can be considered as a form of spectral crossover 
resulting from ESSynth. Cross-correlating the results of the 
Objective and Subjective analyses one can infer that the 
presence of concentrated harmonic spectral components in 
low frequencies can be associated with the subjective 
classification of bright given to the sax sounds. The 
presence of inharmonic spectral components, due to the 
lack of defined pitch and great spectral power density, can 
be associated with the quality of noisy given to the cicada 
sound. The final sound acquired noisy characteristics, 
maintaining, however, its brightness, probably due to the 
presence of harmonic frequencies between 0Hz and 5KHz 
that preserved some of the subjective characteristics of the 
sax sounds. Intuitively, it can be stated that the resultant 
sound is a spectral mixture that, using a biological 
terminology, is a crossover process between the two 
populations. 
 
 
 

 
Figure 4: Scale of values for crossing the subjective terms 

 

 
 

 

 

 

 
Table 1: Result of the fourth subject’s estimation of the presented samples 

 Brightness×Dullness Sharpness×Softness Fullness×Thinness Clearness×Noisiness  
Very   Medium   Little Very   Medium   Little Very   Medium   Little Very   Medium   Little 

B_orig1 Medium Dull Medium Sharp Little Thin Little Clear 
B_orig2 Medium Dull Little Soft Medium Thin Medium Noisy 
B_orig3 Little Dull Very Sharp Medium Full Medium Noisy 
B_orig4 Medium Dull Very Sharp Little Full Little Clear 
B_orig5 Medium Dull Little Soft Little Full Little Clear 

T1 Very Bright Medium Sharp Medium Full Medium Noisy 
T2 Very Bright Very Sharp Very Full Medium Noisy 
T3 Very Bright Medium Sharp Medium Full Medium Noisy 
T4 Very Bright Very Sharp Little Full Medium Noisy 
T5 Very Bright Little Sharp Little Full Medium Noisy 

B1(Output) Very Bright Little Soft Medium Full Medium Noisy 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Graphic depiction of the result of the subjective evaluation 
 

Conclusion 
An extension to the original Evolutionary Sound Synthesis 
Method for complex sounds was presented and the results 
obtained were shown and evaluated. These results were 
analyzed observing waveform and spectral transformations 
caused by the method. The method can be regarded as a 
novel framework for timbre design. It is a new paradigm 
for Evolutionary Sound Synthesis for it incorporates 
subjectivity by means of interaction with the user.  
Many extensions can still be envisioned and tested. It can 
be used to compose soundscapes, as a timbre design tool or 
in live electroacoustic presentations where an evolutionary 
timbre is generated, which evolves in real time along with 
the evolution of other music materials. 
Future trends of this research include using co-evolution as 
generative paradigm, experimenting other distance metrics 
(fitness) and even other bio-inspired approaches applied to 
sound synthesis. 
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