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ABSTRACT

Methods for music structure discovery usually process a
music track by first detecting segments and then labeling
them. Depending on the assumptions made on the sig-
nal content (repetition, homogeneity or novelty), different
methods are used for these two steps. In this paper, we deal
with the segmentation in the case of repetitive content. In
this field, segments are usually identified by looking for
sub-diagonals in a Self-Similarity-Matrix (SSM). In order
to make this identification more robust, Goto proposed in
2003 to cumulate the values of the SSM over constant-lag
and search only for segments in the SSM when this sum
is large. Since the various repetitions of a segment start
simultaneously in a self-similarity-matrix, Serra et al. pro-
posed in 2012 to cumulate these simultaneous values (us-
ing a so-called structure feature) to enhance the novelty of
the starting and ending time of a segment. In this work,
we propose to combine both approaches by using Goto
method locally as a prior to the lag-dimensions of Serra
et al. structure features used to compute the novelty curve.
Through a large experiment on RWC and Isophonics test-
sets and using MIREX segmentation evaluation measure,
we show that this simple combination allows a large im-
provement of the segmentation results.

1. INTRODUCTION

Music structure segmentation aims at estimating the large-
scale temporal entities that compose a music track (for ex-
ample the verse, chorus or bridge in popular music). This
segmentation has many applications such as browsing a
track by parts, a first step for music structure labeling or
audio summary generation [15], music analysis, help for
advanced DJ-ing.

The method used to estimate the music structure seg-
ments (and/or labels) depends on the assumptions made
on the signal content. Two assumptions are commonly
used [13] [14]. The first assumption considers that the au-
dio signal can be represented as a succession of segments
with homogeneous content inside each segment. This as-
sumption is named “homogeneity assumption” and the es-

c© Geoffroy Peeters, Victor Bisot.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Geoffroy Peeters, Victor Bisot. “Im-
proving Music Structure Segmentation using lag-priors”, 15th Interna-
tional Society for Music Information Retrieval Conference, 2014.

timation approach named “state approach”. It is closely re-
lated to another assumption, named “novelty”, that consid-
ers that the transition between two distinct homogeneous
segments creates a large “novelty”. The second assump-
tion considers that some segments in the audio signal are
repetitions of other ones. This assumption is named “rep-
etition assumption”. In this case the “repeated” segments
can be homogeneous or not. When they are not, the ap-
proach is named “sequence approach”.

In this paper, we deal with the problem of estimat-
ing the segments (starting and ending times) in the case
of repeated/ non-homogeneous segments (“sequence” ap-
proach).

1.1 Related works

Works related to music structure segmentation are numer-
ous. We refer the reader to [13] or [3] for a complete
overview on the topic. We only review here the most im-
portant works or the ones closely related our proposal.

Methods relying on the homogeneity or novelty as-
sumption. Because homogeneous segments form
“blocks” in a time-time-Self-Similarity-Matrix (SSM) and
because transitions from one homogeneous segment to the
next looks like a checkerboard kernel, Foote [5] proposes
in 2000 to convolve the matrix with a 2D-checkerboard-
kernel. The result of the convolution along the main di-
agonal leads to large value at the transition times. Since,
an assumption on the segment duration has to be made for
the kernel of Foote, Kaiser and Peeters [9] propose in 2013
to use multiple-temporal-scale kernels. They also intro-
duce two new kernels to represent transitions from homo-
geneous to non-homogeneous segments (and vice versa).
Other approaches rely on information criteria (such as BIC,
Akaike or GLR) applied to the sequence of audio fea-
tures. Finally, labeling methods (such as k-means, hierar-
chical agglomerative clustering of hidden-Markov-model)
also inherently allow performing time-segmentation.

Methods relying on the repetition assumption. Be-
cause repeated segments (when non-homogeneous) form
sub-diagonals in a Self-Similarity Matrix (SSM), most
methods perform the segmentation by detecting these sub-
diagonals in the SSM.

If we denote by S(i, j) = S(ti, tj) i, j ∈ [1, N ] the
time-time-SSM between the pairs of times ti and tj , the
time-lag-SSM [1] is defined as L(i, l) = L(ti, l = tj− ti),
since tj − ti ≥ 0 the matrix is upper-diagonal. The lag-
matrix can be computed using L(i, l) = S(i, j = i + l)
with i+ l ≤ N .
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In [6], Goto proposes to detect the repetitions in a time-
lag-SSM using a two-step approach. He first detects the
various lags lk at which potential repetitions may occur.
This is done by observing that when a repetition (at the
same-speed) occurs, a vertical line (at constant lag) ex-
ists in the time-lag-SSM (see Figure 1). Therefore, the
sum over the times of the time-lag-SSM for this specific
lag will be large. He proposes to compute the function
f(l) =

∑
ti∈[0,N−l]

1
N−lL(ti, l). A peak in f(l) indicates

that repetitions exist at this specific lag. Then, for each de-
tected peaks lk, the corresponding column of L(ti, lk) is
analyzed in order to find the starting and ending times of
the segments.

Serra et al. method [16] for music structure segmenta-
tion also relies in the time-lag-SSM but works in the op-
posite way. In order to compute the lower-diagonal part
of the matrix (tj − ti < 0), They propose to apply cir-
cular permutation. The resulting matrix is named circular-
time-lag-matrix (CTLM) and is computed using L∗(i, l) =
S(i, k + 1), for i, l ∈ [1, N ] and k = i+ l − 2 modulo N.
They then use the fact that the various repetitions of a same
segment start and end at the same times in the CTLM. They
therefore define a N-dimensional feature, named ”structure
feature” g(i), defined as the row of the CTLM at ti. Start
and end of the repetitions create large frame-to-frame vari-
ations of the structure feature. They therefore compute a
novelty curve defined as the distance between successive
structure features g(i): c(i) = ||g(i + 1) − g(i)||2 (see
Figure 1). Large values in this curve indicate starts or ends
times of repetitions.

Tim
e t
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Serra:

0

N

g(i)
g(i+1)

ti

lk

Lag l N0 c(i)

f(l)

Figure 1. Illustration of Goto method [6] on a time-lag
Self-Similarity-Matrix (SSM) and Serra et al. method [16]
on a circular-time-lag-matrix (CTLM).

1.2 Paper objective and organization

In this paper, we deal with the problem of estimat-
ing the segments (starting and ending times) in the case
of repeated/ non-homogeneous segments (“sequence” ap-
proach). We propose a simple, but very efficient, method
that allows using Goto method as a prior lag-probability

of segments in Serra et al. method. Indeed, Serra et al.
method works efficiently when the “structure” feature g(i)
is clean, i.e. contains large values when a segment crosses
g(i) and is null otherwise. Since, this is rarely the case,
we propose to create a prior assumption f(l) on the di-
mensions of g(i) that may contain segments. To create
this prior assumption, we use a modified version of Goto
method applied locally in time to the CTLM (instead of to
the time-lag-SSM).

Our proposed method for music structure segmentation
is presented in part 2. We then evaluate it and compare its
performance to state-of-the-art algorithms in part 3 using
the RWC-Popular-Music and Isophonics/Beatles test-sets.
Discussions of the results and potential extensions are dis-
cussed in part 4.

2. PROPOSED METHOD

2.1 Feature extraction

In order to represent the content of an audio signal, we
use the CENS (Chroma Energy distribution Normalized
Statistics) features [12] extracted using the Chroma Tool-
box [11]. The CENS feature is a sort of quantized version
of the chroma feature smoothed over time by convolution
with a long duration Hann window. The CENS features
xa(ti) i ∈ [1, N ] are 12-dimensional vector with a sam-
pling rate of 2 Hz. xa(ti) is in the range [0, 1]. It should be
noted that these features are l2-normed 1 .

2.2 Self-Similarity-Matrix

From the sequence of CENS features we compute a time-
time Self-Similarity-Matrix (SSM) [4] S(i, j) using as
similarity measure the scalar-product 2 between the feature
vector at time ti and tj : S(i, j) =< xa(ti), xa(tj) >.

In order to highlight the diagonal-repetitions in the SSM
while reducing the influence of noise values, we then apply
the following process.

1. We apply a low-pass filter in the direction of the diag-
onals and high-pass filter in the orthogonal direction. For
this, we use the kernel [−0.3, 1,−0.3] replicated 12 times
to lead to a low-pass filter of duration 6 s.

2. We apply a threshold τ ∈ [0, 1] to the resulting SSM.
τ is chosen such as to keep only β % of the values of the
SSM. Values below τ are set to a negative penalty-value α.
The interval [τ, 1] is then mapped to the interval [0, 1].

3. Finally, we apply a median filter over the diagonals of
the matrix. For each value S(i, j), we look in the backward
and forward diagonals of δ-points duration each [(i−δ, j−
δ) . . . (i, j) . . . (i + δ, j + δ)]. If more than 50% of these
points have a value of α, S(i, j) is also set to α.

By experiment, we found β = 6% (percentage of values
kept), α = −2 (lower values) and δ = 10 frames (interval
duration 3 ) to be good values.

1 ∑
a=[1,12] x

2
a(ti) = 1

2 Since the vectors are l2-normed, this is equivalent to the use of a
cosine-distance.

3 Since the sampling rate of xa(ti) is 2 Hz, this corresponds to a du-
ration of 5 s. The median filter is then applied on a window of 10 s total
duration.
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2.3 Proposed method: introducing lag-prior

As mentioned before, Serra et al. method works efficiently
when the “structure” feature g(i) is clean, i.e. contains
large values when a segment crosses g(i) and is null other-
wise. Unfortunately, this is rarely the case in practice.

If we model the structure feature g(i) as the true con-
tribution of the segments ĝ(i) and a background noise
(modeled as a centered Gaussian noise) Nµ=0,σ: g(i) =
ĝ(i) + Nµ=0,σ , one can easily shows that the expectation
of c(i) = ||g(i+ 1)− g(i)||2 is equal to

• K + 2σ2 for the starting/ending of K segments at ti
• 2σ2 otherwise.

If σ (the amount of background noise in the CTLM) is
large, then it may be difficult to discriminate between both
case for small K. In the opposite, the expectation of the
values of Goto function f(l) =

∑
ti
L∗(ti, l) remains in-

dependent of σ hence on the presence of background noise
(in the case of a centered Gaussian noise).

We therefore propose to use f(l) as a prior on the lags,
i.e. the dimensions of g(i). This will favor the discrimi-
nation provided by c(i) (in Serra et al. approach, all the
lags/dimensions of g(i) are considered equally).

For this, we consider, the circular time-lag (CMLT)
L∗(t, l) as a joint probability distribution p(t, l).

Serra et al. novelty curve c(i) can be expressed as

c1(t) =

∫
l

∣∣∣∣ ∂∂tp(t, l)
∣∣∣∣2 dl (1)

In our approach, we favor the lags at which segments
are more likely. This is done using a prior p(l):

c2(t) =

∫
l

p(l)

∣∣∣∣ ∂∂tp(t, l)
∣∣∣∣2 dl (2)

In order to compute the prior p(l) we compute f(l)
as proposed by Goto but applied to the CMLT. In other
words, we compute, the marginal of p(t, l) over t: p(l) =∫ t=N
t=0

p(t, l)dt.
As a variation of this method, we also propose to com-

pute the prior p(l) locally on t: pt(l) =
∫ τ=t+∆

τ=t−∆
p(τ, l)dt.

This leads to the novelty curve

c3(t) =

∫
l

pt(l)

∣∣∣∣ ∂∂tp(t, l)
∣∣∣∣2 dl (3)

By experiment, we found ∆ = 20 (corresponding to
10 s), to be a good value.

2.4 Illustrations

In Figure 2, we illustrate the computation of c1(t), c2(t)
and c3(t) on a real signal (the track 19 from RWC Popular
Music).

In Figure 2 (A) we represent Serra et al. [16] method.
On the right of the time-lag-circular-matrix (CTLM), we
represent the novelty curve c1(t) (red-curve) and super-
imposed to it, the ground-truth segments (black dashed
lines).
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Lag

TI
m
e

100 200 300 400 500

50

100

150

200

250

300

350

400

450

500

550

0 0.5 1

50

100

150

200

250

300

350

400

450

500

550

(B) Computation of c2(t)
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(C) Computation of c3(t)
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Figure 2. Illustration of the computation of c1(t), c2(t)
and c3(t) on Track 19 from RWC Popular Music. See text
of Section 2.4 for explanation.

In Figure 2 (B) we represent the computation of c2(t)
(using a global lag-prior). Below the CTLM we repre-
sent the global prior p(l) (blue curve) obtained using Goto
method applied to the CMLT. On the right of the CTLM
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we represent c2(t) using this global lag-prior. Compared
to the above c1(t), we see that c2(t) allows a larger dis-
crimination between times that correspond to ground-truth
starts and ends of segments and that do not.

In Figure 2 (C) we represent the computation of c3(t)
(using a local lag-prior). Below the CTLM we represent
the local prior pt(l) in matrix form obtained using Goto
method applied locally in time to the CMLT. On the right
of the CTLM we represent c3(t) using this local lag-prior.
Compared to the above c1(t) and c2(t), we see that c3(t)
allows an even larger discrimination.

2.5 Estimation of segments start and end times

Finally, we estimate the starting and ending time of the
repetitions from the novelty curves c1(t), c2(t) or c3(t).
This is done using a peak picking process. c∗(t) is first
normalized by min-max to the interval [0, 1]. Only the val-
ues above 0.1 are considered. ti is considered as a peak if
i = arg maxj c∗(tj) with j ∈ [i − 10, i + 10], i.e. if ti is
the maximum peak within a ± 5 s duration interval.

The flowchart of our Music Structure Segmentation
method is represented in the left part of Figure 3.

Self Similarity Matrix S(i,j) 
using cosine distance

Audio

CENS feature xa(ti)

Low-pass in t / High-pass in l

Circular Time Lag Matrix p(t,l)

Novelty c1,2,3(t)

Peak-Picking of c1,2,3(t)

Prior lag probability 
p(l) or pt(l)

Segment start and end time

Threshold

Median Filter

Serra et al. [17]

Vector stacking

Self Similarity Matrix S(i,j)  
using KNN ranking

Convolution with bi-variate 
Kernel

Circular Time Lag Matrix p(t,l)

Part 2.1

Part 2.3

Part 2.5

Part 2.2 Part 3.4

Figure 3. Flowchart of the proposed Music Structure Seg-
mentation method.

3. EVALUATION

In this part, we evaluate the performances of our proposed
method for estimating the start and end times of music
structure segments. We evaluate our algorithm using the
three methods described in part 2.3: – without lag-prior
c1(t) (this is equivalent to the original Serra et al. algo-
rithm although our features and the pre-processing of the
CTLM differ from the ones of Serra et al.), – with global
lag-prior c2(t), – with local lag-prior c3(t).

3.1 Test-Sets

In order to allow comparison with previously published re-
sults, we evaluate our algorithm on the following test-sets:

RWC-Pop-A: is the RWC-Popular-Music test-set [8],
which is a collection of 100 music tracks. The anno-
tations into structures are provided by the AIST [7].

RWC-Pop-B is the same test-set but with annotations pro-
vided by IRISA [2] 4 .

Beatles-B Is the Beatles test-set as part of the Isophonics
test-set, which is a collection of 180 music tracks
from the Beatles. The annotations into structure are
provided by Isophonics [10].

3.2 Evaluation measures

To evaluate the quality of our segmentation we use, as it is
the case in the MIREX (Music Information Retrieval Eval-
uation eXchange) Structure Segmentation evaluation task,
the Recall (R), Precision (P) and F-Measure (F). We com-
pute those with a tolerance window of 3 and 0.5 s.

3.3 Results obtained applying our lag-prior method to
the SSM as computed in part 2.2.

In Table 1 we indicate the results obtained for the various
configurations and test-sets. We compare our results with
the ones published in Serra et al. [16] and to the best score
obtained during the two last MIREX evaluation campaign:
MIREX-2012 and MIREX-2013 on the same test-sets 5 6 .

For the three test-sets, and a 3 s tolerance window,
the use of our lag-prior allows a large increase of the F-
measure:
RWC-Pop-A: c1(t) : 66.0%, c2(t) : 72.9%, c3(t) : 76.9%.
RWC-Pop-B: c1(t) : 67.3%, c2(t) : 72.6%, c3(t) : 78.2%.
Beatles-B: c1(t) : 65.7%, c2(t) : 69.8%, c3(t) : 76.1%.

For the 0.5 s tolerance window, the F-measure also in-
crease but in smaller proportion.

The F-measure obtained by our algorithm is just be-
low the one of [16], but our features and pre-processing
of the SSM much simpler. This means that applying our
lag-priors to compute c2,3(t) on Serra et al. pre-processed
matrix could even lead to larger results. We discuss this in
the next part 3.4. We see that for the two RWC test-sets
and a 3 s tolerance window, our algorithm achieves bet-
ter results than the best results obtained in MIREX (even
the ones obtained by Serra et al. – SMGA1). It should be
noted that the comparison for the Beatles-B test-set cannot
be made since MIREX use the whole Isophonics test-set
and not only the Beatles sub-part.

Statistical tests: For a @3s tolerance window, the dif-
ferences of results obtained with c3(t) and c2(t) are statis-
tically significant (at 5%) for all three test-sets. They are
not for a @0.5s tolerance window.

Discussion: For the RWC-Pop-B test-set, using c3(t)
instead of c1(t) allows increasing the F@3s for 88/100
tracks, for the Beatles-B for 144/180 tracks. In Figure 4,

4 These annotations are available at http://musicdata.
gforge.inria.fr/structureAnnotation.html.

5 The MIREX test-set named ”M-2010 test-set Original” corresponds
to RWC-Pop-A, ”M-2010 test-set Quaero” to RWC-Pop-B.

6 SMGA1 stands for [Joan Serra, Meinard Mueller, Peter Grosche,
Josep Lluis Arcos]. FK2 stands for [Florian Kaiser and Geoffroy Peeters].
RBH1 stands [Bruno Rocha, Niels Bogaards, Aline Honingh].
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Table 1. Results of music structure segmentation using our lag-prior method applied to the SSM as computed in part 2.2.
RWC-Pop-A

Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
Serra et al. [16] 0.791 0.817 0.783
MIREX-2012 (SMGA1 on M-2010 test-set Original) 0.7101 0.7411 0.7007 0.2359 0.2469 0.2319
MIREX-2013 (FK2 on M-2010 test-set Original) 0.6574 0.8160 0.5599 0.3009 0.3745 0.2562
c1(t) (without lag-prior) 0.660 0.700 0.648 0.315 0.338 0.308
c2(t) (with global lag-prior) 0.729 0.739 0.737 0.349 0.354 0.353
c3(t) (with local lag-prior) 0.769 0.770 0.78 0.386 0.392 0.390

RWC-Pop-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
Serra et al. [16] 0.8 0.81 0.805
MIREX-2012 (SMGA1 on M-2010 test-set Quaero) 0.7657 0.8158 0.7352 0.2678 0.2867 0.2558
MIREX-2013 (RBH1 on M-2010 test-set Quaero) 0.6727 0.7003 0.6642 0.3749 0.3922 0.3682
c1(t) (without lag-prior) 0.673 0.6745 0.689 0.238 0.223 0.263
c2(t) (with global lag-prior) 0.726 0.704 0.766 0.250 0.231 0.281
c3(t) (with local lag-prior) 0.782 0.782 0.816 0.281 0.264 0.31

Beatles-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
Serra et al. [16] 0.774 0.76 0.807
c1(t) (without lag-prior) 0.657 0.674 0.658 0.232 0.240 0.238
c2(t) (with global lag-prior) 0.698 0.696 0.718 0.254 0.258 0.265
c3(t) (with local lag-prior) 0.761 0.745 0.795 0.262 0.259 0.278

we illustrate one of the examples for which the use of c3(t)
decreases the results over c1(t). As before the discrimina-
tion obtained using c3(t) (right sub-figure) is higher than
the ones obtained using c1(t) (left sub-figure). However,
because of the use of the prior pt(l) which is computed on a
long duration window ([t−∆, t+∆] represents 20 s), c3(t)
favors the detection of long-duration segments. In the ex-
ample of Figure 4, parts of the annotated segments (black
dashed lines) are very short segments which therefore can-
not be detected with the chosen duration ∆ for pt(l).
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Figure 4. Illustration of a case for which c3(t) (right
sub-figure) decrease the results over c1(t) (left sub-figure).
F@3s(c1(t)) = 0.93 and F@3s(c3(t)) = 0.67 [Track 20
form RWC-Pop-B].

3.4 Results obtained applying our lag-prior method to
the SSM as computed by Serra et al. [16]

In order to assess the use of c2,3(t) as a generic process
to improve the estimation of the segments on a SSM; we
applied c∗(t) to the SSM computed as proposed in [16] in-
stead of the SSM proposed in part 2.2. The SSM will be
computed using the CENS features instead of the HPCP
used in [16]. For recall, in [16] the recent past of the fea-
tures is taken into account by stacking the feature vectors
of past frames (we used a value m corresponding to 3 s).
The SSM is then computed using a K nearest neighbor al-
gorithm (we used a value of κ = 0.04). Finally the SSM
matrix is convolved with a long bivariate rectangular Gaus-
sian kernel G = gtg

T
l (we used sl =0.5 s st =30 s and

σ2 = 0.16). c∗(t) is then computed from the resulting
SSM. The flowchart of this method is represented in the
right part of Figure 3.

Results are given in Table 2 for the various configura-
tions and test-sets. c1(t) represents Serra et al. method
[16]. As one can see, the use of a global prior (c2(t)) al-
lows to increase the results over c1(t) for the three test-sets
and the two tolerance window (@3s and @0.5s). Surpris-
ingly, this time, results obtained with a local prior (c3(t))
are lower than the ones obtained with a global prior (c2(t)).
This can be explained by the fact that Serra et al. method
applies a long duration low-pass filter (st =30s) to the
SSM. It significantly delays in time the maximum value
of a segment in the SSM, hence delays pt(l), hence delays
c3(t). In the opposite, because c2(t) is global, it is not
sensitive to Serra et al. delay.

Statistical tests: For a @3s tolerance window, the dif-
ference of results obtained with c2(t) (0.805) and c1(t)
(0.772) is only statistically significant (at 5%) for the
Beatles-B test-set. For a @0.5s tolerance window, the dif-
ferences are statistically significant (at 5%) for all three
test-sets.
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Table 2. Results of music structure segmentation using our lag-prior method applied to the SSM as computed by [16] .
RWC-Pop-A

Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
c1(t) (without lag-prior) with Serra front-end 0.780 0.846 0.742 0.254 0.271 0.246
c2(t) (with global lag-prior) with Serra front-end 0.784 0.843 0.750 0.289 0.316 0.275
c3(t) (with local lag-prior) with Serra front-end 0.735 0.827 0.682 0.245 0.300 0.215

RWC-Pop-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
c1(t) (without lag-prior) with Serra front-end 0.799 0.795 0.818 0.338 0.326 0.359
c2(t) (with global lag-prior) with Serra front-end 0.823 0.846 0.820 0.389 0.408 0.381
c3(t) (with local lag-prior) with Serra front-end 0.797 0.856 0.765 0.336 0.369 0.318

Beatles-B
Method F @3s P @3s R @3s F @0.5s P @0.5s R @0.5s
c1(t) (without lag-prior) with Serra front-end 0.772 0.792 0.773 0.371 0.365 0.394
c2(t) (with global lag-prior) with Serra front-end 0.805 0.813 0.817 0.439 0.430 0.450
c3(t) (with local lag-prior) with Serra front-end 0.799 0.790 0.827 0.422 0.416 0.442

4. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed a simple, but very efficient,
method that allows using Goto 2003 method as a prior lag-
probability on Serra et al. structure feature method. We
provided the rational for such a proposal, and proposed
two versions of the method: one using a global lag prior,
one using a local lag prior. We performed a large-scale
experiment of our proposal in comparison to state-of-the-
art algorithms using three test-sets: RWC-Popular-Music
with two sets of annotations and Isophonics/Beatles. We
showed that the introduction of the lag-prior allows a large
improvement of the F-Measure results (with a tolerance
window of 3 s) over the three sets. Also, our method im-
proves over the best results obtained by Serra et al. or dur-
ing MIREX-2012 and MIREX-2013.

Future works will concentrate on integrating this prior
lag probability on an EM (Expectation-Maximization) al-
gorithm to estimate the true p(t, l). Also, we would like to
use this segmentation as a first step to a segment labeling
algorithm.
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