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Abstract. Generating sounds for music composition with the desired timbral 
characteristics has been a challenge ever since the dawn of electroacoustic 
music. Timbre is a remarkably complex phenomenon that has puzzled 
researchers for a long time. Actually, the nature of musical signals is not fully 
understood yet. In this paper, we present a sound synthesis technique that uses 
Kohonen’s one-dimensional self-organizing map to generate neuronal-sounds 
to respond to a fixed and predefined set of stimulus-sounds, producing timbral 
variants with the desired characteristics. The self-organizing algorithm 
provides maintenance of topology so that the intended aesthetical result is 
properly achieved by avoiding the formal definition of the timbral attributes. 
To evaluate the obtained results we propose crossing a 
mathematical/subjective spectral distance from the neuronal-sounds to the 
stimulus-sounds with the method of timbral classification using Kohonen’s 
two-dimensional self-organizing map. 

1. Introduction 
Computer music is an ever-growing field partly because it allows the composer such 
great flexibility in sound manipulation when searching for the desired result. In the 
particular case of music composition, once the search space and the goals are defined, a 
technique for achieving the final product is required. Within the frame of this work, 
when we consider music improvisation, there is no goal and no such thing as a final 
result. It is the actual path through the search space that is of interest. Many different 
approaches have been proposed to meet the requirements of the process, i.e. creating 
interesting music, with results that vary from the unexpected to the undesired, 
depending upon a vast number of factors and on the methodology itself. Traditional 
sound synthesis techniques present limitations especially due to the fact that they do not 
take into consideration the subjective and/or the dynamic nature of music, by using 
processes that are either too simple or not specifically designed to handle musical 
sounds [Caetano et al. 2005 a]. 

Musical timbre is the characteristic tone quality of a particular class of sounds. Timbre 
is much more difficult to characterize than either loudness or pitch. No one-dimensional 
scale – such as the loud/soft of intensity or the high/low of pitch – has been postulated 
for timbre, because there exists no simple pair of opposites between which a scale can 
be made. Because timbre has so many facets, computer techniques for multidimensional 
scaling [Grey 1975; Grey and Moorer 1977] have constituted the first major progress in 



  

quantitative description of timbre, since the pioneering work of Hermann von 
Helmholtz (1885) in the nineteenth century. Since then, researchers have determined a 
more accurate model of natural sound. Digital recording has enabled the contemporary 
researcher to show that the waveform (and hence the spectrum) can change drastically 
during the course of a tone. Risset and Wessel (1982) observed that complex sounds 
have dynamic spectra and the evolution in time of the sound’s spectrum plays an 
important part in the perception of timbre [Grey and Moorer 1977]. Timbre variations 
are perceived, for example, as clusters of sounds played by a particular musical 
instrument, or said by a particular person, even though these sounds might be very 
distinct among themselves, depending upon its pitch, intensity or duration. In fact, the 
concept of timbre has always been related to sounds of musical instruments or speech, 
and it is in this scope that the majority of researches on timbre have been developed. 
These works identified innumerable factors that form what is called timbre perception. 

Many researchers have recently suggested the creation of Bio-Inspired and Artificial 
Intelligence (AI) based systems for music composition and improvisation. Applications 
of Bio-Inspiration and AI in music composition involve artificial neural networks [Chen 
and Miikulainen 2001], cellular automata [Burraston et al. 2004], artificial immune 
systems (AIS) [Caetano et al. 2005 a], particle swarms [Blackwell and Young 2004] and 
evolutionary computation (EC) [Biles 1994; Horowits 1994; Caetano et al. 2005 b]. 
Refer to the work of Santos et al. (2000) for a detailed review of the application of EC 
in music systems. As a preliminary step toward the current proposal, Caetano et al. 
(2005 a,b) suggested the use of AI to pursue stationary/fixed target sounds that are 
considered the user’s desired timbral outcome. The reported results can be interpreted 
as a sort of spectral blend between the initial and target sounds. 

In this work, we are focusing primarily on the production of sounds that present 
complex spectral dynamic features for musical applications taking self-organization as 
paradigm. We propose the use of a one-dimensional Self-Organizing Map (SOM) in our 
approach to timbre design, founded on unsupervised learning and on the ability of SOM 
to orderly arrange the original soundspace in a cyclical fashion, proposing a tentative 
timbral improvisational scale.  

SOMs are the most commonly used strategy in Artificial Neural Networks (ANNs) for 
unsupervised learning [Lippman 1987]. During the training process the neurons tend to 
represent statistical properties of the input data, preserving the topology of the input 
space (soundspace), even though it is unknown. It is a handy tool for feature analysis of 
high-dimensional data, allowing visualization in a low-dimensional neuron layer space. 

The main application of SOM is data clustering using two-dimensional mapping 
[Kohonen 1984 b]. One-dimensional SOM has been applied to the Travelling Salesman 
Problem (TSP) [Gomes and Von Zuben 2003] and as a topological ordering method of 
multidimensional data. We found several different proposals of timbre taxonomical 
classification making use of SOM as a feature extraction tool [Damiani et al. 1995; Cosi 
et al. 1994 a,b; De Poli and Tonella 1993; De Poli and Prandoni 1997; Loureiro et al. 
2004; Feiten and Gunzel 1994]. The authors did not find any applications of one-
dimensional SOMs in timbre design in the literature. 

The subsequent sections describe the fundamentals of SOMs and the way they are 
related to the development of our timbre design technique. Experimental results are then 



  

described and analyzed. Finally, concluding remarks and perspectives for further 
research are considered. 

2. Kohonen’s Self-Organizing Feature Maps 
One important organizing principle of sensory pathways in the brain is that the 
placement of neurons is orderly and often reflects some physical characteristic of the 
external stimulus being sensed [Kandel and Schwartz 1985]. For example, at each level 
of the auditory pathway, nerve cells and fibers are arranged anatomically in relation to 
the frequency which elicits the greatest response in each neuron. This tonotopic 
organization in the auditory pathway extends up to the auditory cortex [Moller 1983]. 
Although much of the low-level organization is genetically pre-determined, it is likely 
that some of the organization at higher levels is created during learning by algorithms 
which promote self-organization. Kohonen (2000) presents one such algorithm which 
produces what he calls self-organizing feature maps (SOMs) similar to those that occur 
in the brain. 

Kohonen’s algorithm creates a mapping of high-dimensional input data into output 
nodes arranged in a low-dimensional grid, characterizing a vector quantizer [Lippmann 
1987]. Output nodes are extensively interconnected with many local connections. 
During training, continuous-valued input vectors are presented either sequentially in 
time or in batch without specifying the desired output. This is called unsupervised 
learning. In addition, the weights will be organized such that topologically close nodes 
are sensitive to inputs that are physically similar. Output nodes will thus be ordered in a 
natural manner. This may be important in complex systems with many layers of 
processing because it can reduce lengths of inter-layer connections. After enough input 
vectors have been presented, weights will specify clusters or vector centers that sample 
the input space such that the point density function of the vector centers tend to 
approximate the probability density function of the input vectors [Kohonen 1984 b]. 
Kohonen demonstrates how SOMs can be used in a speech recognizer as a vector 
quantizer [Kohonen 1984 a]. 

2.1 SOM’s algorithm 

After the synaptic weights initialization, the learning procedure enters upon an episodic 
loop that just stops when a defined final condition is achieved. Each epoch corresponds 
to a learning procedure whereby every input data is presented to the network. For each 
data input the procedure is divided into three processes. In the competitive process, the 
output node with the shortest distance to the input data, called Best Matching Unit 
(BMU), is selected to learn the input. Euclidean distance is normally used as a distance 
metric [Kohonen 2000]. In the cooperative process, the nodes that support the BMU’s 
victory are also selected to learn, but in a lower level related to the nodes’ help effort. 
The degree of cooperativeness of a node is defined by a neighborhood function that is 
monotonically decreasing with the nodes’ distance to the BMU [Kohonen 1984 b]. At 
last, it’s in the adaptive process that the learning takes place. The weights of each node 
are updated by the learning procedure shown in equation (1). At each epoch (n), the 
weight vector (ω) of each node (j) is changed in the direction of the input data vector 
(x). The learning degree is obtained by the product of the current global learning rate (η) 
and the neighborhood function (h) of the BMU (i(x)), considering the node being 
updated. 
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The global learning rate and the dispersion of the neighborhood function decreases 
exponentially in time [Gomes and Von Zuben 2003]. This policy grants two different 
stages on the map’s development: a rough and fast convergence with initially high 
learning values; a fine tune with the decrease of the learning values. The initial values 
for rate and dispersion and their time constants act as control parameters to the 
dynamics of SOM’s generation and to the quality of the final mapping. 

2.2 Clustering 

A class is defined as a data group with similar properties, as illustrated in Figure 1a. 
Different classes have non related properties. The topology preserving feature implies 
that correlated data are mapped into close regions in the array of neurons. Therefore, an 
output node will be closer to nodes related to data from the same class than to output 
nodes that represent data from other classes. A cluster can be identified as a group of 
output nodes nearly located in terms of their weight vectors produced by the learning 
phase. 

2.3 U-Matrix 

The U-Matrix is a useful tool for clustering visualization in SOMs. It represents an 
average picture of the distance profile between the weight vector of each neuron and the 
weight vector of its immediate neighbors. High values in the U-matrix indicate neighbor 
neurons with distant weight vectors, and low values indicate neighbor neurons with 
high-correlated weight vectors, so that they will be stimulated by similar input patterns 
[Ultsch 2003]. As seen in Figures 1b and 1c, valleys denote neurons with similar 
behavior, being an indication of a cluster. High areas indicate that neighbor neurons 
have dissimilar weight vectors, revealing transition between two distinct clusters. 

   

 
Figure 1 U-Matrix for a two-dimensional map. (a) 3D two-class data set; (b) U-
Matrix visualization after clustering (gray levels indicate height and data hit 
marks identifies winning neurons); (c) 3D visualization of U-Matrix, with two 
contiguous valleys (dark areas) and peaks (light areas) characterizing the 
frontier between the two valleys. After Zuchini (2003). 

3. Neural Network Timbral Improvisation 
Here, we present a timbre design method that allows the composer to express a certain 
degree of subjectivity by simply choosing the number of neurons and setting the 
parameters adequately, according to aesthetical preferences. The user is enabled to find 



  

candidate solutions that meet certain musical requirements by using a set of waveforms 
(stimuli) as examples of the desired timbres (Figure 2 a). Instead of describing the 
sounds using numerical parameters or any other linguistic tool, we used a set of 
waveforms to characterize timbre. Smalley (1990) declared that the information 
contained in the frequency spectrum cannot be separated from the time domain, because 
“spectrum is perceived through time and time is perceived as spectral motion”. Thus, 
by specifying the target waveforms (stimuli), the user is also specifying the spectral 
contents and the timbral characteristics of the tones. Grey (1975) discusses the 
advantages of time domain representation. We aim at sound design by means of the 
specification of the spectral contents using time-domain representation and 
manipulation. 

Timbre soundspace is unknown and there is no consensus ordering or classification 
(Figure 2 a). Due to the self-organizing feature of SOM, it is possible to propose timbral 
arrangements that respect the original topology (Figure 2 b). The key feature of SOM 
that allows this process is that stimuli with similar characteristics trigger neurons in 
close regions of the one-dimensional mapping that represents the topological 
neighborhood in the original soundspace. In our application, self-organization gives rise 
to two different musically profitable phenomena. Firstly, one stimulus might trigger 
more than one neuron, causing the result to represent timbral variations of the original 
(stimulus) sounds (Figure 2 c). Secondly, more than one stimulus-sound might trigger 
the same neuron (zoomed-in areas in Figure 2 b). The expected result is a timbral 
merger of the stimuli corresponding to the neuronal-sounds that responded to these 
inputs. The resultant one-dimensional arrangement corresponds to a cyclic ordering of 
the stimulus-sounds that can be regarded as a proposal of a sort of timbral scale. The 
concept of timbral improvisation emerges from the possibility of following this orderly 
self-organizing path provided by the method in much the same way scales are used in 
traditional music improvisation. Moreover, the very dynamic convergence process of 
the neuronal sounds from the initialization to the final result can be sequentially played. 
This process would reveal the timbral neurological-induced transformation resulting 
from the path followed by each neuron during the self-organizing process. 

 
Figure 2 Depiction of the vector quantization ability of SOMs. Part (a) shows the 
original data topology; part (b) shows the resultant one-dimensional SOM 
representing the original data topologically arranged; and part (c) illustrates the 
common timbral features of three variants of sounds. 

3.1. Representation 

The input parameters of the present implementation are shown in Table 1. Each 
individual is codified as a vector composed of L samples of a given waveform at a 



  

sampling frequency of SF samples per second. The individuals are, thus, represented in 
time domain, as vectors in úL. The individuals are arranged as a one-dimensional 
circular SOM with the desired number of output nodes (neuronal-sounds). After 
training, the weight vectors represent the input data in the same vector space (with the 
same number of dimensions). The procedure used is similar to a TSP solution obtained 
via SOMs [Gomes and Von Zuben 2003]. 

Table 1. Input parameters that can be controlled by the user 

Parameter Description 
L Number of samples per individual 

SF Sampling rate 
G Number of Stimuli 
N Number of Neurons (weights) 
Lr Initial Learning Rate 

Radius Initial Radius 
Tlr Exponential decrease learning rate time constant 
Tr Exponential radius decrease rate time constant 

Epoch Number of epochs 

4. Experimental Results 
The objective of the experiments described is to analyze input/output correlation to 
verify the vector quantization capability of our proposal. We simulated the method 
using a set of seven different natural sounds as stimuli and an output layer of fourteen 
neurons (output data). The neurons outnumber the stimuli so as to force some neurons 
to never be BMU and simply be pushed around by their neighbors during the self-
organizing process. In other words, this procedure tends to maximize the timbral merger 
and timbre variation cases. Table 2 shows the chosen stimulus-sounds. They were 
selected to try and maximize dissimilarity in order to explicit individual features of the 
stimulus-sounds blended in different resultant neuronal-sounds. The weights were 
initialized with a random Gaussian variable (white noise) and were expected to 
converge to sounds correlated to the stimulus-sound set. The parameters used are shown 
in Table 3. The stopping criterion was achieved either by reaching the maximum 
number of epochs or by a learning rate lower than 0.01. 

Table 2 Instruments adopted as stimulus-sounds 

Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 
Alto sax Electric bass Guitar Piano chord Harmonica Voice Whistle 

We aim at showing that each neuronal-sound is correlated with at least one stimulus-
sound, representing a variant. In cases when neuronal-sounds are correlated to more 
than one stimulus-sound, we wish to show that it represents a timbral merger of the 
related stimuli by means of blending their features. The classification procedure consists 
of evaluating the correlation of the neuronal-sounds with the stimuli by means of the 
estimation of the distance between stimulus-neuron pairs in the timbral soundspace. 
Short distances are to be interpreted as showing that the particular stimulus-neuron pairs 
are highly correlated. Caetano et al. (2005 a) define a spectral metric that was applied to 
each input/output (stimulus/neuron) pair. A similarity table was constructed using this 
metric (Table 4), associating dissimilarity to spectral distance. 



  

Then, the same procedure was done using a subjective similarity criterion. Five 
musically untrained subjects were presented to all the stimulus/neuronal-sound pairs 
and were asked to define a distance value between 1 and 5, 5 being maximum 
similarity. For each pair, the stimulus-sound was played first, followed by one of the 
neuronal-sounds. Table 5 shows the average and standard deviation values for this 
evaluation. 

Finally, a two-dimensional SOM was used to generate a topological representation of 
the input/output resultant soundspace [Damiani et al. 1995; Cosi et al. 1994 a,b; De Poli 
and Tonella 1993; De Poli and Prandoni 1997; Loureiro et al. 2004; Feiten and Gunzel 
1994]. A U-Matrix topological map similar to Figure 1b was generated. All data was 
presented to the map during learning. Sounds with similar properties were expected to 
be mapped into the same region, while others should be mapped in a different class 
valley. This way, neuronal-sounds mapped near stimulus-sounds may represent a 
similarity relation (Figure 4). 

Table 3 Parameters for the experiments 

L SF G N Lr epoch Radius Tlr Tr 
4096 44100 7 14 0.2 451 3 150 150 

The convergence dynamics of one specific neuron is shown in Figure 3. Snapshots of 
one stimulus-sound and the corresponding BMU (neuronal-sound) are plotted at 
different stages of the self-organizing process. The goal is to highlight the rapid 
convergence early in the process (exploration of soundspace), followed by a fine tuning 
stage due to the decreasing of the neighborhood along the learning dynamics 
(exploitation of promising areas). Notice how the noisy, highly uncorrelated neuron 
learns to respond to the stimulus, representing its timbral features. 

The results of the mathematical and subjective distance evaluations are shown, 
respectively, in Tables 4 and 5. Values in bold represent a high correlation between the 
respective input-output pair, i.e. stimulus-neuron. In Table 4, the distances must be 
interpreted relatively to all the values in the same column, once it is not normalized. 
Low values mean small distance and thus high correlation. Table 5 shows the average 
value and standard deviation estimated by the subjects. Here, the subjects estimated the 
similarity between the input-output pairs. Therefore, high values imply high correlation. 

Finally, Figure 4 shows the resultant mapping using a two-dimensional SOM of all the 
stimulus-sounds and neuronal-sounds together. The gray scale represents topological 
distance, white being the shortest. The input data (stimulus-sounds) are plotted as black 
spots and output data (neurons) are plotted as white spots. All data is labeled. Here we 
expected the same patterns that emerged from Tables 4 and 5 to reveal in this two-
dimensional clustering. Highly correlated input/output sounds should be mapped in the 
same region. Thus, the relations made explicit in Table 6 were also expected to arise in 
this analysis. The neuronal-sounds that were considered very close to a given stimulus-
sound should have been mapped in the same light region. 

The results of the experiment discussed here, as well as other significant results, can be 
found in http://www.dca.fee.unicamp.br/~caetano/SBCM.html. 



  

 
Figure 3 Depiction of the convergence dynamics after different epochs: 
Stimulus-sound × Neuronal-sound. Part a) 1 epoch; b) 3 epochs; c) 5 epochs; d) 
10 epochs; e) 50 epochs; f) 100 epochs; 

5. Discussion 
Crossing the result of the subjective and mathematical similarity evaluations (Tables 4 
and 5) it is possible to infer a relation between the input and output data. Table 6 shows 
the outputs (neurons) with maximum similarity to each of the inputs extracted from the 
values in bold in Tables 4 and 5. Interestingly enough, both the spectral distance and 
subjective similarity values vary, revealing different degrees of correlation between the 
pairs. Notice that although the subjective estimation presents maximum similarity 
evaluations, no spectral distance resulted in zero (refer to [Caetano et al. 2005 a] for the 
definition of the spectral distance metric). 

Table 4 Spectral distance: Input x Output evaluation 

 Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 
Output 1 34.7606 140.7773 37.6053 117.6477 34.4166 33.3402 44.7520 
Output 2 66.3417 144.5577 7.1025 123.9408 53.3262 53.3984 60.8768 
Output 3 65.7337 141.9019 8.3761 123.6183 52.4717 52.5984 60.1636 
Output 4 127.6824 18.9327 129.2990 165.1742 119.4274 120.5729 123.7715 
Output 5 129.9995 16.4692 131.9691 166.9731 121.8598 123.0056 126.1364 
Output 6 127.6733 19.0678 129.7479 163.7705 119.3749 120.5557 123.6851 
Output 7 107.3686 167.9962 113.6441 15.6206 97.3370 99.4349 99.5542 
Output 8 6.7819 143.9433 68.7541 119.4962 38.6160 36.9926 47.6565 
Output 9 70.1802 149.4947 80.6534 61.0166 55.0873 58.3408 53.5189 

Output 10 50.4559 141.3996 65.7026 113.7396 28.8807 33.9405 3.4725 
Output 11 45.2253 139.1221 61.4320 112.2853 15.1187 25.3820 17.0501 
Output 12 43.9312 138.1801 60.1144 112.5711 1.4608 22.8388 31.5043 
Output 13 41.3641 138.9457 59.6131 114.1093 21.3422 2.5079 35.2750 
Output 14 5.1640 144.0565 69.1358 119.7276 39.2329 37.2416 48.0991 

 



  

Table 5 Result of subjective similarity Input x Output evaluation 

 Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 
Output 1 3.0±1.58 1.6±0.89 3.8±0.45 2.2±0.84 1.8±0.84 2.4±1.34 1.6±0.89 
Output 2 2.0±1.41 1.4±0.89 4.8±0.45 2.0±0.71 1.6±0.89 1.6±0.89 1.4±0.89 
Output 3 2.0±1.41 1.6±0.89 4.6±0.55 2.0±0.71 1.2±0.45 1.8±0.84 1.4±0.89 
Output 4 1.2±0.45 4.2±1.30 1.8±0.84 1.4±0.55 1.0±0.00 1.0±0.00 1.2±0.44 
Output 5 1.2±0.45 4.8±0.45 1.8±0.84 1.2±0.45 11.0±0.00 1.6±0.89 1.2±0.44 
Output 6 1.2±0.45 4.8±0.45 1.6±0.89 1.2±0.45 1.0±0.00 1.2±0.45 1.2±0.44 
Output 7 1.2±0.45 1.0±0.00 1.4±0.55 5.0±0.00 1.6±0.89 1.0±0.00 1.2±0.44 
Output 8 4.8±0.44 1.2±0.45 1.2±0.45 1.0±0.00 1.8±0.84 1.4±0.89 2.0±0.71 
Output 9 1.2±0.45 1.0±0.00 1.6±0.89 4.6±0.55 1.4±0.55 1.0±0.00 1.4±0.89 

Output 10 2.0±1.00 1.2±0.45 1.0±0.00 1.0±0.00 1.8±0.84 1.2±0.45 5.0±0.00 
Output 11 1.4±0.55 1.2±0.45 1.2±0.45 1.0±0.00 3.0±2.00 1.2±0.45 4.0±0.71 
Output 12 1.6±0.89 1.0±0.00 1.8±0.84 1.0±0.00 5.0±0.00 1.0±0.00 1.6±0.55 
Output 13 1.4±0.89 1.4±0.55 1.4±0.55 1.0±0.00 1.2±0.45 5.0±0.00 1.2±0.45 
Output 14 4.4±0.89 1.4±0.89 1.6±0.89 1.2±0.45 1.8±1.30 1.8±1.30 1.6±0.89 

 
Figure 4 U-Matrix visualization. Light areas represent clusters associated with 

similar sounds. Dark areas represent cluster borders. The distance scale is 
shown beside the map. 

One can conclude that, despite the subjective evaluation estimations imply in some 
cases that some outputs are exactly the same as the inputs, the distance metric reveals 
that it actually represents a variant. Intermediate distance (similarity) values can also be 
interpreted as resulting from the blending of timbral features present in one or more 
stimuli. The spectral distance metric revealed very adequate, matching the subjective 
estimation at every instance. 

Table 6 Input-Output relation inferred from subject data 

Input 1 2 3 4 5 6 7 
Related Output 8,14 4,5,6 1,2,3 1,7,9 12 13 10,11 

On the other hand, a direct comparison of the U-Matrix visualization (see Figure 4) 
does not have the same effect. The similarity found by the above mentioned analysis, 
explicited by Table 6, ceases to exist here. Outputs that were mapped together by the U-
Matrix are shown in the same valley (white regions). Dark regions represent cluster 



  

borders. The map confirms some relations but it fails to relate a representative number 
of others. In fact it does suggest new ones. This may be due to two distinct factors. 
Either different classes were found in Figure 4, implying that the inputs and outputs can 
be clustered in different ways than the distance evaluations results show, according to 
different criteria; or it is simply impregnated with topological violations, probably due 
to the great effort of maintaining the topology of such high-dimensional vector space 
(ú4096 !) represented by the stimuli, projecting it into a two-dimensional space. 
Differently from the results reported in the literature using two-dimensional SOM to 
classify sounds according to timbre [De Poli and Tonella 1993], we found the method 
inappropriate for the purpose of timbral classification in high-dimensional timbral 
soundspaces. 

Here we should stress the important fact that this is hardly the first proposal for a 
measure of timbral topological relations or classification. Many other techniques are 
available, including multidimensional scaling [Grey 1975; Grey and Moorer 1977] and 
subjective analyses [Caetano et al. 2005 b], among others. 

The experiments show that SOM is capable of producing sounds that have the desired 
spectral content with flexibility and robustness. The method makes possible to avoid the 
burden of trying to describe the desired result in terms of timbral attributes or to 
exhaustively search the entire soundspace for the desired result interactively, as is the 
case for Interactive Genetic Algorithms [Biles 1994]. 

6. Conclusion 
A novel method of timbre design was presented, which utilizes SOM, a connectionist 
clustering technique, in the task of obtaining sounds that are topologically arranged 
using self-organization. These sounds possess a set of desired timbral characteristics 
that are inherent to musical sounds and that cannot be precisely described due to the 
intrinsic multidimensional nature of timbre and the subjective characteristics involved. 
There is no consensus on how many or what these dimensions are, let alone their 
subjective relation to the spectral contents of the tone.  

The input-output similarity was tentatively measured to base the resultant arranged 
timbral improvisation cycle respecting topology of the original timbral soundspace. A 
spectral measure of distance was crossed with a subjective similarity analysis to classify 
the outputs as being most closely related to one input, representing a variant. 
Posteriorly, this result was compared with a two-dimensional SOM clustering technique 
well documented in the literature for timbre classification [Cosi et al. 1994 a,b]. 
Crossing the results of both evaluations, we found that SOM fails to properly represent 
the topological relations of the sounds, incurring in topological violations probably due 
to the high dimensionality of the vector space the sounds were represented in. 

The method presented is adjustable according to the input parameters and leads to 
interesting variations and mixtures of the stimulus-sounds (inputs). The characteristics 
of maintenance of topology and unsupervised learning provided by SOMs are essential 
in the results. 

Many extensions can be envisaged and tested. It can be used to compose soundscapes, 
as a timbre design/improvisation tool or in live electroacoustic music where a 
neurological timbre is generated, which evolves in real time along with other music 



  

materials. Future trends might include using the technique in AI-based musical systems 
and adapting the method for dynamic environments, i.e. using time-varying stimulus-
sounds. 
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