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ABSTRACT
This paper addresses the problem of classifying large databases of musical instrument sounds. An efficient
algorithm is proposed for selecting the most appropriate signal features for a given classification task. This
algorithm, called IRMFSP, is based on the maximization of the ratio of the between-class inertia to the
total inertia combined with a step-wise feature space orthogonalization. Several classifiers - flat gaussian,
flat KNN, hierarchical gaussian, hierarchical KNN and decision tree classifiers - are compared for the task
of large database classification. Especially considered is the application when our classification system is
trained on a given database and used for the classification of another database possibly recorded in completely
different conditions. The highest recognition rates are obtained when the hierarchical gaussian and KNN
classifiers are used. Organization of the instrument classes is studied through an MDS analysis derived from
the acoustic features of the sounds.
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1. INTRODUCTION

During the last decades, sound classification has
been the subject of many research efforts [27] [3][17]
[29]. However, few of them address the problem of
generalization of the sound source recognition sys-
tem i.e. applicability to several instances of the same
source possibly recorded in different conditions, with
various instrument manufacturers and players. In
this context, Martin [16] reports only 39% recogni-
tion rate for individual instrument (76% for instru-
ment family), using the output of a log-lag correlo-
gram for 14 different instruments. Eronen [4] reports
35% (77%) recognition rate using mainly MFCCs
and some other features for 16 different instruments.

Sound classification systems rely on the extraction
of a set of signal features (such as energy, spectral
centroid, ...) from the signal. This set is then used
to perform classification according to a given taxon-
omy. This taxonomy is defined by a set of textual
attributes defining the properties of the sound such
as its source (speaker genre, music genre, sound ef-
fects class, instrument name...) or its perception
(bright, dark...).

The choice of the features depends on the tar-
geted application (speech/music/noise discrimina-
tion, speaker identification, sound effects recogni-
tion, musical instruments recognition). The most
appropriate set of features can be selected a priori
- having a prior knowledge of the feature discrimi-
native power for the given task -, or a posteriori by
including in the system an algorithm for automatic
feature selection. In our system, in order to allow
the coverage of a large set of potential taxonomies,
we have implemented a large set of features. This set
of features is then filtered automatically by a feature
selection algorithm.

Because sound is a phenomenon, which changes over
time, features are computed over time (frame by
frame analysis). The set of temporal features can be
used directly for classification [3]; or the temporal
evolution of the features can be modeled. Modeling
can be done before the modeling of the classes (us-
ing mean, std, derivative values, modulation or poly-
nomial representation [29]) or during the modeling
of the classes (using for example a Hidden Markov
Model [30]). In our system, temporal modeling is
done before that of the classes.

The last major difference between classification sys-
tems concerns the choice of the model to represent
the classes of the taxonomy (multi-dimensional gaus-
sian, gaussian mixture, KNN, NN, decision tree,
SVM...).

The system performance is generally evaluated, af-
ter training on a subset of a database, on the rest
of the database. However, since most of the time a
single database contains a single instance of an in-
strument (the same instrument played by the same
player in the same recording conditions), this kind
of evaluation does not prove any applicability of the
system for the classification of sounds which do not
belong to the database. In particular, the system
may fail to recognize sounds recorded in completely
different conditions. In this paper we evaluate such
performances.

2. FEATURE EXTRACTION

Many different types of signal features have been
proposed for the task of sound recognition coming
from the speech recognition community, previous
studies on musical instrument sounds classification
[27] [3] [17] [29] [13] and results of psycho-acoustical
studies [14] [24]. In order to allow the coverage of
a large set of potential taxonomies, a large set of
features has been implemented, including features
related to the

• Temporal shape of the signal (attack-time, tem-
poral increase/decrease, effective duration),

• Harmonic features (harmonic/noise ratio, odd
to even and tristimulus harmonic energy ratio,
harmonic deviation),

• Spectral shape features (centroid, spread, skew-
ness, kurtosis, slope, roll-off frequency, varia-
tion),

• Perceptual features (relative specific loud-
ness, sharpness, spread, roughness, fluctuation
strength),

• Mel-Frequency Cepstral Coefficients (plus Delta
and DeltaDelta coefficients), auto-correlation
coefficients, zero-crossing rate, as well as some
MPEG-7 Low Level Audio Descriptors (spectral
flatness and crest factors [22]).
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See [12] for a review.

3. FEATURE SELECTION

Using a high number of features for classification can
cause several problems: 1) bad classification results
because some features are irrelevant for the given
task; 2) over fitting of the model to the training
set (this is especially true when using, without care,
data reduction techniques such as Linear Discrimi-
nant Analysis), 3) the models are difficult to inter-
pret by human. For this reason, feature selection
algorithms attempt to detect the minimal set of

1. informative features with respect to the classes

2. features that provide non redundant informa-
tion.

3.1. Inertia Ratio Maximization using Feature
Space Projection (IRMFSP)

Feature selection algorithms (FSA) can take three
main forms (see [21]):

• embedded: the FSA is part of the classifier

• filter: the FSA is distinct from the classifier and
used before the classifier

• wrapper: the FSA makes use of the classifica-
tion results.

The FSA we propose is part of the Filter techniques.

Considering a gaussian classifier, the first criterion
for FSA can be expressed in the following way: ”fea-
ture values for sounds belonging to a specific class
should be separated from the values for all the other
classes”. If it is not the case then the gaussian pdfs
will overlap, and class confusion will increase. In a
mathematical way this can be expressed by looking
at features for which the ratio r of the Between-class
inertia B to the Total class inertia T is maximum.
For a specific feature fi, r is defined as

r =
B

T
=

∑K
k=1

Nk

N (mi,k −mi)(mi,k −mi)′

1
N

∑N
n=1(fi,n −mi)(fi,n −mi)′

(1)

where N is the total number of data, Nk is the num-
ber of data belonging to class k, mi is the center of

gravity of the feature fi over all the data set, and
mi,k is the center of gravity of the feature fi for data
belonging to class k. A feature fi with a high value
of r is therefore a feature for which the classes are
well separated with respect to their within spread.

The second criterion should allow taking into ac-
count the fact that a feature with a high value of
r could bring the same information as an already
selected feature and is therefore redundant. While
other FSAs, like the CFS one [10]1, use a weight
based on the correlation between the candidate fea-
ture and already selected features, in the IRMFSP
algorithm, an orthogonalization process is applied
after the selection of each new feature fi. If we note
F the feature space (space where each axis repre-
sents a feature), f

i
the last selected feature and g

i
its normalized form (g

i
= f

i
/||f

i
|| ), we project F

on g
i
and keep f ′

j
:

f ′
j

= f
j
−

(
f

j
· g

i

)
g

i
∀j ∈ F (2)

This process (ratio maximization followed by space
projection) is repeated until the gain of adding a new
feature f

i
is too small. This gain is measured by the

ratio rl obtained at the lth iteration to the one at the
first iteration. A stopping criterion of t = rl

r1
< 0.01

has been chosen.

In Fig.1, we illustrate the results of the IRMFSP al-
gorithm for the selection of features for a two classes
taxonomy: separation between sustained and non-
sustained sounds. In Fig.1, sounds are represented
along the first three selected dimensions: temporal
decrease (1st dim), spectral centroid (2nd dim) and
temporal increase (3rd dim).

In part 6.2, the CFS and IRMFSP algorithm are
compared.

4. FEATURE TRANSFORMATION

In the following, two feature transformation algo-
rithms (FTA) are considered.

1In the CFS algorithm (Correlation-based Feature Selec-
tion), the information brought by one specific feature is com-
puted using symmetrical uncertainty (normalized mutual in-
formation) between discretized features and classes. The sec-
ond criterion (features independence) is taken into account by
selecting a new feature only if its cumulated correlation with
already selected features is not too large.
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Fig. 1: First three dimensions selected by the
IRMFSP algorithm for the sustained / non-
sustained sounds taxonomy
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Fig. 2: Classification system flowchart

4.1. Box-Cox Transformation
Classification models based on gaussian distribution
makes the underlying assumption that modeled data
(in our case signal features) follow a gaussian proba-
bility density function (pdf). However, this is rarely
verified by features extracted from the signal. There-
fore a first FTA, a non-linear transformation, known
as the “Box-Cox transformation” [2], can be applied
to each feature individually in order to make its pdf
fit as much as possible a gaussian pdf. The set of
considered non-linear functions depending on the pa-
rameters λ is defined as

fλ(x) =
xλ − 1

λ
ifλ 6= 0

fλ(x) = log(x) ifλ = 0
(3)

For a specific value of λ, the gaussianity of fλ(x)
is measured by the correlation factor between the
percent point function ppf (inverse of the cumulative
distribution) of fλ(x) and the theoretical ppf of a

gaussian function. For each feature x, we find the
best non-linear function (best value of λ) defined as
the one with the largest gaussianity.

4.2. Linear Discriminant Analysis
The second FTA is the Linear Discriminant Analy-
sis (LDA) which was proposed by [17] in the context
of musical instrument sound classification and evalu-
ated successfully in our previous classifier [25]. LDA
allows finding a linear combination among features
in order to maximize discrimination between classes.
From the initial feature space F (or a selected fea-
ture space F ′), a new feature space G of dimension
smaller than F is obtained.

In our current classification system, LDA (when per-
formed) is used between the feature selection algo-
rithm and the class modeling (see Fig.2).

5. CLASS MODELING

Among the various existing classifiers (multi-
dimensional gaussian, gaussian mixture, KNN, NN,
decision-tree, SVM...) (see [12] for a review), only
the gaussian, KNN (and their hierarchical formula-
tion) and decision-tree classifiers have been consid-
ered.

5.1. Flat Classifiers

5.1.1. Flat gaussian classifier (F-GC)

A flat gaussian classifier models each class k by a
multi-dimensional gaussian pdf. The parameters of
the pdf (mean µk and covariance matrix Σ

k
) are

estimated by maximum-likelihood given the selected
features for sounds belonging to class k. The term
”flat” is used here since all classes are considered
on a same level. In order to evaluate the probability
that a new sound belongs to a class k, Bayes formula
is used:

p(k|f) =
p(f |k)p(k)

p(f)
=

p(f |k)p(k)∑
k(p(f |k)p(k)

(4)

where - p(k) is the prior probability of observing
class k, - p(f) is the distribution of the feature-vector
f - p(f |k) is the conditional probability of observ-
ing the feature-vector given a class k (the estimated
gaussian pdf).

The training and evaluation process of a flat gaus-
sian classifier system is illustrated in Fig.3.
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Fig. 3: Flat gaussian classifier

5.1.2. Flat KNN classifiers (F-KNN)

K Nearest Neighbors (KNN) is one of the most
straightforward algorithm for data classification.
KNN is an instance-based algorithm. In KNN, the
position of the data of the training set in the fea-
ture space F (or in the selected feature space F ′)
is simply stored (without modeling) along with the
corresponding classes. For an input sound located
in F , the K closest data of the training set (the
K Nearest Neighbors) are estimated. The major-
ity class among these KNN is assigned to the input
sound. An Euclidean distance is commonly used
in order to find the K closest data. Therefore the
weighting of the axes of the space F (weighting of
the features) can change the closest data. In the
following of this study, when using KNN classifiers,
the weighting of the axes is implicitly done since
the KNN is applied to the output space of the LDA
transformation (LDA finds the optimal weights for
the axes of the feature space G). The number of
considered nearest neighbors, K, also plays an im-
portant role in the obtained result. In the following
of this study, the results are indicated for a value of
K=10 which yields to the best results in our case.

5.2. Hierarchical Classifiers

5.2.1. Hierarchical gaussian classifier (H-GC)

A hierarchical gaussian classifier is a tree of flat
gaussian classifiers, i.e. each node of the tree is
a flat gaussian classifier with its own feature se-
lection (IRMFSP), its own LDA, its own gaussian
pdfs. Hierarchical classifiers have been used by
[17] for the classification of 14 instruments (derived
from the McGill Sound Library) using a hierarchi-
cal KNN-classifier and Fisher multiple discriminant
analysis combined with a gaussian classifier. Dur-
ing the training, only the subset of sounds belong-
ing to the classes of the current node (example: the
bowed-string node is trained using only bowed-string
sounds, the brass node is trained using only brass
sounds) is used. During the evaluation, the max-
imum local probability at each node (probability
p(k|f)) decides which branch of the tree to follow.
The process is then pursued until reaching a leaf of
the tree.

Contrary to binary trees, the construction of the tree
structure of a H-GC is supervised and requires a pre-
vious knowledge of class organization (oboe belongs
to double-reeds family which belongs to sustained
sounds).

Advantages of Hierarchical Gaussian Classi-
fiers (H-GC) over Flat Gaussian Classifiers
(F-GC) .

Learning facilities: Learning a H-GC (feature selec-
tion and gaussian pdf model parameter estimation)
is easier since it is easier to characterize the differ-
ence in a small subset of classes (learning the differ-
ence between brass instruments only is easier than
between the whole set of classes).

Reduced class confusion: In a F-GC, all classes are
represented on the same level and are thus neigh-
bors in the same multi-dimensional feature space.
Therefore, annoying class confusions, as for example
confusing an ”oboe” sound with an ”harp” sound,
are likely to occur. In a H-GC, because of the hi-
erarchy and the high recognition rate at the higher
levels of the tree (such as non-sustained /sustained
sounds node), this kind of confusion is unlikely to
occur.

AES 115TH CONVENTION, NEW YORK, NY, USA, 2003 OCTOBER 10–13
5



PEETERS AUTOMATIC CLASSIFICATION OF LARGE MUSICAL INSTRUMENT DATABASES

The training and evaluation process of a hierarchical
gaussian classifier system is illustrated in Fig.4. The
gray/white box connected to each node of the tree
is the same as the one of Fig.3.

5.2.2. Hierarchical KNN classifiers (H-KNN)

In hierarchical KNN, at each level of the tree, only
the locally selected features and the locally consid-
ered classes are taken into account for the training.

The training and evaluation process of a hierarchical
KNN classifier system is illustrated in Fig.4.

node i

node j-1 node j
node
j+1 ...

top

......

TRAINING

EVALUATION

Fig. 4: Hierarchical classifier

5.3. Decision Tree Classifiers

Decision trees operate by asking the data a sequence
of questions in which the next question depends on
the answer to the current question. Since they are
based on questions they can operate on both numer-
ical and non-numerical data.

5.3.1. Binary Entropy Reduction Tree (BERT)

A binary tree recursively decomposes the set of data
into two subsets of data in order to maximize one
class belonging. The decomposition is operated by
a split criterion. In the binary tree considered here,
the split criterion operates on a single variable. The
split criterion decides with respect to the feature
value which branch of the tree to follow (if feature
< threshold then left branch, if feature ≥ threshold
then right branch). In order to automatically de-
termine the best feature and the best value of the

threshold at each node, mutual information and bi-
nary entropy are used as in [5].

The mutual information between a feature X, for a
threshold t and classes C can be expressed as

I(X,C) = H2(X|t)−H2(X|C, t) (5)

where H2(X|C, t) is the binary entropy given the
classes C and given the threshold t:

H2(X|C, t) =
∑

k

p(Ck)H2(X|Ck, t) (6)

and H2(X|t) is the binary entropy given the thresh-
old t:

H2(X|t) = −p(x) log2(p(x))−(1−p(x)) log2(1−p(x))
(7)

where p is the probability that x < t, (1 − p) that
x ≥ t

The best feature and the best threshold value at each
node are the ones for which I(X,C) is maximum.

Pre-pruning of the tree: The tree construction is
stopped when the gain of adding a new split is too
small. The stopping criterion used in [5] is the mu-
tual information weighted by the local mass inside
the current node j:

Nj

N
Ij(X, C) (8)

In part 6.2, the results obtained with our Binary
Entropy Reduction Tree (BERT) and with two other
widely used decision tree algorithms: C4.5. [26] and
Partial Decision Tree (PART) [7] are compared.

6. EVALUATION

6.1. Methodology

6.1.1. Evaluation process

For the evaluation of the models, three methods have
been used.

The first evaluation method used is the random
66%/33% partition of the database where 66% of
the sounds of each class of a database are randomly
selected in order to train the system. The evalua-
tion is then performed on the remaining 33%. In

AES 115TH CONVENTION, NEW YORK, NY, USA, 2003 OCTOBER 10–13
6



PEETERS AUTOMATIC CLASSIFICATION OF LARGE MUSICAL INSTRUMENT DATABASES

this case, the result is given as the mean value over
50 random sets.

The second and third evaluation methods were pro-
posed by Livshin [15] for the evaluation of large
database classification, especially for testing the ap-
plicability of a system trained on a given database
when used for the recognition of another database

The second evaluation method, called O2O (One to
One), uses in turns each database for training the
system and measure the recognition rate on each of
the remaining ones. If we note A, B and C the var-
ious databases, the training is performed on A, and
used for the evaluation of B and C; then the training
is performed on B, and used for the evaluation of A
and C, ...

The third evaluation method, called the LODO
(Leave One Database Out), uses all databases for
the training except one which is used for the eval-
uation. All possible left out databases are chosen
in turns. The training is performed on A+B, and
used for the evaluation of C; then the training is
performed on A+C, and used for the evaluation of
B; ...

6.1.2. Taxonomy used
The instrument taxonomy used during the experi-
ment is represented in Fig.5. In the following ex-
periments we consider taxonomies at three different
levels:

1. a 2 classes taxonomy: sustained/ non-sustained
sounds. We call it T1 in the following.

2. a 7 classes taxonomy corresponding to the
instrument families: struck strings, plucked-
strings, pizzicato-strings, bowed-strings, brass,
air reeds, single/double reeds. We call it T2 in
the following.

3. a 27 classes taxonomy corresponding to the in-
strument names: piano, guitar/ harp, pizzicato-
violin/ viola/ cello/double-bass, bowed-violin/
viola/ cello/ double-bass, trumpet/ cornet/
trombone/ FrenchHorn/ tubba, flute/ piccolo/
recorder, oboe/ bassoon/ EnglishHorn/ clar-
inet/ accordion/ alto-sax/ soprano-sax/ tenor-
sax. We call it T3 in the following.

This taxonomy is of course subject to discussions,
especially - the piano, which is supposed to belong
here to the non-sustained family - the inclusion of
all saxophone instruments in the same family as the
oboe.

Guitar
Harp

Strings Woodwinds

Non Sustained

Instrument

Sustained

Struck
Strings

Plucked
Strings

Pizz Strings

Piano Violin
Viola
Cello
Double

Bowed Strings Brass
Single Double

Reeds
Air Reeds

Violin
Viola
Cello
Double

Trumpet
Cornet

Trombone
French Horn

Tuba

Single Reeds
Clarinet
Tenor sax
Alto sax
Sop sax
Accordeon

Double Reeds
Oboe

Bassoon
English horn

Flute
Piccolo
Recorder

T1

T2

T3

Fig. 5: Instrument Taxonomy used for the experi-
ment
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6.1.3. Test set

Six different databases were used for the evaluation
of the models:

• the Ircam Studio OnLine [1] (1323 sounds, 16
instruments),
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• the Iowa University database [8] (816 sounds,
12 instruments),

• the McGill University database [[23] (585
sounds, 23 instruments),

• sounds extracted from the Microsoft ”Musical
Instruments” CD-ROM [19] (216 sounds, 20 in-
struments),

• two commercial databases the Pro (532 sounds,
20 instruments) and the Vi databases (691
sounds, 18 instruments),for a total of 4163
sounds.

It is important to note that a large pitch range has
been considered for each instrument (4 octaves on
average). In the opposite, not all the sounds from
each database have been considered. In order to
limit the number of classes, the muted sounds, the
martele/ staccato sounds and some more specific
type of playing have not considered been. The in-
strument distribution of each database is depicted
in Fig.6.

6.2. Results

6.2.1. Comparison of feature selection algo-
rithms

In Table 1, we compare the result of our previous
classification system [25] (which was based on Lin-
ear Discriminant Analysis applied to the whole set
of features combined with a flat gaussian classifier)
with the results obtained with the flat gaussian clas-
sifier applied directly (without feature transforma-
tion) to the output of the two feature selection al-
gorithms CFS and IRMFSP. The result is given for
the Studio OnLine database for taxonomies T1, T2
and T3. Evaluation is performed using the 66%/33%
paradigm with 50 random sets.

Discussion: Comparing the result obtained with
our previous classifiers (LDA) and the result ob-
tained with the IRMFSP algorithm, we see that us-
ing a good feature selection algorithm not only al-
lows to reduce the number of features but also in-
creases the recognition rate. Comparing the results
obtained using the CFS and IRMFSP algorithms,
we see that for T3 IRMFSP performs better than
CFS. Since the number of classes is larger at T3, the

Table 1: Comparison of feature selection algorithm
in terms of recognition rate, mean (standard devia-
tion)

T1 T2 T3
LDA 96 89 86
CFS weka 99.0 (0.5) 93.2 (0.8) 60.8

(12.9)
IRMFSP
(t=0.01,
nbdesc-
max=20)

99.2 (0.4) 95.8 (1.2) 95.1 (1.2)

number of required features is also larger and fea-
tures redundancy is more likely to occur. CFS fails
at T3, perhaps because of a potentially high feature
redundancy.

6.2.2. Comparison of classification algorithms for
cross-database classification

In Table 2, we compare the recognition rate obtained
using the O2O evaluation method for the

• Flat gaussian (F-GC) and

• Hierarchical gaussian (H-GC) classifiers.

The results are indicated as mean values over the
30 (6*5) O2O experiments (six databases). Fea-
ture transformation algorithms (Box-Cox and LDA
transformations) are not used here considering that
the number of data inside each database is too small
for a correct estimation of FTA parameters. Fea-
tures have been selected using the IRMFSP algo-
rithm with a stopping criterion of t≤0.01 and a max-
imum of 10 features per node.

Discussion: Compared to the results of Table 1, we
see that good result with flat gaussian classifier using
66%/33% paradigm on a single database does not
prove any applicability of the system for the recog-
nition of another database (30% using F-GC at T3
level). This is partly explained by the fact that each
database contains a single instance of an instrument
(same instrument played by the same player in the
same recording conditions). Therefore the system
mainly learns the instance of the instrument instead
of the instrument itself and is unable to recognize
another instance of it. Results obtained using H-
GC are higher than with H-GC (38% at T3 level).
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Table 2: Comparison of flat and hierarchical gaus-
sian classifiers using O2O methodology

T1 T2 T3
F-GC 89 57 30
H-GC 93 63 38

This can be partly explained by the fact that, in a
H-GC, lower levels of the tree benefit from the clas-
sification results of higher levels. Since the number
of instances used for the training at the higher level
is larger (at the T2 level, each family is composed
of several instruments, thus several instances of the
family) the training of higher level can be general-
ized and the lower level benefits from this.

Not indicated here are the various recognition rates
of each individual O2O experiment. These results
show that when the training is performed on either
Vi, McGill or Pro database, the model is applica-
ble for the recognition of most other databases. On
the other hand, when training is performed on Iowa
database, the model is poorly applicable to other
databases.

6.2.3. Comparison of classification algorithms for
large database classification

In order to increase the number of possible instru-
ment models, several databases can be combined as
in the LODO evaluation method.

In Table 3, we compare the recognition rate obtained
using the LODO evaluation method for the

• Flat classifiers: flat gaussian (F-GC) and flat
KNN (F-KNN)

• Hierarchical classifiers: hierarchical gaussian
(H-GC) and hierarchical KNN (H-KNN)

• Decision tree classifiers: Binary Entropy Reduc-
tion Tree (BERT), C4.5. and PART.

The results are indicated as mean values over the
six Left Out databases. For flat and hierarchical
classifiers (F-GC, F-KNN, H-GC and H-KNN), fea-
tures have been selected using the IRMFSP algo-
rithm with a stopping criterion of t≤0.01 and a max-
imum of 40 features per node. For F-KNN and H-
KNN, LDA has been applied at each node in order to

maximize class separation and to obtain the proper
weighting of the KNN axes.

Comparing O2O and LODO results: As ex-
pected, the recognition rate increases with the num-
ber of instances of each instrument used for the
training (for F-GC at T3 level: 30% using O2O and
53% using LODO, for H-GC at T3 level: 38% using
O2O and 57% using LODO).

Comparing flat and hierarchical classifiers:
The best results are obtained with the hierarchi-
cal classifiers, both H-GC and H-KNN. In Table 3,
the effect of applying feature transformation algo-
rithm (Box-Cox and LDA transformations) for both
F-GC and H-GC is observed. In the case of H-
GC, it increases the recognition rate from 57% to
64%. It is commonly held that among classifiers,
KNN provides the highest recognition rates. How-
ever in our case, H-KNN and H-GC (when combined
with feature transform) provide very similar results:
H-KNN: T1=99%, T2=84%, T3=64% and H-GC:
T1=99%, T2=85%, T3=64%.

Decision Tree algorithm: Using decision tree
classifiers surprisingly yields poor results even when
using post-pruning techniques (such as the ones of
C4.5). This is surprising considering the high recog-
nition rate obtained by [11] for the task of un-
pitched percussion sounds recognition. This tends
to favor the use of “smooth” classifiers (based on
probability) instead of “hard” classifiers (based on
Boolean boundaries) for the task of musical instru-
ment sounds recognition. Among the various tested
decision tree classifiers, the best results were ob-
tained using Partial Decision Tree algorithm for the
T2 level (T2=71%) and C4.5 algorithm for the T3
level (T3=48%).

6.3. Instrument Class Similarity

For the learning of hierarchical classifiers, the con-
struction of the tree structure is supervised and
based on a prior knowledge of class proximity (for
example violin is close to viola but far from piano).
It is therefore interesting to verify whether the as-
sumed structure used during the experiment (see
Fig.5) corresponds to a “natural” organization of
sound classes. In order to check the assumed struc-
ture, several possibilities can be considered as the
analysis of the class distribution among the leaves
of a decision tree.
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Table 3: Comparison of flat, hierarchical and deci-
sion tree classifiers using LODO methodology

T1 T2 T3
F-GC 98 78 55
F-GC (BC+LDA) 99 81 54
F-KNN (K=10, LDA) 99 77 51
H-GC 98 80 57
H-GC (BC+LDA) 99 85 64
H-KNN (K=10, LDA) 99 84 64
BERT 95 65 42
C4.5. 65 48
PART 71 42

Herrera proposed in [11] an interesting method in
order to estimate similarities and differences be-
tween instrument classes in the case of unpitched
percussion sounds. This method allows the estima-
tion of a two-dimensional map obtained by Multi-
Dimensional scaling analysis of a similarity matrix
between class parameters. Multi-dimensional Scal-
ing (MDS) allows representing a set of data observed
through their dissimilarities into a low-dimensional
space such that, in this space the distances between
the data is preserved as much as possible. MDS
has been used to represent the underlying percep-
tual dimension of musical instrument sounds in a
low-dimensional space [20] [9] [18]. In these stud-
ies, people were asked for dissimilarity judgements
on pairs of sounds. MDS was then used to represent
the stimuli into a lower dimensional space. In [18], a
three-dimensional space has been found for musical
instrument sounds with the three axes assigned to
the attack time, the brightness and the spectral flux
of sounds.

In [11], the MDS representation is derived from the
acoustic features (signal features) instead of dissim-
ilarity judgements. A similar approach is followed
here for the case of musical instrument sounds.

Our classification system has been trained using a
flat gaussian classifier (without any assumption re-
lated to classes proximity) and the whole set of
databases. Resulting from this training is the repre-
sentation of each instrument class in terms of acous-
tic parameters (mean vector and covariance matrix
for each class). The “between-groups F-matrix” is
computed from the class parameters and used as

an index of similarity between classes. An MDS
analysis (using Kruskal’s STRESS formula 1 scaling
method) is then performed on this similarity ma-
trix. The results from the MDS analysis is a three-
dimensional space represented in Fig.7. The instru-
ment name abbreviations used in Fig.7 are explained
in Table 6.3. Since this low-dimensional space is sup-
posed to preserve (as much as possible) the similar-
ity between the various instrument classes, it should
allow identifying possible class organization.

Dimension 1 separates the non-sustained sounds on
the negative values (PIAN, GUI, HARP, VLNP,
VLAP, CELLP, DBLP) from the sustained sounds
on the positive values. Dimension 1 seems there-
fore to be associated to both the attack-time and
decrease time. Dimension 2 could be associated
to brightness since it separates some dark sounds
(TUBB, BSN, TBTB, FHOR) from some bright
sounds (PICC, CLA, FLTU) although some sounds
such as the DBL contradicts this assumption. Di-
mension 3 remains unexplained except that it allows
the separation of bowed-strings (VLN, VLA, CELL,
DBL) from the other instruments and that it could
therefore be explained by the amount of modulation
of the sounds.

In Fig.7, several clusters are observed: the bowed-
string sounds (VLN, CLA, CELL, DBL), the brass
sounds (TBTB, FHOR, TUBB with the exception
of TRPU) and the non-sustained sounds (PIAN,
GUI, HARP, VLNP, VLAP, CELLP, DBLP). An-
other cluster appears in the center of the space
containing a mix between single/double reeds and
brass instruments (SAXSO, SAXAL, SAXTE, ACC,
EHOR, CORN).

From this analysis, it appears that the assumed class
structure is only partly verified by the analysis of
the MDS map. Only the non-sustained brass and
bowed-string families are observed as clusters in the
MDS map.

7. CONCLUSION

In this paper we investigated the classification of
large musical instrument databases. We proposed
a new feature selection algorithm based on the max-
imization of the ratio of the between-class inertia
to the total inertia, and compared it successfully
with the widely used CFS algorithm. We com-
pared various classifiers: gaussian, KNN classifiers,
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Fig. 7: Multi-dimensional scaling solution for musical instrument sounds: two different angles of view of the
3-dimensional map

their corresponding hierarchical form and various
decision tree algorithms. The highest recognition
rates were obtained when hierarchical gaussian and
KNN classifiers are used. This tends to favor the
use of “smooth” classifiers (based on probability like
the gaussian classifier) instead of “hard” classifiers
(based on Boolean boundaries like the decision tree
classifier) for the task of musical instrument sounds
recognition. In order to validate the class hierar-
chy used in the experiment, we studied the organi-
zation of the classes through an MDS analysis using
an acoustic feature representation of the instrument
classes. This study leads to the conclusion that non-
sustained bowed-string and brass instrument fami-
lies form clusters in the acoustic feature space, while
the rest of the instrument families (reed families) are
at best sparsely grouped. This is also verified by the
analysis of the confusion matrix.

The recognition rate obtained with our system (64%
for 23 instruments, 85% for instrument families)
must be compared to the results reported by previ-
ous studies: Martin (respectively Eronen), 39% for
14 instruments, 76% for instrument families (respec-
tively 35% for 16 instruments, 77% for instrument
families). The increased recognition rates obtained
in the present study can be mainly attributed to the
use of new signal features.

APPENDIX
In Fig.8, we present the main selected features by
the IRMFSP algorithm at each node of the H-GC
tree.
In Fig.9, we represent the mean confusion matrix
(expressed in percent of the sounds of the original
class) for the 6 experiments of the LODO evalua-
tion method. The last column of the figure repre-
sents the total number of sounds used for each in-
strument class. Clearly visible in the matrix, is the
low confusion between sustained and non-sustained
sounds. The largest confusions occur inside each in-
strument family (viola recognized at 37% as a cello,
violin at 14% as a viola and 16% as a cello, French-
horn at 23% as a tuba, cornet at 47% as a trumpet,
English-horn at 49% as a oboe, oboe at 20% as a
clarinet). Note that the classes with the smallest
recognition rate (cornet at 30% and English-horn at
12%) are also the classes for which the training set
was the smallest (53 cornet sounds and 41 English-
horn sounds). More surprising are the confusions
inside the non-sustained sounds (piano recognized
as guitar or harp, guitar recognized as cello-pizz).
Cross-family confusions as the trombone recognized
at 12% as a bassoon, recorder recognized at 10% as
a clarinet or clarinet recognized at 23% as a flute
can be explained perceptually (we have considered
a large pitch range for each instrument, therefore
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Table 4: Instrument name abbreviations used in
Fig.7

Abbreviation Instrument name
PIAN Piano
GUI Guitar
HARP Harp
VLNP Violin pizz
VLAP Viola pizz
CELLP Cello pizz
DBLP Double pizz
VLN Violin
VLA Viola
CELL Cello
DBL Double
TRPU Trumpet
CORN Cornet
TBTB Trombone
FHOR French-horn
TUBB Tuba
FLTU Flute
PICC Piccolo
RECO Recorder
CLA clarinet
SAXTE Tenor sax
SAXAL Alto sax
SAXSO Soprano sax
ACC Accordeon
OBOE Oboe
BSN Bassoon
EHOR English-horn

the timbre of a single instrument can drastically
change).
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Fig. 8: Main selected features by the IRMFSP algorithm at each node of the H-GC tree
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harp 4 12 68 6 2 2 2 5 130
viola-pizz 4 2 85 4 6 54
bass-pizz 2 1 3 76 18 1 186
cello-pizz 2 8 5 1 12 71 1 170
violin-pizz 1 2 9 88 97
viola 44 37 14 2 225
bass 93 5 1 1 280
cello 1 5 4 68 3 2 1 1 1 7 1 4 356
violin 1 14 6 16 55 1 2 2 1 1 264
french-horn 1 50 1 15 23 5 2 1 242
cornet 30 15 47 2 2 4 53
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Fig. 9: Overall confusion matrix (expressed in percent of the sounds of the original class) for the LODO
evaluation method. Thin lines separate the instrument families while thick lines separate the sustained/non-
sustained sounds.
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