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ABSTRACT 

The amplitude modulations of musical instrument sounds and 
speech are important perceptual cues. Accurate estimation of the 
amplitude, or equivalently energy, envelope of a time-domain 
signal (waveform) is not a trivial task, though. Ideally, the 
amplitude envelope should outline the waveform connecting the 
main peaks and avoiding over fitting. In this work we propose a 
method to obtain a smooth function that approximately matches the 
main peaks of the waveform using true envelope estimation, 
dubbed true amplitude envelope. True envelope is a cepstral 
smoothing technique that has been shown to outperform traditional 
envelope estimation techniques both in accuracy of estimation and 
ease of order selection. True amplitude envelope gives a reliable 
estimation that follows closely sudden variations in amplitude and 
avoids ripples in more stable regions with near optimal order 
selection depending on the fundamental frequency of the signal. 

Index Terms— Amplitude envelope estimation, true 
envelope, cepstral smoothing, musical instrument sound, speech 

1. INTRODUCTION 

The estimation of the amplitude envelope of a time-domain signal 
(or waveform) is a classical engineering problem that arises in 
amplitude demodulation [1], onset detection [2], and attack time 
estimation [3], temporal modeling of sounds such as automatic 
transcription [4] and temporal evolution of musical instrument 
sounds [5]. The amplitude envelope is a perceptually important 
feature of musical instrument sounds and speech. It has been 
shown to be correlated to the percussiveness of musical 
instruments sounds [6], to speech intelligibility [7] and even to 
affect pitch perception [8]. The classical approach to the estimation 
of the amplitude envelope of a time-domain signal is the technique 
known as envelope follower [1], [4], [6], which consists basically 
of rectifying the waveform and then low-pass filtering it. This can 
be easily implemented in either the analog or digital domains. 
Another very popular solution is to calculate the instantaneous root 
mean square (RMS) value of the waveform through a sliding 
window with finite support [9]. More recently, some authors have 
proposed other techniques to obtain a more reliable estimation of 
the amplitude envelope of waveforms. An early attempt [4] 
consisted of a piece-wise linear approximation of the waveform. 
The amplitude envelope is created by finding and connecting the 
peaks of the waveform in a window that moves through the data. 
Jensen [10] proposed a method that fits curve shape 
approximations to model the amplitude envelope of the partials of 
an additive model of instrument sounds and later Skowronek [6] 
applied it to approximate the global amplitude envelope. However, 
advances in spectral envelope estimation techniques such as linear 
prediction [11] and cepstral smoothing [12] are promising 
candidates to obtain an accurate estimation of the amplitude 

envelope when applied in the time-domain [5]. In this work we 
propose to apply the true envelope estimation technique in the time 
domain to accurately estimate the amplitude envelope of 
waveforms such as isolated musical instrument sounds or speech. 
We will show that the true amplitude envelope renders estimations 
that respond well to sudden changes in amplitude while remaining 
smooth during more stable regions of the waveform. 

In the next section we present the classical amplitude 
envelope estimation techniques, followed by the recently proposed 
use of linear prediction. Next, we introduce the true envelope 
cepstral smoothing algorithm and we explain how we apply it in 
the time domain. Finally, we present and evaluate the results, 
comparing our proposed approach with the others. 

2. CLASSICAL AMPLITUDE ENVELOPE ESTIMATION 

The classical amplitude envelope estimation techniques explained 
in this section are low-pass filtering (LPF), root-mean square 
(RMS), and analytic signal. We will also review a recent proposal 
to the use of linear prediction [13], dubbed frequency-domain 
linear prediction (FDLP). 

2.1. Low-Pass Filtering (LPF) 
Low-pass filtering is the most straightforward way of obtaining a 
smooth signal that follows the amplitude evolution of the original 
waveform. It is based on a classical amplitude demodulation 
envelope follower technique [2], that low-pass filters a half-wave 
(hwr) or full-wave rectified (fwr) version of an amplitude 
modulated (AM) signal. The principle of amplitude modulation 
(AM) is that the amplitude changes of the signal carry the 
information we seek. There are many possible filter designs with 
different characteristics and the choice affects the quality of the 
final envelope. For instance, Jensen [10] proposes to convolve the 
waveform with a Gaussian window function, resulting in a 
suboptimal estimation. Also, the cut-off frequency of the filter has 
a major impact on the result. High cut-off frequencies will likely 
produce an amplitude envelope with ripples and very low cut-off 
frequencies are less responsive to sudden amplitude changes. 

2.2. Root-Mean Square (RMS) Energy 
The RMS value is perhaps the most popular [9] method for 
estimating the temporal evolution of the signal energy because it 
can be easily adapted to obtain an estimate of the amplitude 
envelope by simply applying it with a sliding window, as shown in 
equation (1) 
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where xi(t) is the ith sample of the signal centered around t as seen 
through the window wi(t), t is the number of samples the analysis 



window moves, and T is the window length. Usually a rectangular 
window is used, but other choices are also possible [10]. The RMS 
calculation is a special case of the generalized mean with exponent 
p=2 and as such, also functions as a sort of moving average, low-
pass filter that smoothes out the signal. The analysis step t imposes 
a trade-off between the temporal sampling rate of the envelope and 
how much information it represents. Small values of t react sooner 
to sudden changes in amplitude, while presenting ripple in more 
steady regions and larger values smooth out the ripples but tend to 
lag behind abrupt energy changes. 

2.3. Analytic Signal 
The Hilbert transform is part of a signal processing technique for 
amplitude demodulation [1]. The Hilbert transform of a signal x(t) 
is defined as 
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where * stands for convolution. Using equation (2), we can define 
the analytic signal z(t) as 
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The analytic signal is useful for envelope detection since its 
modulus r(t) and time derivative of the phase θ(t) can serve as 
estimates for the amplitude envelope and instantaneous frequency 
of x(t) under certain conditions. Notably, if the Hilbert transform of 
x(t) is equal to its quadrature signal [1], then the estimates are 
equal to the actual information signals [1]. Synthetic (i.e., AM) 
signals can be constructed to have this property, but there is no 
reason to expect that acoustic musical instrument sounds or speech 
also present it. A more realistic condition is verified when we are 
dealing with narrowband signals [14], which is rarely the case for 
musical instrument sounds and speech. The analytic signal can be 
effectively used to extract the amplitude envelope of individual 
partials if applied to each frequency bin of the STFT, but when 
applied to the whole signal it is equivalent to trying to demodulate 
several AM signals at the same time, so we use it as half-wave 
rectifier in this work. 

2.4. Frequency-Domain Linear Prediction (FDLP) 
Traditional linear prediction [11] estimates the spectral envelope 
from the time-domain signal. The idea behind FDLP [13] is to 
exploit time-frequency duality to extract the temporal amplitude 
envelope by applying linear prediction to a spectral representation. 
In particular, the used spectral representation is the discrete cosine 
transform (DCT) given by equation (4), since it is real-valued. 

( ) 













 += ∑

−

=

kn
N

nxkX
N

n 2
1cos)(ˆ

1

0

π   (4) 

The envelope peaks, whose number and width are determined 
by the model order, will now be their frequency domain 
counterparts, the rectified waveform peaks. Thus, the model order 
has to be adjusted with respect to the temporal structure of the 
signal, and not to the formant structure of the spectrum. 

3. TRUE ENVELOPE ESTIMATION 

The true envelope estimator [12] has been shown to outperform 
linear prediction [11] or cepstral methods such as discrete cepstrum 

[15] both in terms of accuracy and ease of model order selection. 
Recently the iterative procedure has been significantly improved 
such that the computational costs are in the similar to the costs of 
the Levinson recursion such that real time processing can be 
achieved [12]. True envelope estimation is based on cepstral 
smoothing of the log amplitude spectrum and the resulting 
estimation can be interpreted as the best band limited interpolation 
of the major spectral peaks in such a way that the peak matching is 
maximized and inter-peak valleys are avoided. 

3.1. Cepstral Smoothing 
The real cepstrum is usually defined as the inverse Fourier 
transform of the log magnitude spectrum [12], as shown in 
equation (5) 
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Regarding the log magnitude spectrum as a signal, we can 
interpret each cepstral coefficient as a measure of the energy 
present in discrete frequency bands of that signal. Low-pass 
filtering the cepstrum (also called liftering) would result in a 
smoother version of the log magnitude spectrum, given by 
equation (6) 
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where C(k) is the smoothed spectrum (corresponding to the 
spectral envelope estimation) and wn is a low-pass window in the 
cepstral domain usually defined as 
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where nc is the cutoff quefrency. If we only want to represent the 
spectral envelope, discarding information about the partials we 
should set the cutoff quefrency below the period of the signal. One 
major drawback of this operation is that we discard spectral energy 
when setting cepstral coefficients to zero. The result is a smooth 
curve that is always below the peaks of the log magnitude 
spectrum. The true envelope estimator uses cepstral smoothing in 
an iterative procedure that aims at connecting the peaks of the log 
magnitude spectrum as explained below. 

3.2. True Envelope 
Let X(k) be the K-point DFT of the signal frame x(n) and Ci(k) the 
smoothed spectrum at iteration i. The algorithm then iteratively 
updates the resulting spectral envelope Ai(k) with the maximum of 
the original spectrum and the current spectral envelope Ci-1(k) 
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and applies cepstral smoothing to Ai(k) to obtain Ci(k). The 
procedure is initialized setting A0(k) = log|X(k)| and starting the 
cepstral smoothing to obtain C0(k). 

3.4. Optimal Order Selection 
The order of the cepstral representation of the spectral envelope is 
the number of cepstral coefficients we keep in the cepstral 



smoothing procedure, and as such is proportional to the 
fundamental frequency of the original signal. The optimal order 
should give a spectral envelope that follows the overall shape of 
the filter without representing the harmonic structure of the 
spectrum. In order to estimate the optimal order, we use the source-
filter model and think of the spectrum as the result of the 
interaction of two components, represented by the source, an input 
signal that contains information about the frequencies of the 
partials and the filter that shapes the source spectrum. According to 
this model, the spectral envelope represents the filter that has been 
excited by the source. For near harmonic sources, the resulting 
spectrum will be quasi-harmonic. In terms of the interaction 
between source and filter, we can think of the resulting harmonics 
sampling the filter with a sampling rate that depends on the 
fundamental frequency of the source spectrum. According to the 
sampling theorem, we must sample the filter with at least twice the 
maximum frequency present in that signal. If we assume that the 
spectral envelope should not contain information about the 
harmonic structure of the spectrum, the maximum frequency 
present in that signal is the fundamental frequency F0, such that the 
related Nyquist frequency (assuming a sampling rate of Fs) is Fs = 
(2F0). This formula provides a simple way of selecting the cepstral 
order because higher sampling frequencies would reveal (maybe 
partially) information about the harmonic structure of the spectrum 
and lower sampling frequencies would smooth out the spectral 
envelope, not revealing information about the (formant) peaks. We 
can therefore postulate the near optimal order of the cestrum given 
only that the maximum frequency difference between two spectral 
peaks that carry envelope information is known. If the difference 
between those peaks is ΔF then the cepstral order should be 
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While the optimal order, that is the order that provides an 
envelope estimate with minimum error, depends on the specific 
properties of the envelope spectrum, the order selection according 
to equation (9) is reasonable for a wide range of situations and the 
resulting error is generally rather close to the one obtained with the 
optimal order. 

4. TRUE AMPLITUDE ENVELOPE (TAE) 

Ideally, the amplitude envelope should be a curve that outlines the 
waveform, following its general shape without representing 
information about the harmonic structure. One of the most 
challenging aspects of this problem is that we are looking for a 
curve that is smooth during rather stable regions of the waveform, 
while being able to react to sudden changes (such as percussive 
onsets) when they occur. Here, we propose to use a dual of true 
envelope in the time domain. The time domain signal is subjected 
to the algorithm instead of the Fourier spectrum. In this way, the 
amplitude envelope is expected to match the amplitude peaks 
corresponding to the period of the waveform more closely than the 
previously introduced methods. The idea behind TAE is to mimic 
the structure of the spectrum with the time-domain signal to be 
able to apply the true envelope method directly. The basic steps to 
estimate the TAE are as follows. First we obtain a rectified version 
of the waveform (so that that are no negative amplitudes), next we 
zero-pad the rectified waveform to nearest power of two (thus 
mimicking the DFT), and then we finally add a time-reversed 
version of the zero-padded rectified waveform to represent the 

negative frequencies. Before estimation, we still need to 
exponentiate the amplitudes because true envelope supposes that 
we are fitting a smooth curve to the log magnitude spectrum. The 
result is illustrated in Fig. 1. The last step is the application of the 
true envelope estimation technique to obtain the true amplitude 
envelope (TAE), represented as a solid line outlining the rectified 
waveform. 

It is important to notice that the peaks of the waveform do not 
carry the same information as the spectral peaks. Each peak of the 
spectrum corresponds to a partial, such that for quasi-harmonic 
spectra the separation between spectral peaks is F0. On the other 
hand, in only one period, the peaks of the half-wave rectified 
waveform generally contain information about all the frequencies 
contained in that signal (depending on their phases). Therefore, the 
time-domain counterpart of the near optimal order selection must 
take into account only the period of the waveform, instead of all 
rectified peaks. The optimal order is now directly proportional to 
the fundamental frequency of the waveform, instead of inversely 
proportional when using true envelope in the spectral domain 
because the separation of the spectral peaks ΔF is now represented 
by ΔT and given by the period of the signal T0 for a half-wave 
rectified waveform (hwr) as equation (10) shows 
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A full-wave rectified (fwr) version would present twice as 
many main peaks, requiring half T0, or α=1. 

5. EVALUATION 

This section compares the amplitude envelopes obtained with LPF, 
RMS, FDLP and TAE for a sustained and a percussive musical 
instrument sounds and a speech utterance. Figure 2 shows a half-
wave rectified (hwr) version of a bass clarinet, a clavinet and 
speech utterance waveforms and the amplitude envelope estimates. 
We are looking for the estimation that best fits the model 
waveforms, following the amplitude evolution by matching the 
main peaks while avoiding ripples in more stable parts. It should 
be noted that FDLP was normalized and scaled to the maximum of 
the hwr waveform and that RMS was also low-pass filtered to 
eliminate the ripples during mostly the more stable parts. Upon 
close inspection, Figure 2 shows that TAE renders the best fit, 
closely following the peaks without ripples. TAE is also very 
responsive to sudden changes in amplitude, as can be seen for the 
clavinet sound. We should notice that the fit depends largely on the 
order. For isolated notes, the optimal order is expected to be the 
same throughout, but for speech the situation is not so simple 
because the F0 changes dynamically. For speech utterances we can 
use the mean F0 (supposing it does not change a great deal). 

 
Fig. 1. True amplitude envelope estimation. The figure shows the half-wave 
rectified and zero padded (zp) version of the waveform with its time-reversed 
counterpart used in the true amplitude envelope estimation method. 
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6. CONCLUSIONS AND FUTURE PERSPECTIVES 

We proposed the true amplitude envelope (TAE) estimation 
technique as an improvement to the classical methods found in the 
literature. We have shown that TAE outperforms them by 
providing a smooth function that approximately matches the main 
peaks of the waveform avoiding under or over estimation due to 
the near optimal order selection based on the period of the signal. 
One important feature of TAE due to its cepstral nature is the 
ability to represent well sudden changes in the waveform while 
avoiding ripples during more stable parts. Future perspectives of 
this work could include evaluating the perceptual impact of the 
resulting envelopes with listening tests, developing an objective 
measure to evaluate the results and order estimation for signals 
with time varying F0. 
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Fig. 2. Half-wave rectified (hwr) waveform and amplitude envelope 
estimation methods; true amplitude envelope (TAE), frequency-domain 
linear prediction (FDLP), root-mean square (RMS) and low-pass filtering 
(LPF). 


	improved estimation of the amplitude envelope of time-domain signals using true envelope cepstral Smoothing

