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ABSTRACT the convolution methods are not adapted because the impulse re-

. . . . - sponses decrease very slowly.
This work deals with the physical modelling of acoustic pipes : : - )
for real-time simulation, using the “Digital Waveguide Network” In [4], flared pipes have been modelled with Digital Wave

. . . . guide Networkapproach (cf. eg.[]5]) using the horn equation of
approach and the hom equation. With this approach, a piece c’fWebster(cf. [6]) and taking into account the visco-thermal losses

(cf. [7,[8]). The simulation framework dkelly-Lochbaumhas

Sbeen obtained (cf. egl][9]). This system involves some delays

for wave propagation through pieces of pipe, and some recursive

filters for reflections and transmissions at junctions of pieces of

pipe. This model leads to real-time simulations.

In this paper, we focus this work on the simulation of pipes Nevertheless, the application of the latter model to convex
' pipes produces some stability problems. The aim of this work is to

with & convex p_roflle, for Wh'Ch a curvature coefficient is con- get a stable digital realization for convex pipes, similar to this one
stant and negative. In the literature, it has been shown that suchof []

pipes have trapped modes. With the formalism of automatic con- T
trol, adapted for “Waveguides”, we observe some substates of thet
system which do not take effect on the outputs.

without internal delay. A well-known form of this system is the
“Kelly-Lochbaum” framework. It allows the reduction of the com-
putation complexity and it gives a physically meaningful interpre-
tation of the involving subsystems.

his paper is organized as follow. Sectidn 2 presents the acous-
ic model we use, th&Vebster-Lokshimodel, and 2 equivalent

. . it for the simulation. | .3, tudy in the Lapl
But, using the “Kelly-Lochbaum” framework with the horn systems for the simulation. In sdd e sudy In the Lapiace

tion. t bl - first if th Ut bound domain the singularities of the transfer functions involved in this
equation, two problems occur. Tirst, even i the outputs aré bound, ., ,4e| and we explain the reason of their presence in the case of

some substates have their values which diverge; second, there IRonvex pipes. In se€l 4, we propose a “generalized” framework

an(;nfmlte ?Emb.er olf fugh subsLates. The system is then unstablqor simulation, which allows the description of the acoustic model

and cannot be simu‘ated as such. . . . with 2 degrees of freedom, which are 2 transfer functions of the
The solution of t.h's pr_oblem is obtained with two s_teps. .F'rSt’ system. In sed]5, we choose 2 transfer functions which allow a

we show that there is a simple standard form compatible with the ., o digital simulation for convex pipes. This solution is com-

“Wav.eguide”.approach, for WhiCh there is an infinite number of patible with theWaveguideapproach and it is similar t6][4]. The
solutions which preserve the input/output relations. Second, We 2ot section concludes this paper and deals with perspectives.
look for one solution which guarantees the stability of the system

and which makes easier the approximation in order to get a low-
cost simulation. 2. ACOUSTIC MODEL AND SYSTEMS

2.1. The Webster-Lokshin model
1. INTRODUCTION

The Webster-Lokshimodel is a mono-dimensional model which
In [[1] and [2], the physical modelling of acoustic wave propagation characterizes the linear propagation of acoustic waves inside ax-
in convex pipes has been studied, and these studies have shown theymmetric pipes, with the weak hypothesis of quasi-sphericity of
presence of trapped modes. Similarly to the model of cone connec-isobares near the wall (cf.J[8]), and taking into account the visco-
tions with a negative change of slope (cf. éd. [3]), some problems thermal losses at the wall with the hypothesis of large tubes (cf.
of stability occur. Since these instabilities have no influence in a [Z,[1Q]). The acoustic pressufeand the volume flowi/ are gov-
global point of view, for the simulation some solutions have con- erned by the following equations, given in the Laplace domain:

sisted in considering the system in a global point of view, using ) 3 )
for example a modal approach or a digital convolution with finite %+25(£)%+T(5) _ 872 {r(Z)P(é, s)} -0, (1)
impulse response filters. c c2 ov

But, for digital simulations with low-cost computations, the U, s) o

modal approaches need the truncation of modes, which involve + —P(,s)=0, (2

some problems of realism. And because of some long memory ef- S(0) ot

fects (of the diffusive type for visco-thermal losses for example) wheres € C is the Laplace variabledm(s) = w is the pulsation),
~ Rémi Mianotis Ph.D. student at Télécom ParisTech/TSI £ is the curvilinear abscissa at the wall/) is the radius of the
T This W%rk is -su.pported by the CONSONNEé project, pipe,5(¢) = 7”1(4)2 is the section areal(ﬁ):no \ L=r'(€)?/r(¢)

ANR-05-BLAN-0097-01. quantifies the visco-thermal losses (@) and Y (¢) =" (€) /r(¢)
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represents the curvature of the pipe. Equafidn (1) istebster-
Lokshinequation, and{2) is thEuler equation satisfied outside
the boundary layer.

With 7 := L/c, note that we can writ€, (iw) = Dy (iw) ¢~
and 7T'(iw) D(iw)e ™", where D, and D are two transfer
functions associated to causal systemsffor 0). Consequently,
the impulse responses @f, andT are these ones dP, and D
delayed byr which corresponds to the time of propagation inside
the piece of pipe.
We define a piece of pipe by a tube with a finite lengtand with In the case of pipes with negative curvaturds € 0) these
constant coefficients of losses and curvaturerfd Y). We will two forms present a paradox: whereas some numerical calculus
build two systems which represent the acoustic effects of a piecereveal that the global form of Fifl 1-(a) is stable, the transfer func-
of pipe on the travelling waves given by: tions of the decomposed form of Fig. 1-(b) have some singularities
. in the Laplace domain which produces some instabilities. The aim
¢ of the following section is the understanding of the reason of this
problem.

2.2. Two equivalent systems

r

2

pc
S(e)

(P + ZU), whereZ(¢) = (3)

In [4], the effects of a piece of pipe on the variabiésare rep-
resented by input/ouput systems for ebster-Lokshimodel.
Two equivalent forms (in an input/output point of view) are given.

A first form, so-called “global”, is given in Figl1-(a). Its 4
transfer functions represent global effects of the piece of pipe on
the wavesp™: Rﬁ, andRj, are the left and right reflections respec-  The functionI'(s) (associated to the wavenumbeiw), cf. (@))
tively, andT}, is the global transmission through the piece of pipe. is defined as a square root of a complex number which depends
“global” means that all internal acoustic effects are mixed, for ex- itself on a square root of. But there is an infinite number of
ample the forwards and backwards of wave propagation are takencontinuations of the positive square root definedRon for the

3. ANALYSIS OF SINGULARITIES

3.1. Complex analysis of”

into account.

complex plan, and we must choose one of them in order to define

A second form, so-called “decomposed”, is given by Elg. 1-(b). in C the transfer functions of the system.

This form is interesting because it isolates the internal acoustic ef-

fects inside some transfer functions. For examplg, represents
the reflection ofs" at the left interface, an@ represents the prop-

In [11,[12], the functiorl” is defined by the choice of curves
(calledcut) which link somebranching pointgo the infinity. These
cuts are continuous sets of singularities, which produce some dis-

agation through the piece of pipe. Here the successive forwardscontinuities ofl". And the branching points, are the solutions of
and backwards are represented by the internal loop. This form al-T'(s)? = 0, andso = 0 (for /s).

lows the recovery of thKelly-Lochbaunframework which is well
adapted for digital real-time simulation (cf. egl [9]).

@) (b)

G ]
¢ L [N 1ot of
Rl @ |ry| =
S Al T |9 %o |

Figure 1: Two-porQ (global form) and its decomposed form.

Let’s definel'(iw) = ik(w), wherek(w) is the standard com-
plex wavenumber. In the Laplace domain, the funcfiois given

by
=/ (3)" 2= () o

The analytical solving of{1) anfl(2) gives the functiondpf

(4)

T, = {Arcosh(I'L) + Brsinh(I'L) /T} ", (5)
R, = {Agrcosh(T'L) + Bp sinh(T'L) /T}T,,  (6)
R, = {Agcosh(T'L) + Bgrsinh(I'L) /T}T,, (7)

whereAr, Ar, Br, Br andBg- are some known functions ef
andT'(s)2. With ¢ = +'/r, the functions of the decomposed form
are given in[[4]:

T(s)=e "L, (8)
_iT(s)-a o L) +G

Rle(s)— %—}—F(S)—‘—Cl , RZ'L(S) %—FF(S)—FQ s (9)
S—T'(s)+¢r 2-T(s)=¢r

RTG(S)_ %"'F(S)_Cr’ Rri(s)_i %4—1_‘(5)—@« . (10)

T =0: For cylindrical and conical pipes, the unique branching point

is so = 0.

T >0: For flared pipesI” has 3 branching pointsi, =0, s; and

S§9 =251, with §Re(51) <0.

For convex pipesl” has 2 branching pointsso = 0, and
s1 € R+.

Whereas these branching points are fixed (they depemrgd=zoand
T), the cuts have to be chosen.

ForY > 0, since no branching pointis in the right-half Laplace
plane (denotedy :={s < C/Re(s) >0}), it is possible to define
an analytical continuation ovél; in order to respect the stability
of the transfer functions. For example, the case of horizontal cuts
is presented in Fid] 2.

However, forY < 0, one branching points, is in (Car, and
so it is not possible to define a analytical continuation c¥gr
since at least one part of the cut is@y . Figure2 presents the
case of 2 overlapped cuts &1 : | — oo, 0] and] — oo, s1].

T <O0:

Figure 2: Phase df(s) in the complex plan, branching points and
horizontal cuts.
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3.2. Poles and physical interpretation 3.3. Interpretation for T < 0

Whereas the transfer functions of the decomposed form [¢f. (8- For negative curvatures, because of the part of the cld,on] C

[10)) have the same type of singularities tHaiof the cut type), R, the associated functions have an infinite number of singulari-
the 3 global transfer functions (cf1[3-7)) only dependslgn)? ties which produce instabilities. But some numerical observations
and notl'(s) (they are invariant with the transformatibn— —T°). show that the global transfer functions of the piece of pipe, which

Thus these 3 transfer functions have only one cut which comeshave not this cut, are stable as expected.

from /s, and some other singularities of the pole type which are A pipe with constant and negative curvatife= r” /r has a

associated to the resonance modes of the piece of pipe. sinusoidal profile:(¢) which changes sign evefy,,.;; := m+/|Y]|.
This last remark implies that only the transfer functions of the gt \ve ohserve that when increases, a polg;, of R becomes

decomposed form depend on the choicd’of The inputioutput = ngiaple as soon as the lengthf the piece of pipe exceedd. .,
relations do not depend on the choice of the cuts which start from (with k € N*). Figure3 illustrates this.

s1 ands2 (because of the curvature) but they only depend on the
cut which starts fromy = 0 (because of the visco-thermal losses).
For this branching point, we will choo§e™ for some reasons of
stability and hermitian symmetry.

In [13], I is given by, /- defined by

V-1 s =pexp(if) — /s = \/pexp(if/2), (112)

with (p,6) € R™*x]—m,x]. With this choice ofl', the set of
the cuts ISR~ U C with C := {s € C/ T'(s)® € R™}. With this
definition,T" has the following property: 2500

2000

Vs € C\ C, Re(I'(s)) > 0. (12) 1500

1000

Consequently, wheh increases, 500

Vs e C\C, T(s)=e " 0, whenL — co.  (13)
-1000 -500 0 500 1000 -1000 -500 0 500 1000 -20

Thus, in the decomposed form of FIg. 1-(H)(s) behaves as a
“circuit breaker” at the limit. And so, we prove the following result Figure 4: Pole transition frori; to R, with T < 0.
In this case, wherl. — oo there is a densification of an in-

) . ) ) finite number of unstable poles d@, s1]. Thus, forL < Ly
The function R, is then interpretated as the global reflection the global transfer functions of the piece of pipe are stable, but
of a semi-infinite pipe (anechoic). A similar reasoning has been  iha transfer functions of the decomposed form, which are associ-
done in [3] for cones. ated to a semi-infinite pipe, have an infinite number of unstable
We observe the convergence of poles and zerd%lgdbvyards singularities. This phenomenum comes from the decomposition
the cutC of R, whenL increases. Thus, the cut can be interpre- f rig M-(b) which is well adapted to digital waveguide simula-
tated as a densification of intertwined poles and zeros. FIgure 3yjqns with positive curvatures. For negative curvatures, we have to
illustrates this convergence with > 0. search another decomposition which is adapted to waveguides and
which is stable foff’ < 0.

¥s€C\C, lim Rl (s) = Ric(s). (14)

5000 5000

4000 4000

20 4. GENERALIZED FRAMEWORK

3000 3000

2000 2000

4.1. Global form and decomposed form

1000 |- - 1000 - -

We have seen that the piece of pipe can be modelled by 2 systems
5 (cf. Fig.[). The first is given by the two-po@ and its 4 global
functions; and the second is given by a decomposed form with 10
transfer functions.

~1000}-- ~1000 -

- I - I
—2000 -1000 0 1000 —2000 -1000 0 1000

5000 5000

db(R}), L = 30m

4000 4000

-5 e Global form: No matter the sign of the curvature coeffi-
cient Y, the transfer function®’,, R}, andT, are stable.
Moreover, we have seen that they have only one ci&on

-15 because of the visco-thermal losses. Their simulation with
a modal approach, could allow a stable realization of the
piece of pipe. But the low-cost computation need the trun-
cation of modes, which involves some problems of realism.

3000 3000

2000 2000

1000 |- - 1000 |- -

—1000 |- - —1000 |- -

g g 1
—-2000 -1000 0 1000 —-2000 -1000 0 1000 —20

Figure 3: Convergence of poles and zeros?@fwhenL — 00 . ) .
(with T > 0). Poles, zeros and branching points are represented ~ ® Decomposed form:This form is adapted to the waveguide

by white points, black points and red crosses respectively. modelling, but it implies some problems of stability. With
T < 0 an unstable part of the cut appearsion.
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In the next section, we see that there is an infinite number of and the modes are simulated by the delays in the denominator of
forms of a piece of pipe, and then we get a parametrization in orderthe 4 other functions.
to find a stable realization which respects the waveguide forma- Remarks: For all causal and stab andg,., the 4 functiong+;,

lism.

4.2. Standard form of a piece of pipe

In a first time, we represent the 2 forms of Hij. 1 with a common
framework: the framework of Fidl]5 is equivalent to the 2 forms
(global or decomposed) if the following equations hold:

e Global folrm:

H.., F, and.F,. defined by[[IB-18) are causal and stable. Moreover,
the choiced; andg, such agg;(s)| < 1and|G.(s)| < 1, Vs €
C¢, allows the guarantee of the stability of the internal loop of the
system.

Now we have to findj; andG, which allow to guarantee the
stability and the passivity of the system, and to preservevthee-
guideformalism.

Hi = Ry, Fi = Dy, G =0, 5. STABLE REALIZATION OF CONVEX PIPE
H,=R', F.=Dy G.=0.
« Decomposed form: 5.1. Stabilization of convex pipes

Hi = Rie, Fi =D+ Rpi)(1+ Rie), With the waveguide approach, the “ideal” choice is this one of the

Hr = Rye, Fr=D(1+ Rii)(1+ Rre), decomposed form. With

G = RliD(l+R’r'i>7 G, = BriDO+RY)

1+Ry; 1+R7‘7',. . . RY = Rli(l + RM)D R — Rm'(l + Rlz‘)D 23

whereD andD,, correspond to the transmissiofisand T, with- YT 1Ry et Ry := 1+ R, Y

out delay: T'(s) = D(s)e " andTy(s) = Dgy(s)e""°. The o o
other functions of the decomposed form are giver By (8-10). this “ideal” choice is given by, = R;; etG,. = R;;. But these
functions depend ol and they have some unstable singularities

on [0, s;] with T < 0. We should do another choice.

o5 — o
H, H, 5.1.1. What can be a “good choice”?
B B Qualitatively, in order to understand what is a “good choiceGpof
%o — %1 andg,- we can examine for example the expression of the function

F given by [21):
Fi(s) = Dg(s) (1 = Gi(s)Gr(s) e 7).

The functionD, has a cut orR™ because of losses, and an
infinite number of pairs of complex conjugate pole<in. Every
pair corresponds to a mode of the piece of pipe. These poles are the
In a general case, the standard form (Elg. 5) allows the representayeros of the denominator @, which is: 1 — R}; R, e~27". The
tion of a piece of pipe if the following algebraic equations hold choiceg; = R}, andG, = R7,, allows the exact compensation of
the poles ofD,. With this choice,F; has no pole as singularity,
but only the cuC of T'.

Figure 5: Standard form of a piece of pipe

4.3. Parametrization

R, = Mi+ (FiGre )/ (1-GiGr e *™), (15)

Ry, = M.+ (Fr G e 27 )/(1=GiGr e 27s ), (16) The idea we propose and test here, is to compensate the high
D, = F/(1-GG, e 2 17 frequency poles (there is a infinite number) by the internal loop
o = A/ 1Gre), S of the framework with a choice such @(iw) ~ Rj;(iw) and
= F/(1-G G e_QTS). (18) Gi(iw) ~ R};(iw) when|w| is high, but withG, and G, holo-

morphic inCg . Finally, the staying poles in low frequencies are
We observe that this system of equations has 2 degrees of freesimulated as such in the 4 transfer functidrds H,., F; and 7,
dom. Choosingy; andg. as degrees of freedom, the solving of given by [T32P).

the system[{16-18) gives
, “ H 1147
N, = ng B Dggre’%s, (19) 5.1.2. How to find a “good choice™
M, = R - DyG e 27 (20) F(_)r simplificgtion, we artificially modify the functiong;; andR}’;
o with a mappings — ~(s) of the complex plan:
fl == Dg (1 - glg'r'e ) ) (21) * *
Fr = Dg(1-GGre ™). 22) Gi(s) == Ri;(7(s)), and G, (s) :== Ryi(v(s).  (24)

. . o . Now the choice ofj; andg, is done by the choice of this “map-

Consequently, it is possible to choose arbitrarily the functions ping”. To guarantee a good behavior in high frequerngyit) ~
G andg,. and to preserve the original input/ouput relations of the R}, (iw) andGy(iw) ~ RZ(iw)), we choosey such as:
system. And so we have a parametrization of the system with 2 " '
functions. For example the global form corresponds to the choice:

gl = 07 g'r‘ =0.

In the case of the decomposed form, the 6 transfer functions Remark: The expression|$| high” is voluntarily imprecise. In
have no internal delay, the modes of the piece of pipe are simulatedpractice, we want tha(iw) goesquickly towardsiw when |w|
by the loop. For the global forng;; = G, = 0, the loop is open, increases.

Vs € CJ with |s| high: ~(s) = s. (25)
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5.1.3. Properties of a “good mapping”

Not only v have to verify [2b), but it is also interesting to control
the singularities ofj; andg, with the choice ofy. In a first time

the chosen mapping has to guarantee the stability and the passivit
of G, andg,., and if possible it has to reduce the set of their sin-
gularities. To guarantee the good definition of these functions, we
give some constraints:

P1: ~ is hermitian (for real signals),

P2: v is analytical inC{,

P3:] —o0,s1] N~ (C§) ={a},

P4: Vs € CF, |R;;(v(s))] < 1et|Ry(y(s)| < 1.

With these properties, the choi¢g(s) := Rj;(y(s)) and
Gr(s) :== Ry;(7(s)) defines some hermitian functions (P1), holo-
morphic inC{ (P2, P3 and becaude); and R;; are holomorphic
onC\ ] —o0, s1]) and P4 guarantees the stability of the loop.

Note that the set of the cuts ¢ and G, becomesC!
{s € C/~(s) €] — 00, 1]} (with CT C C, thanks to P3). Thus

the mappingy allows the “rejection” of the unstable part of the cut
of T' ([0, 51] C R") in Cy , this stabilize the transfer functions.

5.2. Stable digital realization

Now we give some results of stable realizations of a piece of pipe
with a negative curvature. We use the previous idea, but with some
empirical considerations.

The procedure is summarized by the following steps:

e We choose the parameter functighsandg, using a map-
ping-y.
e We deduceH;, H,, F; and F,.

e We approximate the 6 transfer functions using standard re-
cursive filters.

5.2.1. Definition of the mapping

In practice, instead of looking for a well definedn C, we limit
the search inR (Fourier domain). Thus, we look for a contour
given by~(iR).
In high frequencies, the contour must get closer to the imagi-
nary axis (cf. [2b)), and so we choose it suchyésv) = iw with
|w| > wo, wherewy is a pulsation we can namenction pulsation
In lower frequencies, this contour has not only to get around
the part|0, s1] of the cut (to guarantee P3), but also to get around
the set ofs € C such agR;;(s)| > 1 and|R;;(s)| > 1 (P4).
Moreover, this contour must verify a constraint®f -regula-
rity on iR (necessary condition for P2). Thus, the “junction” in
w = Fwo between low and high frequencies must has the conti-
nuity of all its derivatives.
In order to simulate only the 2 first modes of the piece of pipe,
the junction pulsation, is chosen equal t&m(p2) wherep, is
the pole associated to the second mode of the piece of pipe.
Figure[® illustrates the contour(iw) which gets around the
cut, and the contour line of 1.

5.2.2. Approximation and results

Previously, we have chosen a mappinghich defines the param-
eter functionsj, andG,. Then, we deducé{,;, H,, F; and F,

DAFX-
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Figure 6: Phase ak}; and contoury(iw).

which preserve the input/output relations of the system u§ing (19-

[22). For a given piece of pipe this choice allows the definition of a

system composed by stable transfer functions, and which contains
a stabilized delay loopg@;| < 1 and|G.| < 1in CZ), cf. Fig.[8.

For the digital realization of the system, first the transfer func-
tions G, and G,- are approximated by standard recursive filters.
This type of approximations is presented[inl[11, 12]; here it need
a placement of some poles & .

For H;, H,, F; and F,., the same type of approximation is
realized. Here, withw| > wo, G;(iw) = Ry;(iw) and g, (iw)
R;;(iw), in consequence the modes with frequencies higher than
wp are simulated by the internal loop of the system. Then, there
are two staying modes which are simulated by 2 pairs of complex
conjugate poles.

For evaluation, we have built the realization of a convex piece
of pipe with the following parametersy = 7 cm,r;, = 10 cm,
T = —100m~2, L = 15 cm, ete = 0.0033 m~2. The junction
pulsation is fitted according to the second mode of the piece of
pipe which corresponds to a pair of poles.gt~ 17 10° rad.s™*
(Fo = wo/(2m) ~ 2700 Hz). Every transfer functio; or G,
is simulated by 6 stable poles (@1 ) and every function among
the 4 other by 6 stable real poles and 2 pairs of complex conjugate
poles. The delays of the framework of Fid. 5 are simulated by
low-cost digital delays (circular buffers).

Figure[T illustrates the frequency responsghfand its ap-
proximation. We observe 2 lobes which correspond to the 2 first
resonances of the piece of pipe which are not simulated by the
internal loop.

db(H (iw))

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 7:H, and its approximatioft;.

The result of the simulation is illustrated in Fig. 8 by the fre-
quency response of the global transfer functitjhand of its sim-

ulated versionRy. Note that the maximal error is almost 1.9 dB,
and its mean is 0.3 dB.

5



Proc. of the 1% Int. Conference on Digital Audio Effects (DAFx-10), Graz, Austria t&mper 6-10, 2010
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Figure 8:R;, and its simulated versioﬁg.

9]
6. CONCLUSION

In this paper, we have seen in the case of convex pipes that the usLlo]
of the simulation framework of [4] produces some problems of sta-
bility, because of the presence of unstable singularities which are
not of the pole type, but of theut type. After an explanation of ~ [11]
the problem, we have proposed a “generalized” framework which
parameterizes the system with 2 degrees of freedom which are 2
transfer functions. Then in pdudt 5 we have done a choice which sta-[12]
bilizes the system and preserves the approach| of [4]. This choice
allows the “rejection” of the unstable singularities to the left-half
Laplace plane, this stabilizes them. Finally, the digital simulation

of a piece of pipe has been realized with 2 delays and 6 standard
recursive filters.

The stable simulation is obtained thanks to two key points: (13]
first, the piece of pipe is represented with the new decomposition
proposed in Fig[]5; second, the two degrees of freedom of this
decomposition (here, chosen @sand gG,) are tuned through a
parameterized contows — ~(iw) so that the internal reflection
functions do not contain singularities (Ef{ and have their mod- [14]
ulus smaller tharl in (Cg. In a future work, the choice of the
mappingy could be improved to guarantee additionnal properties
such thaty mapps all the singularities &~ only.

Moreover, only the stability of one piece of pipe is done. For
the simulation of a whole virtual pipe, which is the concatenation
of several pieces of pipe, it is necessary to study the stability of the
whole system.
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