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Abstract. Computer generated sounds for music applications have many facets, 
of which timbre design is of groundbreaking significance. Timbre is a 
remarkable and rather complex phenomenon that has puzzled researchers for a 
long time. Actually, the nature of musical signals is not fully understood yet. In 
this paper, we present a sound synthesis method using an artificial immune 
network for data clustering, denoted aiNet. Sounds produced by the method are 
referred to as immunological sounds. Basically, antibody-sounds are generated 
to recognize a fixed and predefined set of antigen-sounds, thus producing 
timbral variants with the desired characteristics. The aiNet algorithm provides 
maintenance of diversity and an adaptive number of resultant antibody-sounds 
(memory cells), so that the intended aesthetical result is properly achieved by 
avoiding the formal definition of the timbral attributes. The initial set of 
antibody-sounds may be randomly generated vectors, sinusoidal waves with 
random frequency, or a set of loaded waveforms. To evaluate the obtained 
results we propose an affinity measure based on the average spectral distance 
from the memory cells to the antigen-sounds. With the validation of the affinity 
criterion, the experimental procedure is outlined, and the results are depicted 
and analyzed. 

1 Introduction 

Computer music is an ever-growing field partly because it allows the composer such 
great flexibility in sound manipulation when searching for the desired result. Once the 
search space and the goals are defined, a technique for achieving the final product is 
required. Many different approaches have been proposed to meet the requirements of 
the process, i.e. creating interesting music, with results that vary from the unexpected 
to the undesired, depending upon a vast number of factors and on the methodology 
itself. Traditional sound synthesis techniques present limitations especially due to the 
fact that they do not take into consideration the subjective and/or the dynamic nature 
of music, by using processes that are either too simple or not specifically designed to 
handle musical sounds [14]. 

In this work, we are focusing primarily on the production of complex sounds for 
musical applications taking timbre design as paradigm. Complex sounds pertain to a 
distinctive class of sounds that present certain characteristics. Such sounds usually 
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have dynamic spectra, i.e. each partial has a unique temporal evolution. They are 
slightly inharmonic and the partials possess a certain stochastic, low-amplitude, high-
frequency deviation in time. The partials have onset asynchrony, i.e. higher partials 
attack later than the lower ones. Our ears are highly selective and often reject sounds 
that are too mathematically perfect [4]. 

Music composition has been studied for a long time using many kinds of 
computational techniques, including statistic and stochastic methods [22][34], chaos 
theory [19], and other non-linear methods [21]. Many researchers have recently 
suggested the creation of Artificial Intelligence (AI) based systems for music 
composition [1][4][16][32]. Applications of AI in music composition involve 
artificial neural networks [6], cellular automata [3][23], and evolutionary computation 
(EC) [13][16][20][24][32]. Refer to the work of Santos et al. [29] for a detailed 
review of the application of EC in music systems. 

As a preliminary step toward the current proposal, Caetano et al. [4] suggested the 
use of EC to pursue stationary/fixed target sounds that are considered the user’s 
desired timbral outcome. The reported results can be interpreted as a sort of spectral 
blend between the initial and target sounds. An objective and a subjective criterion 
were adopted to evaluate the results. The approach of creating new timbres by the 
algorithmic evolution of a population of candidate solutions, having targets as 
references, presents a vast range of possibilities. It should be noted that, despite the 
fact that the process of algorithmic evolution searches for an optimum guided by the 
fitness function, this optimum cannot be properly specified from the musical point of 
view. So, the denoted targets should not be considered ideal solutions, but solely 
indicative modes. 

Here, we present a timbre design method that allows the composer to express a 
certain degree of subjectivity by simply adjusting the input parameters according to 
prerequisites. The user is enabled to find candidate solutions that meet certain musical 
requirements by using a set of waveforms as examples of the desired timbre. Instead 
of describing the sounds using numerical parameters or any other linguistic tool, we 
used a set of sounds to characterize timbre. Smalley [31] declared that the information 
contained in the frequency spectrum cannot be separated from the time domain, 
because “spectrum is perceived through time and time is perceived as spectral 
motion”. Thus, by specifying the target waveforms (antigen-sounds), the user is also 
specifying the spectral contents and the timbral characteristics of the tones. Grey [14] 
discusses the advantages of time domain representation. We aim at sound design by 
means of the specification of the spectral contents. In practical terms, the induced 
immune response will provide results (antibody-sounds) highly correlated with the 
target waveforms, albeit preserving local diversity. 

The main objective of this paper is to verify the music potential of an immune 
inspired clustering technique in the specific task of timbre design by simulating the 
process under different conditions, and posteriorly showing that the results are 
consistent with the expected outcome. Artificial immune systems (AIS) for data 
clustering are generally based on the immune network theory of Jerne [18], thus 
producing a self-organizing process with diversity maintenance and a dynamic control 
of the network size [10]. 

Concerning the application of immune-inspired approaches in the aesthetical 
domain, we may emphasize two initiatives. AISArt [17] is an interactive image 
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generation tool. The user conducts the system according to the aesthetic appreciation 
of areas of the images, which is also an original approach in the context of interactive 
evolutionary systems [1]. Chao and Forrest [5] also describe an interactive search 
algorithm inspired by the immune system, devoted to synthesizing biomorphs [9]. 
They report that this algorithm is capable of consensus solutions, given that distinct 
selection criteria may be associated with modules that compose the biomorph. To the 
best of our knowledge, there has been no previous application of AIS in timbre 
design. 

The next section describes theories of timbre and how they are related to the 
development of sound synthesis techniques. Then, the fundamentals of AIS are briefly 
reviewed and the proposed approach is presented. The experiments performed are 
described and the outcomes, followed by analysis, are presented. Finally, concluding 
remarks and perspectives for further research are considered. 

2 Timbre Design 
2.1 Musical Timbre 

Timbre is defined by the ASA (American Standard Association) as “that attribute of 
the auditory sense in terms of which the listener can judge that two sounds similarly 
presented which have the same intensity and pitch are dissimilar” [28]. Therefore, 
musical timbre is the characteristic tone quality of a particular class of sounds. As a 
diverse phenomenon, timbre is more difficult to characterize than either loudness or 
pitch. No one-dimensional scale – such as the loud/soft of intensity or the high/low of 
pitch – has been postulated for timbre, because there exists no simple pair of 
opposites between which a scale can be made. 

Because timbre has so many facets, computer techniques for multidimensional 
scaling have constituted the first major progress in quantitative description of timbre 
[14], since the pioneering work of Hermann von Helmholtz [33] in the nineteenth 
century. From then on, researchers have determined a more accurate model of natural 
(complex) sounds. Digital recording has enabled the contemporary researcher to show 
that the waveform (and hence the spectrum) can change drastically during the course 
of a tone. Risset [27] observed that complex sounds have dynamic spectra and the 
evolution in time of the sound’s spectrum plays an important part in the perception of 
timbre. Timbre variations are perceived, for example, as clusters of sounds played by 
a particular musical instrument, or said by a particular person, even though these 
sounds might be very distinct among themselves, depending upon its pitch, intensity 
or duration. In fact, the concept of timbre has always been related to sounds of 
musical instruments or voice, and it is in this scope that the majority of research on 
timbre has been developed [14][15][27]. These works identified innumerable factors 
that form what is called timbre perception. 

2.2 Theories of Timbre 

2.2.1 Classical Theory of Timbre 
Herman von Helmholtz [33] laid the foundations for modern studies of timbre. He 
characterized tones as consisting of a sum of sinusoidal waves enclosed in an 
amplitude envelope made up of three parts: the attack, the steady-state, and the decay 
as shown in Figure 1. 
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Fig. 1. A simplified Helmholtz model: the three principal segments of a tone. 

Helmholtz concluded that sounds which evoke a sensation of pitch have periodic 
waveforms (refer to Figure 2 (b) for an example) and further described the shape of 
these waveforms as fixed and unchanging with time. He also established that the 
nature of the waveform has great effect on the perceived timbre of a sound. To 
determine which characteristics of a waveform correlate best with timbre, he made 
use of the work of Fourier and concluded that the spectral description of a sound has 
the most straightforward correlation with its timbre. As a consequence, almost every 
synthesis technique proposed is concerned with the production of a signal with a 
specific spectral content, rather than a particular waveform. 

The spectral envelope of a sound is one of the most important determinants of 
timbre [12], because it outlines the profile of energy distribution in a frequency 
spectrum. 

2.2.2 Modern Studies of Timbre 
Since then, researchers have determined a more accurate model of natural sound. 
Digital recording has enabled researchers to show that the waveform, and hence the 
spectrum, can change drastically during the course of a tone. Such changes can be 
visualized by a plot of the evolution of the partials in time, herein denoted dynamic 
spectrum and depicted in Figure 2 (c). 

The Fourier transform enables researchers to obtain the spectrum of a sound from 
its waveform. Risset [27] obtained the spectral evolution of the partials of trumpet 
tones, being able to determine the time behavior of each component in the sound. He 
found that each partial of the tone has a different amplitude envelope. 

This clearly contrasts with the basic Helmholtz model in which the envelopes of all 
the partials have the same shape. Grey [15] wondered whether such fine-grained, 
intricate evolution of the partials could be approximated and still retain the tone’s 
characteristic timbre. He found out that of the three forms of simplification attempted 
with the tones, the most successful was a line-segment approximation to time-varying 
amplitude and frequency functions for the partials. 

Although this method does decrease dramatically the amount of data required to 
reconstruct the tones, it still takes a large number of oscillations to satisfactorily 
accomplish the desired result. In computer music, synthesis algorithms that directly 
recreate the partials of a tone generally use data stored as line segments. It is 
important to be aware that this methodology is usually effective only within a small 
range of frequencies. For instance, a tone based on the data but raised an octave from 
the original will most often not evoke the same sensation of timbre. 
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Fig. 2. Example of a waveform and dynamic spectrum of a natural (complex) sound (tenor 

trumpet). Part (a) shows the waveform and (b) a detail of the periodicity, characteristic of the 
harmonic spectra of musical instruments. Part (c) emphasizes the evolution of the partials in 

time (dynamic spectrum). 

When presented with a group of spectral components, a listener may or may not 
fuse them into the percept of a single sound. One of the determining factors is the 
onset asynchrony of the spectrum that refers to the difference in entrance times among 
the components [15] (see Figure 2(c)). The fluctuations in frequency of the various 
partials are usually necessary for the partials to fuse into the percept of a single tone 
[7]. 

3 The Artificial Immune Musical System 

The immune system is a complex of cells, molecules and organs with the primary role 
of limiting damage to the host organism by pathogens, which elicit an immune 
response and thus are called antigens. One type of response is the secretion of 
antibody molecules by B cells. Antibodies are receptor molecules bound on the 
surface of a B cell with the primary role of recognizing and binding, through a 
complementary match, with an antigen. Antigens can be recognized by several 
different antibodies. The antibody can alter its shape to achieve a better match 
(complementarity) with a given antigen. The strength and specificity of the antigen-
antibody interaction is measured by the affinity (complementarity level) of their 
match [11]. 

3.1 Artificial Immune Network (aiNet) 

AISs are adaptive procedures inspired by the biological immune system for solving 
several different problems [10]. Dasgupta [8] defines them as “a composition of 
intelligent methodologies, inspired by the natural immune system for the resolution of 
real world problems”. 

The aiNet is an artificial immune network whose main role is to perform data 
clustering by following some ideas from the immune network theory [18], the clonal 
selection [2], and affinity maturation principles [25]. The resulting self-organizing 
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system is an antibody network that recognizes antigens (input data set) with certain 
(and adjustable) generality. 

The clonal selection principle proposes a description of the way the immune 
system copes with the pathogens to mount an adaptive immune response. The affinity 
maturation principle is used to explain how the immune system becomes increasingly 
better at its task of recognizing and eliminating these pathogens (antigenic 
substances). The immune network theory hypothesizes the activities of the immune 
cells, the emergence of memory and the discrimination between reactive and tolerant 
regions in the shape-space [26] [30]. 

The aiNet clusters will serve as internal images (mirrors) responsible for mapping 
existing clusters in the data set (Figure 3 (a)) into network clusters (Figure 3 (b)). The 
resultant memory cells represent common features present in the data set that were 
extracted by aiNet. Let us picture a set of sounds as antigens and its internal (mirror) 
image as variants. Inspired by Risset’s sound variants idea [27], it is possible to 
imagine, for example, variants as a type of immune-inspired transformation applied to 
the sound population. Smalley’s time and spectrum integration [31] also induces a 
timbre adaptation in time or, using a more suitable terminology for the context, a 
dynamic process in which an immunological timbre is generated. In this sense, the 
waveforms can be regarded as the repertoire to which the system is exposed, and the 
associated timbre may be linked to the specific response it elicits. It is of critical 
importance to notice that when an antibody-sound is representing more than one 
antigen-sound, it is placed in such a spot in soundspace that allows it to present 
features that are common to all the sounds it is representing. Figure 3 (c) depicts the 
intersection of characteristics shared by three different sounds. 

 
Fig. 3. Depiction of the feature extraction capability of aiNet. Part (a) shows the original data, 
part (b) shows the resultant memory cells representing the original data, and part (c) illustates 
the common timbral features of three classes of sounds. 

3.1.1 Representation 
The input parameters of the present implementation are shown in Table 1. Each 

individual is codified as a vector composed of L samples of a given waveform at a 
sampling frequency of FS samples per second. The individuals are, thus, represented 
in time domain, as vectors in úL. The affinity is given by the multidimensional 
Euclidean distance between antigen-sounds and antibody-sounds and is shown in 
equation (1). This is the time-domain evaluation of distance. 
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Table 1. Input parameters that can be controlled by the user 

L Number of samples per individual 
FS Sampling rate 
G Number of antigens 
ts Suppression threshold 

number Initial number of antibodies 
n Number of best-matching cells selected 

gen Number of generations 
CM Clone number multiplier 
qi Percentile amount of clones to be re-selected 
sc Minimum distance between antibodies and antigens 

 

( ) ( )∑
=

−=
L

n
nn abagabagd

1

2,  (1) 

3.1.2 Methodology of Analysis 
A measure of spectral distance was developed to verify whether approaching the 
target sounds in time domain also corresponds to approximating the desired timbral 
attributes in virtue of this spectral distance measure. It measures the distance from the 
antigen-sound’s dynamic spectrum to the dynamic spectrum of each antibody-sound it 
represents, as shown in equation (2), which utilizes the same notation of Figure 4. 
Figure 4 depicts a schematic representation of a dynamic spectrum matrix. The 
parameters are explained in Table 2. 

 
Fig. 4. Depiction of a dynamic spectrum matrix representation. X-axis represents time domain 
by the index j. Y-axis represents frequency domain by the index i. Each white row is a 
frequency (partial) temporal evolution (e.g. f1). The gray columns are instantaneous spectra in 
determined moments (e.g. t1). The intersection of row and column gives the amplitude of a 
given partial (frequency) at a given moment, represented by a(i,j) (black square). 
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Table 2. Parameters of Equations (2) and (3) 

k kth antigen 
h hth antibody 
g Generation 
F Dimension of frequency vector 
T Dimension of time vector 
D Number of antibodies representing antigens 

 
Then, the minimum distance for each antigen and the respective antibody-sound set 

representing it are extracted from kh
gα , obtaining a subset 1~ k

gα , where kk ≤1  because 
one antibody-sound may be representing more than one antigen-sound (data 
compression). In the latter case, the distances are averaged for each antigen-sound. 
Finally, this vector of values is averaged for each generation, as shown in equation 
(3). 

∑α=Α
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This way, an average spectral distance from the potential solutions to the target 
spectrum is obtained at each generation. Two different experiments were performed 
to validate the method. They will be explained in what follows. 

Experiment 1: 
The spectral distance can be used to test whether the suppression threshold (ts) would 
produce the expected result. The suppression threshold (ts) controls the specificity 
level of the antibodies, the clustering accuracy and network plasticity. Refer to de 
Castro & Von Zuben [11] for sensitivity analysis of the parameters. One can conclude 
that decreasing ts, the antibody-sounds are expected to become more specific, 
decreasing the average distance from the antigen-sounds they represent while 
increasing in number. As a consequence, the resultant waveforms approach the target 
sounds as close as the user wishes. 

Experiment 2: 
In this experiment we wish to verify the potential of the method to generate high 

quality variants, regardless of the type of initialisation of the antibody network, i.e. 
regardless of the initial spectral content. We used three types of initialisation: white 
noise (a vector randomly generated), pure tones (sinusoidal waves with random 
frequencies from 180 Hz to 16 kHz) and complex sounds (loaded waveforms of 
another musical instrument). The spectra used in the experiments can be seen in 
Figure 5. They represent the dynamic spectra of the original antibody-sounds, that is,  
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Fig. 5.Dynamic spectrum of the original antibody-sounds used in experiment 2. Part (a) shows 

white noise; Part (b) a pure tone and parts (c1) and (c2) show examples of the dynamic 
spectrum of a harmonica representing a natural (complex) sound. 

the spectral content which will be moulded into the target spectra by means of 
temporal immunological manipulation. 

The dynamic spectra of four antigen-sounds are shown in Figure 6. They represent 
the target spectra, the ultimate goal of the method. We expect to obtain 
immunological internal images, which would represent timbral variants. 

 
Fig. 6. Example of dynamic spectra of the tones used as antigens 

4 Results 

The parameters used in all experiments were as follows in Table 3. Refer to Table 1 
for the definition of all input parameters. These values of L and FS represent a wave-
format sound segment of approximately 0.1s. In experiment 1, the value of ts varies as 
shown in Table 4. 

Table 3. Parameters utilized in both experiments (1) and (2) 

L FS G number n gen CM qi sc 
4096 44100 10 5 1 50 7 70% 0.1 

4.1 Experiment 1 

In this experiment we wished to confirm the data compression capability of the 
method. This characteristic allows the user to choose how close to the target sounds 
one wishes the results to be. The smaller the number of memory cells (resultant 
antibody-sounds), the farther they are from the antigen-sounds they represent for they 
represent more than one antigen-sound. The results shown in Table 4 confirm this 
assertion both in time and in spectrum domain. Due to the relatedness of the spectral 
contents and the associated timbre, it can be inferred that the same holds true for the  
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Table 4. Result of Experiment 1 

  Distance 
ts D Temporal Spectral 

0.5 4 3.16 41.89 
0.3 6 1.44 35.46 
0.1 9 0.49 21.66 

0.05 10 0.27 20.05 

corresponding timbral space. That is, this representation contains characteristics that 
are common to all the sounds it is representing (Figure 3). 

Figure 7 (a) shows an antigen-sound’s dynamic spectrum and its memory cell 
representation when ts is 0.05 (b) and 0.5 (c). Part (d) shows the result of randomly 
perturbing the antigen-sounds, i.e. adding a gaussian-noise (white-noise) vector (with 
variance 0.1) to it. Clearly the result is very different between Figures 7 (c) and (d). 
Psychoacoustically, the resultant sound in Figure 7 (c) is a timbral merger of the 
corresponding antigen-sounds. In Figure 7 (d) it is a noisy version of Figure 7 (a). It is 
interesting to notice that the spectral result was achieved through waveform 
(temporal) manipulation.  

 
Fig. 7.Depiction of the different results obtained by adjusting the parameters and randomly 

perturbing the antigen-sounds. 

4.2 Experiment 2 
This experiment was set to prove the independence of the method from the type of 
initialization of the original antibody-sounds. All the parameters remained the same in 
experiment 2, except for ts that was set to 0.05. The results of the second experiment 
are depicted in Figure 8, which shows only four resultant antibody-sounds to illustrate 
the results. It is important to stress that 10 memory cells (resultant antibody-sounds) 
were obtained in all instances of this experiment. Compare the results with the 
antigen-sounds shown in Figure 6. In terms of spectral contents and dynamics, these 
antibody-sounds bear a striking resemblance to the antibody-sounds’ dynamic spectra, 
representing a variant 

4.2.1 Generational Distance Analysis 
This second result intends to show the rapid dynamics of the convergence process, 
independently from the initialisation, both in time and spectrum domain. It can also be 
inferred that the same holds true for the timbral domain. Figure 9 shows the 
adaptation of both the temporal and spectral affinity between antibody-sounds and the 
antigen-sounds they represent. Only the first generations are shown for the sake of 
clarity and to emphasize the rapid convergence in both cases. Notice that in all 
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instances convergence was achieved before the tenth generation. It means that, no 
matter the starting point in soundspace, the result can always be expected to be 
approximately the same (for the same input parameters). This is an extremely 
important characteristic of the method. 

 
Fig. 8. Memory cells resulting from the initialization of the algorithm with white noise (top), 

pure tones (middle) and complex sounds (bottom). 

 
Fig. 9. Detail of the generational distance evolution. Top shows the temporal distance measure 
and bottom shows the spectral metric evolution. Column (a) shows the distances for the white-
noise case; column (b) for the pure-tone case; and column (c) for the complex-sound case. Only 

the transient part of the curve is shown, i.e. the first generations. 
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5 Analysis 

Both experiments base the method as a robust, yet flexible, timbre design technique. 
In experiment 1 we showed that the user can achieve a result that is as close as one 
wishes to the preset antigen population, depending on only one input parameter, the 
suppression threshold (ts). 

It should be noted that, in experiment 2, both distances decreased exponentially 
with the generations and stabilized fairly quickly. The measure of spectral distance 
developed confirms the temporal behaviour observed. Here we should stress the 
important fact that this is hardly the first proposal for a measure of timbral distance. 
Many other techniques are available, including multidimensional scaling [15] and 
subjective analyses [4], among others. 

In experiment 2 the results show that the method does not depend on the 
initialisation of the original antibody-sounds. Also, the dynamic spectra obtained 
represent timbral variants of the antigen-sounds. 

The experiments show that aiNet is capable of producing sounds that have the 
desired spectral content with flexibility and robustness. The method makes possible to 
avoid the burden of trying to describe the desired result in terms of timbral attributes 
or to exhaustively search the entire soundspace for the desired result interactively, 
such as is the case for Interactive Genetic Algorithms [1]. 

6 Conclusions 

A novel method of timbre design was presented, which utilizes aiNet, an immune-
inspired clustering technique, in the task of obtaining sounds. These sounds possess a 
set of desired timbral characteristics that are inherent to musical sounds and that 
cannot be precisely described due to the intrinsic multidimensional nature of timbre 
and the subjective characteristics involved. There is no consensus on how many or 
what these dimensions are, let alone their subjective relation to the spectral contents 
of the tone. A spectral measure of distance was developed to confirm the results. It is 
a mathematical measure that can be linked to the subjective, aesthetic percept of 
timbre. 

We showed that the method is robust in original spectral content to be transformed, 
as well as it is adjustable according to the input parameters. We also demonstrated 
that random variation alone is not enough to produce the same results, generating only 
noisy results. The characteristics of maintenance of diversity and the adjustable size 
of population provided by aiNet are essential in the results. 

Many extensions can be envisaged and tested. It can be used to compose 
soundscapes, as a timbre design tool or in live electroacoustic music where an 
immunological timbre is generated, which evolves in real time along with other music 
materials. Future trends might include using the technique in AI-based musical 
systems and adapting the method for dynamic environments, i.e. using time-varying 
antigen-sounds. 



Application of an Artificial Immune System in a Compositional Timbre Design Technique     

7 Acknowledgements 

The authors wish to thank FAPESP (process no. 03/11122-8) and CNPq (process no. 
300910/96-7 and 308765/2003-6) for their financial support. 

8 References 

[1] Biles, J. A. “GenJam: A Genetic Algorithm for Generating Jazz Solos”, Proceedings of the 
1994 International Computer Music Conference, (ICMC’94), pp. 131-137, 1994. 

[2] Burnet, F.M. The Clonal Selection Theory of Acquired Immunity, Cambridge University 
Press, 1959. 

[3] Burraston, D., Edmonds, EA, Livingstone, D. and Miranda, E. “Cellular Automata in 
MIDI based Computer Music” Proceedings of the InternationalComputer Music 
Conference, pp. 71-78, 2004. 

[4] Caetano, M., Manzolli, J., Von Zuben, F. J. Interactive Control of Evolution Applied to 
Sound Synthesis. Proceedings of the 18th International Florida Artificial Intelligence 
Research Society (FLAIRS), Clearwater, EUA, 2005. 

[5] Chao, D., Forrest, S. “Generating biomorphs with an aesthetic immune system”. 
Proceedings of the eighth international conference on Artificial life, pp 89 – 92, MIT 
Press, 2002. 

[6] Chen, C. J. and Miikkulainen, R., "Creating Melodies with Evolving Recurrent Neural 
Networks", Proceedings of the International Joint Conference on Neural Networks 
(IJCNN-01), 2241-2246, 2001. 

[7] Chowning, J. “Computer Synthesis of the Singing Voice” In Joan Sundberg (ed.), Sound 
Generation in Winds, Strings, and Computers. Stockholm: Royal Swedish Academy of 
Music, 1980. 

[8] Dasgupta, D. Artificial Immune Systems and their Applications, Springer-Verlag. (ed.), 
1999. 

[9] Dawkins, R., The Blind Watchmaker, Penguin Books, 1986. 
[10] de Castro, L. N. & Timmis, J. I. Artificial Immune Systems: A New Computational 

Intelligence Approach, Springer-Verlag, London, 2002. 
[11] de Castro, L.N and Von Zuben, F. aiNET: An Artificial Immune Network for Data 

Analysis, in Data Mining: A Heuristic Approach. Abbas, H, Sarker, R and Newton, C 
(Eds). Idea Group Publishing, 2001. 

[12] Dodge, C. and Jerse, T. A. Computer Music, synthesis, composition and performance. 
Schirmer Books, ISBN 0-02-873100-X, 1985. 

[13] Fornari, J.E. Evolutionary Syhnthesis of Sound Segments. Ph.D. Thesis, Dept. of 
Semiconductors, Instruments and Photonic, University of Campinas, 2001. in Portuguese. 

[14] Grey, J. M. An Exploration of Musical Timbre, Doctoral dissertation, Stanford Univ, 
1975. 

[15] Grey, J. M., and Moorer, J. A., “Perceptual Evaluations of Synthesized Musical 
Instrument Tones”. Journ. Ac. Soc. Am., 62, 2, pp 454-462, 1977. 

[16] Horowits, D. “Generating Rhythms with Genetic Algorithms”. Proceedings of the 1994 
International Computer Music Conference (ICMC’94), pp. 142-143, 1994. 

[17] http://aisart.hybridsociety.net/. Accessed in March 2005. 
[18] Jerne, N. K. “Towards a Network Theory of the Immune System”, Ann. Immunol. (Inst. 

Pasteur), pp. 373-389, 1974. 
[19] Johnson, K. Controlled chaos and other sound synthesis techniques, BSc thesis, University 

of New Hampshire Durham, New Hampshire, 2000. 



      Marcelo Caetano, Jônatas Manzolli, and Fernando J. Von Zuben 

[20] Manzolli, J, A. Maia Jr., J.E. Fornari & F. Damiani, “The Evolutionary Sound Synthesis 
Method”. Proceedings of the ninth ACM international conference on Multimedia, 
September 30-October 05, Ottawa, Canada, 2001. 

[21] Manzolli, J. “FracWav sound synthesis”. Proceedings of the International Workshop on 
Models and Representations of Musicals Signals, Capri, 1992. 

[22] Manzolli, J., Maia, A. “Interactive composition using Markov chain and boundary 
functions”. Proceedings of the 15th Brazilian Computer Society Conference, II Brazilian 
Symposium on Computer Music, 1995. 

[23] Miranda, E. R. On the Music of Emergent Behavior: What Can Evolutionary Computation 
Bring to the Musician?, Leonardo, vol. 36, no. 1, pp. 55-58, 2003. 

[24] Moroni, A., Manzolli, J., Von Zuben, F. & Gudwin, R. Vox Populi: An Interactive 
Evolutionary System for Algorithmic Music Composition, San Fracisco, USA:  Leonardo 
Music Journal –MIT Press, Vol. 10, 2000. 

[25] Nossal, G.J.V. The Molecular and Cellular Basis of Affinity Maturation in the Antibody 
Response, Cell, 68, pp. 1-2, 1993. 

[26] Perelson, A.S. & Oster, G.F. Theoretical Studies of Clonal Selection: Minimal Antibody 
Repertoire Size and Reliability of Self-Nonself Discrimination. J. Theoret. Biol., vol. 81, 
pp. 645-670, 1979. 

[27] Risset, J. C. Computer Study of Trumpet Tones. Murray Hill, N.J.: Bell Telephone 
Laboratories, 1966. 

[28] Risset, J. C., Wessel, D. L. Exploration of timbre by analysis and synthesis. In D. Deutsch 
(ed.) The Psychology of Music (pp. 26-58). New York: Academic, 1982. 

[29]  Santos, A., Arcay, B., Dorado, J., Romero, J.  & Rodríguez, J.: “Evolutionary 
Computation Systems for Musical Composition”. International Conference Acoustic and 
Music: Theory and Applications (AMTA 2000). vol 1. pp 97-102. ISBN:960-8052-23-8. 
2000. 

[30] Segel, L. & Perelson, A.S. “Computations in Shape Space: A New Approach to Immune 
Network Theory”, in: ed. A.S. Perelson, Theoretical Immunology, vol. 2, pp. 321-343, 
1988. 

[31] Smalley, D. Spectro-morphology and Structuring Processes. In the Language of 
Electroacoustic Music, ed. Emmerson, pg. 61-93, 1990. 

[32] Thywissen, K., GeNotator: An Environment for Investigating the Application of Genetic 
Algorithms in Computer Assisted Composition, Univ. of York M. Sc. Thesis, 1993. 

[33] von Helmholtz, H. On the Sensations of Tone. London, Longman, 1885. 
[34] Xenakis, I. Formalized Music. Bloomington: Indiana University Press, 1971. 


