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ABSTRACT

In this paper, we present a novel approach to the automatic
estimation of tempo over time. This method aims at de-
tecting tempo for music with and without percussion. An
onset-energy function is first proposed based on the reas-
signed spectral energy flux. A combination of Discrete
Fourier Transform and Frequency Mapped AutoCorrela-
tion Function is used to estimate the dominant periodici-
ties at each time. A Viterbi algorithm is then used in order
to detect the most likely tempo and meter/beat subdivision
paths over time. The performance of the proposed method
is evaluated on three databases.

1. INTRODUCTION

Tempo and beat are very important in the perception of
(western) music (a time structured set of sound events).
They carry important information that can be used in many
applications: query by tempo, processing using tempo in-
formation (beat synchronous mixing, beat slicing, seg-
mentation into beat units), musical analysis (interpreta-
tion) or more generally sound analysis. For this reason,
tempo/beat estimation have been the subject of an increas-
ing number of contributions in the last few years. How-
ever, depending on the music genre considered (especially
classical and jazz music), their automatic estimation can
be very difficult. Tempo/beat estimation methods can be
roughly separated into two different approaches: - those
that use the signal energy along time (possibly separated
through a bank of filters) to measure the periodicity of the
signal [14]; - those that detect onsets in the signal and de-
rive from their inter-distances (Inter-Onset-Interval His-
togram) the most common periodicity [8] [3]. See [7] for
a complete review of tempo/beat detection methods.

1.1. System overview

The system we propose in this paper is a tempo tracker
system. It has been designed in order to allow tracking
of fast variations of tempo as well as detection for music
with and without percussion (classical music). Variations
of tempo and changes of meter over time are especially
useful in the case of jazz and classical music. The system
is non-causal since the tracking of the tempo is done using
a non-causal algorithm (Viterbi algorithm).

In the following sections, we detail the various stages
of the system. The system relies on a standard schema
(see Figure 1). An onset-energy function is first extracted
using a proposed reassigned spectral energy flux (part 2).
This onset-energy function is then used to estimate the
dominant periodicities at each time. This is done using
a method based on a combination of DFT and Frequency-
Mapped ACF (part 3.1). Finally the most likely tempo
and meter/beat subdivision paths over time are estimated
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Figure 1. Flowchart of the tempo detection system

using a Viterbi decoding algorithm (part 3.2). We evaluate
the performance of the proposed system in part 4.

2. ONSET-ENERGY FUNCTION

In order to detect the tempo of a piece of music we need to
observe its signal through something meaningful in terms
of musical periodicity. Most methods use the variation of
the signal energy or its variations inside several frequency
bands [14]. Since our interest is not only in music with
percussion but also in music without percussion, our en-
ergy function should also react to any musically meaning-
ful variations (note transitions at constant global energy,
slow attacks, ...). These variations are usually visible in
a spectrogram representation. [11] proposes a method,
called the spectral energy flux, based on the measure of
the spectrogram variations over time. Instead, we pro-
pose the use of the reassigned spectrogram (see part 2.1)
which allows to significantly improve temporal and fre-
quency resolution, therefore avoiding attack blurring, and
allows to better differentiate very close pitches.

2.1. Reassigned Spectrogram

The reassigned spectrogram [4] consists in reallocating
the energy of the “bins” of the spectrogram (bin=frequency
ωk of the STFT at timeti of the frame) to the frequencyωr

and timetr corresponding to their center of gravity. The
reassignment of the frequencies is based on the computa-
tion of the instantaneous frequency (time derivative of the
phase) and can be efficiently computed by:

ωr(x, ti, ωk) = ωk −=
{

STFTdh(x, ti, ωk)
STFTh(x, ti, ωk)

}
(1)



where= stands for the imaginary part,h stands for the
analysis window anddh stands for the time derivative of
the window:∂h(t)/∂t. The reassignment of the times is
based on the computation of the group delay (frequency
derivative of the phase spectrum) and can be efficiently
computed by:

tr(x, ti, ωk) = ti + <
{

STFTth(x, ti, ωk)
STFTh(x; ti, ωk)

}
(2)

where< stands for the real part,h stands for the analysis
window andth stands for the frequency derivative of the
window (th = t · h(t)). Each bin(ωk, ti) of the spec-
trogram is then reassigned to its center of gravity(ωr, tr).
The bins are accumulated in the time and frequency plane.

2.2. Reassigned Spectral Energy Flux

The signal is first down-sampled to 11.025 Hz and con-
verted to mono (mixing both channels).• The reassigned
spectrogramX(ωk, ti) is computed using a hamming win-
dow. Depending on the music being considered, a differ-
ent frequency resolution is required: long window (0.0928
s.) for music without percussion, short window (0.0464 s.)
for music with percussion1 . The hop size is set to 0.0058
s. • In order to simulate the attenuation due to the hu-
man middle ear, a filter [12] reinforcing the mid-range fre-
quency is applied to each spectral frame.• As in [10], the
energy spectrum is converted to the log scale in order to
work on relative variations of energy.• A threshold of -50
dB the maximum energy is applied.• The energy inside
each frequency bande(ωk, ti) is low-pass filtered (with
an elliptic filter of order 5 and a fc of 10 Hz) and differen-
tiated using a simple[1,−1] differentiator. • e(ωk, ti) is
then Half-Wave Rectified.• For a specific timeti, the sum
over all frequencyωk is computed:e(ti) =

∑
k e(ωk, ti).

The resulting energy functione(n = ti) has a sampling
rate of 172 Hz2 .

In Figure 2, we compare the resulting onset-energy func-
tions using normal spectral energy flux [top] and reas-
signed spectral energy flux [bottom]. The analysis param-
eters are the same for both. Some onsets (around time 4
s., 4.3 s., 5.2 s., 5.6 s.) are missing in the spectral energy
flux. This is due to the blurring that occurs in the normal
spectrogram but not in the reassigned spectrogram.

3. TEMPO DETECTION

From the signal observatione(n) we estimate the tempo.
The algorithm we propose works in two stages: - the first
estimates the dominant periodicities around a specific time
(part 3.1); - the second estimates the tempo and meter/beat
subdivision paths that best explain the observed periodic-
ities along time (part 3.2).

3.1. Periodicity estimation: combined DFT and Fre-
quency Mapped ACF

Periodicity estimation of a signal is often done using Dis-
crete Fourier Transform (DFT) or AutoCorrelation Func-
tion (ACF). Sincee(n) is a periodic signal that can be
roughly modeled as a Dirac comb convolved with a LP
envelope, the outcome of its DFT is a set of harmonically

1 In the rest of the paper, we will use a long window.
2 Notes that one could easily derive the onset positions by applying a

threshold one(n). However we found that, for the task of tempo detec-
tion, working directly one(n) is more robust than working on the onsets
because it avoids the consequences of false/missed onset detections.
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Figure 2. [top] Spectrogram and corresponding spectral
flux function [bottom] Reassigned spectrogram and corre-
sponding reassigned spectral energy flux function. [Sig-
nal: Carlinhos Brown “Pandeiro Deiro” from ISMIR04
test database]

related frequencies. Depending on their relative ampli-
tude it can be difficult to decide which harmonic corre-
sponds to the tempo frequency. The outcome of its ACF
is a set of periodically related lags. Here also it can be
difficult to decide which period corresponds to the tempo
lag. Algorithms like the Two-Way Mismatch [8] or max-
imum likelihood try to solve this problem. Because the
octave uncertainty of the DFT and ACF occur in inverse
domain (frequency domain for the DFT, lag domain or in-
verse frequency domain for the ACF), we use this property
to construct a combined function that reduces these un-
certainties. We first makee(n) a zero-mean, unit-variance
signal.e(n) is analyzed both by

DFT: We noteF (ωk, ti) the amplitude spectrum of
e(n) for a frequencyωk and a frame centered around time
ti (a hamming window is used of length equal to 6 sec, the
hop size is set to 0.5 s.).

Frequency Mapped ACF (FM-ACF): We noteA(l, ti)
the normalized (in energy and in maximum value) Auto-
Correlation Function ofe(n) for a lagl and a frame cen-
tered around timeti. The value at lagl of the ACF repre-
sents the amount of periodicity at the lagl/sr (wheresr
is the sampling rate) or at the frequencyωl = sr/l ∀l > 0.
Each lagl is therefore “mapped” in the frequency domain.
Of course sinceA(l, ti) has a constant resolution in time
A(ωl, ti) has a decreasing resolution in frequency. In or-
der to get the same linearly spaced frequenciesωk as for
the DFT, we interpolateA(l, ti) and sample it at the lags
l = sr/ωk. 3 . Finally, Half-Wave Rectification is applied
to A(ωk, ti) in order to consider only positive correlation.

Combined function: We now have two measures (the
DFT and the FM-ACF) of periodicity at the same fre-
quenciesωk. We finally compute a combined function
Y (ωk, ti) by multiplying the DFT and the FM-ACF at
each frequencyωk: Y (ωk, ti) = F (ωk, ti) ·A(ωk, ti).

3 Notes that this doesn’t improve the frequency resolution ofA.
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Figure 3. Comparison of DFT, FM-ACF and Combined
function for [top three] simple meter in 4/4 [bottom three]
compound meter in 4/4

Advantages of the Combined DFT and FM-ACF:In
Figure 3 we illustrate the use of the DFT and FM-ACF
functions for two characteristic signals: a simple meter in
4/4 (each beat is divided into halves), a compound meter
in 4/4 (each beat is divided into thirds). We note 4 the
quarter note (tempo), 8 the eighth note, 12 the eighth note
triplet, 16 the sixteenth note, ... In the case of asimple me-
ter [top], the DFT contains all the harmonics of the tempo:
4, 8, 12, 16, ... despite the fact that the shortest interval is
the 8. The FM-ACF contains all the sub-harmonics of the
shortest interval: 8, 8/2=4, 8/3, ... Combining both func-
tions allows keeping only the common frequencies: one
at the tempo (4) and one at the shortest interval (8). In the
case of acompound meter[bottom], the DFT contains all
the harmonics of the tempo: 4, 8, 12, 16, ... despite the fact
that the shortest interval is the 12. The FM-ACF contains
all the sub-harmonics of the shortest interval: 12, 12/2=6,
12/3=4, ... Combining both functions allows keeping only
the common frequencies: one at the tempo (4) and one at
the shortest interval (12). The same can be shown in the
case of simple and compound meter in 3/4. The combined
use of the DFT and the FM-ACF allows removing most
ambiguities (like simple/compound or duple/triple meter
confusion) from the spectrum.

3.2. Tempo estimation: Viterbi decoding of “tempo
states”

We estimate the dominant periodicitiesY (ωk, ti) at each
time ti . We then look for the temporal path of tempo that
best explains the observed periodicities over time. Our
method shares some similarities with [11] and [6], but in
our case the observed periodicities do not only depend
on the tempo frequency but also on the meter character-
istics. We consider three differentmeter/beat subdivision
templates (mbst): the duple/ simple (noted (2-2)), the du-
ple/ compound ((2-3), example is 6/8 meter) and the triple/
simple ((3-2), example is 3/4 meter). We define a “tempo
state” as a specific combination of a tempo frequencybi

and ambst mj : S(i, j) = [bi,mj ] with i ∈ I the set of
considered tempo andj ∈ {1, 2, 3} the three considered
mbst. We look for the most likely temporal succession of
“tempo state” given our observation. We formulate this
problem as a Viterbi decoding algorithm [2].
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Figure 4. [top] Tempo tracking [bottom] Meter/beat sub-
division tracking [Signal: “Standard Of Excellence - ac-
companiment CD - Book2 - All inst. - 88. Looby Loo”]

Observation probability: pobs(bi,mj) = pprior(bi,mj)·
p([bi,mj ]|Y (ωk, ti)).
• pprior(bi,mj) is the prior probability to observe a

specific bpmi and a specificmbst j. The goal is to favor
the detection of tempo in the range 50-150 bpm but we
didn’t want to favor anymbst in particular. We set it as a
gaussian pdfpprior(bi,mj) = pprior(bi) = Nµ=100,σ=150(bi).
• p([bi,mj ]|Yn(ωk, ti)) is the probability to observe a

specific tempoi andmbst j given our observationsYn(x).
This probability is computed using the following equa-
tions (we setα = β empirically to 0.5):

- p([x, (2− 2)]|Yn) = (αYn(x/2)+Yn(x)+βYn(2x))P
y Yn(y)

- p([x, (2− 3)]|Yn) = (αYn(x/2)+Yn(x)+βYn(3x))P
y Yn(y)

- p([x, (3− 2)]|Yn) = (αYn(x/3)+Yn(x)+βYn(2x))P
y Yn(y)

Transition probability: ptrans ([bi, mj ][bk,ml]) =
ptrans([bi], [bk]) · ptrans([mj ], [ml]).
• The goal of the first probability is to favor continuous

tempo. We set it as a gaussian pdfNµ=bi,σ=5(bk).
• The goal of the second probability is to avoidmbst

jumps from frame to frame. We set it empirically to 0.1.
Finally a standard Viterbi decoding algorithm gives us the
best path along time through the states[bi,mj ] therefore
gives us simultaneously the best tempo and the bestmbst
that explainYn(ωk, ti).

Tempo tracking is illustrated into Figure 4. The top of
the figure represents the estimated tempo track along time
(+) superimposed to the periodicity observationYn(ωk, ti)
represented as a matrix and annotated by hand (4,8,12).
The bottom part represents the estimatedmbst along time.
The tempo remains constant during all the track duration
but depending on the local periodicities (4-12 or 4-8), the
mbst is estimated as either (2-3) or (2-2). The tempo and
mbst estimations are correct.

4. EVALUATION

Data: The proposed algorithm was evaluated on three
databases: - the“ballroom-dancer” database(698 tracks
of 30 s. long) used for the ISMIR2004 “tempo induction
contest” [9] - theRWC database[5] which contains many
examples of interesting music genre for tempo recognition



(like classical and jazz music)4 , from which we have ex-
tracted the segment from 30 s. to 50 s and annotated it by
hand. - a private database consisting mainly ofpop-rock
’hits’ (158 extracts of 20 s. long).

Evaluation method: The tempo and beat markers5

were extracted automatically over time (the tempo was not
considered constant). For each track, we have checked if
the tempo was correct during 75% of its duration. We have
not applied the systematic “1/2, 2, 1/3, 3” tempo tolerance
applied for the ISMIR 2004 “tempo induction” contest.
Instead we have considered the following tolerances for
the estimated tempo: a) 1/2 or 2 if (2-2), b) 1/3 or 2 if (3-
2), c) 1/2 or 3 if (2-3). The results are indicated in Figure
5 for the cases without tolerance (accuracy 1) and with
tolerance (accuracy 2).

Results: For theballroomdatabase, the global tempo
recognition rates are 63%/92% (accuracy 1/accuracy 2)
which is close to the best results obtained during ISMIR
2004. For accuracy 1 (octave errors), most errors occurred
in the Jive, Quickstep (fast tempo), Rumba and Waltz (the
algorithm follows mainly the tatum). For accuracy 2, most
errors occurred in the Waltz category (78%) (because of
badmbst estimation and because onset are difficult to de-
tect in slow chord transitions). For theRWC database,
the global recognition rate is 79%. For Classical Music
(70%), the errors are mainly due to bad onset detections
(slow chord transitions) and fuzzy tempo (the tempo is dif-
ficult to detect manually). For Jazz Music (83%), the er-
rors are mainly due to badmbst estimation. The recogni-
tion rate for Music Genre (including pop, rock, flamenco,
and Indian music) is higher: 85%. For thepop-rock’hits’
database, the recognition rates are high: 79% / 98%.

As a general remark, tempo errors mainly occurs be-
cause of three reasons: - onsets are difficult to detect in
the audio signal (music with slow chord transitions), -
bad estimation ofmbst (2-2 is often confused with 2-3
in the presence of accentuated dotted-quarter note) - com-
plex rhythm not adequately represented by thembst (Jazz
music). Octave errors often occur when the rhythm is
few emphasized; the algorithm then mainly follows the
tatum. Examples of beat marking results are available at
http://recherche.ircam.fr/anasyn/peeters/tempo/.

5. CONCLUSION

In this paper, we have proposed a method for the auto-
matic estimation of the tempo based on the reassigned
spectral energy flux, a combination of DFT and Frequency
Mapped-ACF and a Viterbi decoding algorithm. The pro-
posed method has been evaluated on three databases. The
recognition rate is high for popular music and for most
ballroom music. For the jazz music, when the algorithm
fails it was mainly because of the complexity of the rhythm,
which is not adequately represented by our three templates.
The templates should therefore be extended in the future.
In the case of classical music, when the algorithm fails it
was mainly because the concept of note onset was unclear.
In this case, another kind of signal’s observation could be
used.

4 Note that we haven’t used the “Traditional Japanese” and “Vocal”
tracks of this database.

5 The beat markers were positioned using a method we previously
developed for PSOLA analysis [13]. Two constraints are taken into ac-
count: 1) two marks must be separated by the local tempo period 2) the
location of the marks must be close to the local maximum of the energy
function. The best solution is found using a least-square algorithm.
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Figure 5. Results of the tempo detection evaluation
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