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Abstract: Contrarily to finite-dimensional systems, fractional systems have irrational transfer
functions with non unique analytic continuations (from some right-half Laplace plane to a
maximal domain). They involve continuous sets of singularities, namely cuts, which can be
chosen arbitrarily between fixed branching points. This paper presents an academic example
of the 1D heat equation and a realistic model of an acoustic pipe, both on bounded domains,
which involve transfer function with a unique analytic continuation with singularities of pole
type. When the length of the domain becomes infinite, these sets of singularities degenerate into
uniquely defined cuts. From a mathematical point of view, both the convergence in the Hardy
space of some left half-complex plane and the pointwise convergence are studied and proved.

Keywords: Boundary value problem, Generalized linear systems, Integral representations,
Laplace transforms, Singularities, Heat, Scattering problems.

1. INTRODUCTION

This paper is devoted to enlight links between some
fractional differential systems and physical phenomena
modelled by partial differential equations in unbounded
domains. Two problems are considered: first, in § 2, the
academic example of the 1D heat equation; second, in
§ 3, a realistic model of an acoustic pipe including visco-
thermal losses at the walls and a varying cross-section with
constant curvature.

On the one hand, the complex analysis of the transfer func-
tions related to these problems reveals that singularities
involve cuts between fixed branching points. On the other
hand, the same problems considered on a bounded domain
give rise to a countable set of poles. These are standard
results.

The main point of this paper is to exhibit in which
mathematical sense the cuts of the fractional systems
under consideration can be viewed as the limit of a
densification of the set of poles when the boundary of the
domain goes towards infinity.

As a result, whereas the cuts of the transfer function of
fractional systems can be chosen arbitrarily (starting from
and ending at fixed branching points), the cuts defined
from the limit of the countable set of poles are uniquely
defined.
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From a mathematical point of view, two types of conver-
gence are examined: first, the convergence of the transfer
functions in the Hardy space of some left half-complex
plane is proved, second the pointwise convergence of some
analytic continuation of the transfer functions is obtained
over the whole Laplace plane except on these cuts.

2. A TOY MODEL: THE HEAT EQUATION

2.1 Physical model

Consider the following adimensional heat conduction pro-
blem on Iε = (0, 1/ε), described by,

∀x ∈ Iε, ∀t > 0, ∂tT (x, t) − ∂2
xT (x, t) = 0, (1)

with null initial conditions,

∀x ∈ Iε, T (x, t = 0) = 0, (2)

a controlled Neumann boundary condition at x = 0,

∀t > 0, −∂xT (x = 0, t) = u(t), (3)

a free Dirichlet boundary condition at x = 1/ε,

∀t > 0, T (x = 1/ε, t) = 0, (4)

and a Dirichlet observation at x = 0 as output,

∀t > 0, y(t) := T (x = 0, t). (5)

This models a finite bar, at rest before t = 0, controlled by
a heat flux u and observed by the temperature at the left
end x = 0, and for which the temperature is kept equal to
zero at the right end x = 1/ε.



2.2 Transfer function and Hardy spaces

Following e.g. Curtain and Zwart (1995), this problem can
be solved in the Laplace domain and yields the transfer
function Hε(s) := ŷ(s)/û(s) given by

∀s ∈ C
+
0 , Hε(s) :=

tanh(
√
s/ε)√
s

, (6)

where ∀α ∈ R, C
+
α := {s ∈ C

∣

∣<e(s) > α}, and

where T̂ and û respectively denote the one-sided Laplace
transforms of T and u with respect to the time variable.

In (6), the square-root denotes the analytic continuation
of the positive square-root on R

+ on a domain compatible
with the one-sided Laplace transform,namely C

+
0 .√

· : s = ρ exp(iθ) 7→ √
ρ exp(iθ/2) (7)

with (ρ, θ) ∈ R
+∗ × (−π/2, π/2).

Following e.g. Partington (2004), let us introduce:

Definition 1. For α > 0 and m > 0, H
m(C+

α ) denotes the
Hardy space defined by

H
m(C+

α ) =
{

H : C
+
α → C

∣

∣

∣
H is holomorphic in C

+
α ,

and sup
ζ>α

∫

R

|H(ζ + iω)|mdω<∞
}

. (8)

The norm of H ∈ H
m(C+

α ) is then defined by

‖H‖
Hm(C+

α ) := sup
ζ>α

[

1

2π

∫

R

|H(ζ + iω)|m dω

]
1
m

. (9)

Then, the following theorem holds.

Theorem 2. Let ε > 0, then

∀α ≥ 0,∀m > 2, Hε ∈ H
m(C+

α ) . (10)

Proof. Let ε > 0, α ≥ 0 and m > 2. Since

∀s ∈ C
+
α , Hε(s) =

1√
s

1 − exp(−2
√
s/ε)

1 + exp(−2
√
s/ε)

, (11)

with (7), it follows that

|Hε(s)|m ∼ |s|−m
2 as |s| → ∞, (12)

|Hε(s)|m ∼ ε−m as s→ 0. (13)

Hence,
∫

ζ+iR
|Hε(s)|m ds is a finite integral for m > 2 (due

to (12)) and α ≥ 0. 2

Theorem 3. Function H0 defined by

H0 : C
+
0 → C

s 7→ 1/
√
s (14)

is analytic over C
+
0 .

∀α > 0,∀m > 2, H0 ∈ H
m(C+

α ) . (15)

Moreover,

Hε
H

m(C+
α )−→ H0 as ε→ 0+ . (16)

Proof. Using (7), H0 is well defined, and analytic in C
+
0 .

Proving (15) is analogous to proving (10), but contrarily
to theorem 2, the case α = 0 cannot be included here:
condition α > 0 ensures the convergence of the integral in
(9) for ω → 0.

Now, as for (16), the behaviour of 1√
s

2 exp(−2
√

s/ε)
1+exp(−2

√
s/ε)

has

to be studied as ε → 0+. Denoting z =
√
s/ε, we get

|s−1/2 2e−2z

1+e−2z | ≤ 2|s|−1/2 e−2<e(z), since |1+e−2z| ≥ |1+

<e(e−2z)| ≥ 1. Then, for s = ζ+ iω and ζ ≥ α, we have

e−2<e(z) ≤ e−2 cos(π/4)
√

α/ε. Raising the latter bound to
power m and using (15) yields the result. 2

2.3 Complex analysis and analytic continuations

The transformation
√
s 7→ −√

s keeps Hε invariant, so
that Hε is a function of s only. More precisely, Hε can be
analytically continued on the domain Dε given by

Dε = C \ Pε, (17)

Pε = {sn = −ε2 (n+
1

2
)2 π2

∣

∣n ∈ N}, (18)

where Pε is the countable set of poles of Hε. Note that
0 6∈ Pε and Hε(0) = 1. The set of zeros of Hε is given by

Zε = {ζn = −ε2 n2 π2
∣

∣n ∈ N
∗}. (19)

Using formula tanh(z)/z =
∑

n∈N

1
z2+(n+ 1

2
)2 π2 from e.g.

Cartan (1961), Hε proves to be a meromorphic function
which can be expanded into

Hε : C \ Pε → C

s 7→
∑

n∈N

ε

s+ ε2(n+ 1
2 )2π

2 (20)

Note the difference between (6) and (20): the latter is the
unique maximal analytic continuation of the former.

Remark: Poles Pε and zeroes Zε are intertwined on
the negative real axis R

−, as already noticed in e.g.
Oustaloup (1983). Moreover, in a way which must be made
mathematically rigorous,

∪ε>0Pε = R
−. (21)

This is the reason why we now define D0 := C \ R
− and

H0 : C \ R
− → C

s 7→
∫ ∞

0

1

π
√
ξ

1

s+ ξ
dξ (22)

Using the links between fractional calculus and diffusive
representations, as in Matignon (1998), it can be proved 2

that H0(s) as defined by (22) also has the value s−1/2,
as expected, once definition (7) has been analytically
continued to (ρ, θ) ∈ R

+∗ × (−π, π).

Note the difference between (14) and (22): the latter
is a maximal analytic continuation of the former, but
it is certainly not unique! It is well known that any
branch cut between the branchpoints s = 0 and another
branchpoint at infinity in <e(s) < 0 would also do (see e.g.
Matignon (1998) and Zwart (2004)). Among these analytic
continuations, (22) defines the unique limit of Hε on Dε,
for ε→ 0+, as stated in the following theorem.

2 an elementary proof goes as follows: substitute x =
√

ξ/s in the

numerical identity
∫

∞

0

dx

1+x
2 = π

2
for any s ∈ R+∗, and get (22);

then perform an analytic continuation from R+∗ to C \ R− for both
sides of the identity.



Theorem 4. Let ε > 0, then D0 ⊂ Dε, and

∀s ∈ C \ R
−, lim

ε→0+
Hε(s) = H0(s). (23)

Proof. Let s be fixed in C \ R
−. Then, ∀ε > 0, Hε is

analytic at s, and from the extended definition of (7) above,
<e(

√
s) > 0, so that limε→0+ exp(−2

√
s/ε) = 0. The limit

of (11) for ε→ 0+ yields the desired result. 2

Remark: The cut C, which appears as the limit set of
singularities of physical problems on bounded domains, is
characterized by

<e(
√
s) = 0 ⇔ s ∈ C := R

−. (24)

2.4 Integral representations and interpretations

Well-posed integral representations of both Hε and H0 are
given by

Hε(s) =

∫ ∞

0

1

s+ ξ
dµε(ξ). (25)

From e.g. Matignon and Zwart (2008), the well-posedness
condition reads

∫∞
0

1
1+ξ dµ(ξ) < ∞; it is fulfilled by the

associated measures µε and µ0, defined as follows:

µε =
∑

n∈N

2ε δ−sn
(ξ), for ε > 0 , (26)

dµ0(ξ) =
1

π
√
ξ

dξ . (27)

For ε > 0, µε is a discretely supported measure at points
ξn = −sn = ε2(n+ 1

2 )2π2, n ∈ N; whereas µ0 is absolutely
continuous w.r.t Lebesgue measure on R

+. Both these
systems are presented in examples 2.1 and 2.2 of Hélie
and Matignon (2006b), and fully analysed as well-posed
systems in examples 3.2 and 3.4 of Matignon and Zwart
(2008).

We have the following convergence theorem for the asso-
ciated measures:

Theorem 5. The weak convergence of measures holds:

µε
w−→ µ0, as ε→ 0+ (28)

Hence, for s ∈ D0 and with ϕs(ξ) := 1
s+ξ as test function

in C0(R
+), we recover Hε(s) −→ H0(s), as ε→ 0+.

Proof. Let ϕ ∈ Cc(R
+
ξ ), we compute < µ0, ϕ >=

∫∞
0

1

π
√

ξ
ϕ(ξ) dξ on the one hand, and < µε, ϕ >=

∑∞
n=0 2εϕ(ξn) on the other hand. With the change of

variables ξ = x2 π2, the test function reads ψ(x) := ϕ(ξ)
and still belongs to Cc(R

+
x ). The only thing to prove is then

2ε

∞
∑

n=0

ψ(ε (n+
1

2
)) −→ 2

∫ ∞

0

ψ(x) dx ,

as ε → 0+, which is nothing but the limit of a Riemann
sum. One can also try to extend the previous result to
ϕ ∈ C0(R

+
ξ ), and not only Cc(R

+
ξ ).

Nevertheless, the well-posedness conditions help prove the
last item, even if ϕs /∈ Cc(R

+
ξ ), but ϕs ∈ C0(R

+
ξ ). 2

3. A MORE INVOLVED MODEL IN ACOUSTICS

3.1 Acoustic model of a piece of pipe

Acoustic model Consider a mono-dimensional model of
linear acoustic propagation in axisymmetric pipes, which
takes into account the visco-thermal losses and the varying
cross section. The acoustic pressure p and velocity v
are governed by the Webster-Lokshin equation (cf. Hélie
(2003)) and Euler equation, given by, in the Laplace
domain,

[(

(

s

c0

)2

+2η(`)

(

s

c0

)
3
2

+Υ(`)

)

−∂2
`

]

(

r(`)p(`, s)
)

= 0, (29)

ρ0 s v(`, s) + ∂`p(`, s) = 0, (30)

where s is the Laplace variable, ` is the curvilinear abscissa
of the wall, c0 is the speed of sound, ρ0 is the mass density,
r(`) is the radius of the pipe. η quantifies the effect of the
visco-thermal losses, and Υ = r′′/r is the curvature of the
horn.

Note that the symbol s3/2 is the Laplace transform of the

fractional time derivative ∂
3/2
t , as introduced in e.g. Polack

(1991). The role of the parameter η alone, when Υ = 0
has been fully understood in Matignon and d’Andréa-
Novel (1995), in which three closed-form solutions of this
problem have been obtained. The diffusive phenomenon in
which we are interested in this section, is actually due to
the curvature Υ(`) and requires special treatment.

Let ψ+(`, s) and ψ−(`, s) be defined by
[

ψ+

ψ−

]

=
r

2

[

1 ρ0c0
1 −ρ0c0

] [

p
v

]

+
c0r

′

2rs

[

−1
1

]

p. (31)

This alternative acoustic state defines travelling waves ψ+

and ψ− which extend the usual decoupled ingoing and
outgoing planar or spherical waves propagating in straight
or conical lossless pipes respectively (η = 0,Υ = 0).

Adimensional problem for a piece of pipe Consider a
section of horn with length L, constant positive curvature
Υ > 0, and constant losses coefficient η. Let us define the
adimensional variables and coefficients for this horn:

` =
`

L
, s =

s

c0
√

Υ
, ε =

1

L
√

Υ
, and β =

η
4
√

Υ
.

and for any dimensional function F , let us define its
adimensional version F such as F (`, s) = F (`, s).

Coefficient Υ becomes Υ = 1 and equations (29), (30) and
(31) become, for all ` ∈ (0, 1),

[(

s2 + 2βs
3
2 + 1

)

− ε2∂2
`

]

(

r p
)

= 0, (32)

ρ0c0 s v + ε∂` p= 0, (33)
[

ψ
+

ψ
−

]

=
r

2

[

1 ρ0c0
1 −ρ0c0

] [

p

v

]

+
c0r

′

2r s

[

−1
1

]

p. (34)

Note that ε = 1/(L
√

Υ) is conversely proportional to L: it
will play the same role as ε in section 2 to compute some
limit transfer function when ε→ 0+.

In the following we only consider adimensional problem,
the notation X is re-noted X for sake of legibility.



3.2 Transfer functions and Hardy spaces

Two-port representation and reflection function Solving
(32)-(34) for ` ∈ (0, 1) with zero initial conditions, con-
trolled boundary conditions ψ+

0 (s) := ψ+(`=0, s) (incom-
ing wave at ` = 0) and ψ−

1 (s) := ψ−(` = 1, s) (incoming
wave at `=1), and observing the outgoing travelling waves
(ψ+

1 , ψ
−
0 ), lead to the solution [ψ+

1 , ψ
−
0 ]T = Qε.[ψ

+
0 , ψ

−
1 ]T .

The scattering matrix Qε is given by (cf. Hélie (2002);
Hélie and Matignon (2006a))

Qε(s) =

[

Tε(s) Rε(s)
Rε(s) Tε(s)

]

.

PSfrag replacements

Rε
Rε

Tε

Tε
ψ−

0

ψ+
1ψ+

0

ψ−
1

Both Tε and Rε are intricate transfer functions which
are not convenient to use for simulation purposes in time
domain. Moreover, everything depends on ε, which mixes
the effects and make things difficult to analyse.

In the following we are only interested in the trans-
fer function Rε(s) = ψ−

0 (s)/ψ+
0 (s), which represents

the global reflection on the travelling waves of the
horn at the left end (`=0).

The function Rε is given by, ∀s ∈ C
+
0 ,

Rε(s) =

1
2

(

s
Γ(s) −

Γ(s)
s

)

sinh
(

Γ(s)
ε

)

cosh
(

Γ(s)
ε

)

+ 1
2

(

s
Γ(s) + Γ(s)

s

)

sinh
(

Γ(s)
ε

) , (35)

=

1
2

(

s
Γ(s) −

Γ(s)
s

)

tanh
(

Γ(s)
ε

)

1 + 1
2

(

s
Γ(s) + Γ(s)

s

)

tanh
(

Γ(s)
ε

) , (36)

where, as for equation (7) of section 2, in (35), Γ(s) denotes
the analytic continuation of the positive square-root of

Γ(s)2 = s2 + 2βs
3
2 + 1, (37)

on the domain C
+
0 which is compatible with the one-sided

Laplace transform.

Remark: Now, in the part of the complex plane for which
<e(Γ(s)) > 0, letting z := Γ(s)/ε, working on formula
(36), we find as in section 2, that, as ε→ 0+,

Rε(s) →
1
2

(

s
Γ(s) −

Γ(s)
s

)

1 + 1
2

(

s
Γ(s) + Γ(s)

s

) ,

=
s2 − Γ(s)2

2sΓ(s) + s2 + Γ(s)2

=
s− Γ(s)

s+ Γ(s)
:= R0(s) . (38)

Physical interpretation To reduce the simulation cost, a
decomposition of the two-port Qε into elementary transfer
functions can be looked for. Using the method recently
presented in Hélie et al. (2007), we get the structure of
figure 1.

Here, R0(s), already defined by (38), represents the wave
reflection at the interfaces of the horn and

Wε(s) := e−Γ(s)/ε (39)

represents the propagation trough the horn. For the
present work, this structure is of interest because the

PSfrag replacements

ψ+
0

ψ−
0 ψ−

1

ψ+
1

R0
R0 −R0

−R0

1+R0

1+R0

1−R0

1−R0 Wε

Wε

Fig. 1. Decomposition of the two-port Qε

parameter ε is now clearly isolated in Wε only. We obtain
another algebraic expression for Rε, namely:

Rε = R0
1 −W 2

ε

1 −R0
2W 2

ε

, (40)

which helps prove the pointwise convergence result below.
Note that, whereas the functions R0 and Wε of the
decomposition depend on Γ(s), Rε is a function of Γ(s)2,
and s only, see (36).

Since L = 1/(ε
√

Υ), L → ∞ as ε → 0. The pointwise
convergence allows us to interpret function R0 as the
waves reflection of a semi-infinite horn, which is anechoic
(Wε(s) → 0 as ε→ 0+, as soon as <e(Γ(s)) > 0).

We are now in a position to perform a detailed complex
analysis of both Rε and R0 in terms of poles, zeroes,
branching points and cuts, and analyse their evolution
with respect to ε.

Hardy spaces Now, we give some properties of the trans-
fer functions in C

+
0 . In Hélie and Matignon (2006a), the

following results have been proved for ε > 0:

∀s ∈ C
+
0 , <e(Γ(s) − s) > 0, (41)

∀s ∈ C
+
0 , |R0(s)| < 1 and |Wε(s)| < 1, (42)

∀m > 0, Wε ∈ H
m(C+

0 ) , (43)

∀m > 2, R0 ∈ H
m(C+

0 ) and Rε ∈ H
m(C+

0 ) . (44)

Moreover, the following result holds:

Theorem 6. Let ε > 0,

∀α > 0, ∀m > 2, Rε
H

m(C+
α )−→ R0 as ε→ 0+ . (45)

Proof. Let s ∈ C
+
α . From (41), |Wε(s)| < e−<e(s)/ε <

e−α/ε, then with (42), we get | 1−R2
0

1−R2
0
W 2

ε
| < 1

1−e−2α/ε .

Consequently |R0−Rε| = |R0
1−R2

0

1−R2
0
W 2

ε
W 2

ε | < |R0| e−2α/ε

1−e−2α/ε .

Now, from (44), R0 ∈ H
m(C+

0 ) ⊂ H
m(C+

α ).

Finally, ‖R0 −Rε‖Hm(C+
α ) < ‖R0‖Hm(C+

α )
e−2α/ε

1−e−2α/ε → 0,

when ε→ 0+ for m > 2. 2

3.3 Branching points and Cuts of Γ(s)

In this subsection, we discuss the possible analytic conti-
nuations of function Γ in the whole Laplace domain.

Cut on R
− From (37) and because of s3/2, Γ2 has a cut

which links s=0 and s=∞ in C
−
0 . As it has been done in

section 2, we choose the cut on R
−. Note that this choice is

required to ensure the hermitian symmetry, causality and
stability of the transfer functions.



Symmetric cut Function Γ(s) has some other branching
points, which are solutions of Γ(s)2 = 0. In the appendix of
Hélie (2002), it has been checked that there are 2 conjugate
solutions with negative real part. Now we must choose a
cut which links these branching points.

To ensure hermitian symmetry, causality and stability of
transfer functions, the cut must satisfy two constraints:

(C1) the cut must be symmetric w.r.t R,
(C2) the cut must lie in C

−
0 only.

Figure 2 below shows two different such choices.

Fig. 2. Phase of Γ(s) in the complex plane (β = 2).
(1) horizontal cut, (2) vertical cut.

Positive square root In the sequel, we will make use of a
special choice of the symmetric cut, given by:

Γ(s) :=

√

s2 + 2βs
3
2 + 1, (46)

where
√
. stands for the holomorphic extension to (ρ, θ) ∈

R
+∗ × (−π, π) of the square root defined by (7).

Defining Γ(s) by (46), function Γ is holomorphic in C \
(R− ∪ C), with C := {s ∈ C/Γ(s)2 ∈ R

−}. The cuts are
R

− and C (cf. Fig. 3). Note that C has been proved to
be included in C

−
0 , and its geometry only depends on the

coefficient β > 0 (for the adimensional problem).

Fig. 3. Phase of Γ(s), as defined by (46), (β = 2).

The important property of definition (46) of Γ, is that

<e(Γ(s)) > 0, ∀s ∈ C \ C. (47)

3.4 Poles, zeroes and convergence

Poles and Zeroes of Rε Recall that the transformation
Γ 7→ −Γ keeps Rε invariant, so that Rε is a function of Γ2

only; more precisely, Rε can be analytically continued on
the domain Dε given by

Dε = C \
(

R
− ∪ Pε

)

, (48)

Pε =
{

s ∈ C /
tanh(Γ(s)/ε)

Γ(s)
=

−2s

s2 + Γ(s)2

}

. (49)

Pε is a set singularities of Rε. Unfortunately, it is difficult
to study them explicitly, however numerical simulation
makes the following conjecture plausible

Conjecture: Elements of Pε are isolated singularities, and
there are infinitely many such poles, corollary with no
accumulated point. Let Pε denote the set of poles of Rε.

From (35), the set of zeroes of Rε is Zε ∪ {ζ0, ζ0}, where

Zε =
{

ζn and ζn ∈ C / Γ(ζn)2 = −ε2n2π2 | n ∈ N
∗
}

,

ζ0 = (2β)−3/2 e2iπ/3 . (50)

ζ0 is solution of Γ(s) + s = 0, when Γ is defined by (46),
and we notice that elements of Zε lie on C (ie. Zε ⊂ C).

Pointwise convergence As already discussed in section
3.3 (§2), the analytic continuation of Γ is not unique,
and so for R0. Nevertheless, similarly to section 2, R0

with Γ defined by (46), corresponds to the unique limit
of Rε defined in Dε, for ε→0+, as stated in the following
theorem

Theorem 7. Let the open set D0 and the analytic function
R0 be defined by

D0 := C \
(

R
− ∪ C ∪ {ζ0, ζ0}

)

(51)

R0 :D0 → C

s 7→ s− Γ(s)

s+ Γ(s)
(52)

with the function Γ, as defined by (46).

Then, ∀ε > 0,

∀s ∈ D0, lim
ε→0+

Rε(s) = R0(s). (53)

Proof. Let s ∈ D0, and Γ(s) defined by (46); from (47),
<e(Γ(s)) > 0, so that e−2Γ(s)/ε → 0 when ε→ 0+, as first
noted in section 3.2 (§3). 2

Note that ζ0 and ζ0, which are two zeroes of Rε, are
actually the two unique poles of R0.

Remark: The cut C, which appears as the limit set of
singularities of physical problems on bounded domains, is
characterized by

<e(Γ(s)) = 0 ⇔ s ∈ C. (54)

Unfortunately, we have not succeeded to prove the con-
vergence of poles of Rε to the cut C and {ζ0, ζ0} (poles
of R0). However numerical simulations illustrate this phe-
nomenon: see Fig. 4 where poles and zeroes are represented
by white and black dots respectively.

Proposition 8. The poles of Rε move continuously towards
the cut C when parameter ε varies continuously.

Proof. Using the analytical continuation of (40) defined
by (46), we get an equivalent definition of Pε which is
{s ∈ C / R0(s)

2Wε(s)
2 = 1}. Since Wε(s) → 0 when

ε → 0+ ∀s ∈ C \ C, the poles of Rε move to C or to the
solutions of |R0(s)| = ∞, which are ζ0 and ζ0. 2



Fig. 4. Modulus |Rε(s)| in the complex plane (β = 2).
(1) ε = 0.4, (2) ε = 0.15, (3) ε = 0.03, (4) ε = 0.

4. CONCLUSION

Irrational transfer functions H0 have been derived as the
limit of solutions Hε of physical boundary problems, on
domains (0, 1/ε). The convergence of Hε towards H0 in
Hardy spaces for some Laplace right half-plane has been
proved.

On the one hand, the limit transfer functions H0 are those
of causal fractional systems, for which infinitely many
analytic continuations are available. Indeed, the set of
singularities involve cuts which can be arbitrarily chosen
between fixed branching points, in <e(s) ≤ 0.

On the other hand, the maximal analytic continuations
of Hε and their singularities of pole type are unique. As
a main result of this paper (theoretically for model 1 and
numerically for model 2), their pointwise limit uniquely de-
fines a particular maximal analytic continuation of H0 for
which the cuts are hermitian symmetrical and described
by a characteristic equation (see (24) and (54)). Moreover,
integral representations of Hε and of H0 are available, and
their corresponding measures are such that µε converges
towards µ0, in a weak sense.

However, open questions arise from this preliminary work.
First, we still have to prove the conjecture (numerically
observed) stating that, for ε > 0, the singularities of the
acoustic model define an infinite countable set of isolated
poles. Second, estimating these poles and their residues
should be studied to define discrete measures µε and
analyze their weak convergence towards a limit measure.
Third, for both examples, we observe that the cuts corre-
spond to a limit set of poles but also to a limit set of zeros
(which are intertwined with poles for example 1). This
matches with widely-used approximations of fractional op-
erators which use placement of intertwined poles and zeros.
A question is then: is this property generally satisfied, or
are there some cases for which cuts correspond to limit
sets of singularities exclusively (but not zeros) ? Fourth,
the unique limit sets of singularities are obtained from
the sequence of physically meaningful problems. Questions
are then: can distinct sequences of physically meaningful

causal problems lead to the same transfer function in C
+
0

but different limit sets of singularities in C
−
0 ? If not,

how can this limit set be characterized ? It should be
noted that once a state-space representation Ẋ = AεX
has been chosen for a sequence of physically meaningful
PDE problems, then all the singularities of any transfer
functions built from a system with a control operator Bε

and an observation operator Cε do belong to spec(Aε):
only point spectrum for ε > 0 and continuous spectrum
for ε = 0. Hence, spec(Aε) fixes the general location of
singularities, see e.g. Zwart (2004): this last remark should
help obtain relevant information for our questions.
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