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Abstract

This paper deals with the automatic estimation of key (key-
note and mode) of a music track from the analysis of its
audio signal. Such a system usually relies on a succes-
sion of processes, each one making hypotheses about either
the signal content or the music content: spectral representa-
tion, mapping to chroma, decision about the global key of
the music piece. We review here the underlying hypothe-
ses, compare them and propose improvements over current
state of the art. In particular, we propose the use of a Har-
monic Peak Subtraction algorithm as a front-end of the sys-
tem and evaluate the performance of an approach based on
hidden Markov models. We then compare our approach
with other approaches in an evaluation using a database of
302 baroque, classical and romantic music tracks.

Keywords: key estimation, pitch representation, Harmonic
Peak Subtraction, hidden Markov model

1. Introduction

In the field of Music Information Retrieval, automatic es-
timation of musical key or of chord progression over time
for a music track has received much attention in the re-
cent years. This comes from the numerous applications it
allows (search/ query music databases, automatic playlists
generation and automatic accompaniment) and from the fact
that recent studies have shown that reasonable results could
be achieved without the need of a symbolic transcription
(which is not always available) and without the necessity
to extract such a transcription from the audio signal (audio
to symbolic notes algorithms are still limited and costly).
In order to do that, most existing algorithms start by a
front-end which converts the signal frames to the frequency
domain (DFT or CQT [1] [13]) and then map it to the chroma
domain [17] (or Pitch Class Profile [4]). Chroma/ PCP vec-
tors represent the intensities of the twelve semitones of the
pitch classes over time. Algorithms then try to find the key
or chord progression that best explains the succession of
chroma-vectors over time. For this, Chew [2] proposes the
Spiral Array Model/ Center of Effect Generator, many oth-
ers ([5] [6] [3] [10]) use key-chroma profiles derived from
the probe-tone experiment of Krumhansl & Schmukler [8]
or from the modified version proposed by Temperley [15].
These experiments were aimed at describing the perceptual

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

(© 2006 University of Victoria

importance of each semitone in a key resulting in a pitch-
distribution profile.

Usually, key estimation systems rely on a succession of
processes, each one making underlying hypotheses about ei-
ther the signal content or the music content. The paper is or-
ganized according to these various processes: 1) extraction
of information about periodicity or pitches from the audio
signal, 2) mapping of this information to the chroma/ PCP
domain, 3) decision of a global key for the music piece from
the succession of chroma-vectors over time.

The first problem of current systems comes from the fact
that we do not observe directly the various pitches in a spec-
tral representation (DFT or CQT) but a mixture of their har-
monics. This problem can be solved either by extracting
the pitches (or removing the harmonics), or by considering
the presence of these harmonics during the creation of the
key-chroma profiles. The first choice is taken for example
by Pauws [10] (using a model taking into account simulta-
neously the perceptual pitch and the musical background),
Chuan [2] (using a fuzzy analysis system) or Cremer [3]
(using an overtones removal process). The second choice is
taken for example by Gomez [5] (extending the PCP to Har-
monic Pitch Class Profiles by considering a theoretical am-
plitude contribution of the first 4 harmonics of each pitch of
the three main triads in a given key) or Izmirli [6] (the con-
tribution of the harmonics is there measured on a database of
piano notes). While the solution in [5] provides a too rough
approximation (a large part of musical instrument sounds
does not behave as the proposed theoretical spectral enve-
lope), the solution in [6] would require different spectral en-
velope measures for each specific instrument. In this paper
we propose the use a Harmonic Peak Subtraction function,
which allows reducing the influence of the higher harmonics
of each pitch.

A second problem comes from the method used in or-
der to decide on the global key. A hypothesis is often made
about the existence of the key in the beginning of the track.
Therefore, only the first part of the track is considered (first
20s of the first movement). Several approaches are taken
to estimate the global key from the chroma-vectors over
time. Gomez [5] chooses the key corresponding to the key-
chroma profile which has the highest correlation with a global
average chroma-vector. Izmirli [6] estimates at each time
the key-chroma profile which is the most correlated with
a cumulated over-time-chroma-vector, assigns to it a score
and finally takes the key with the maximum average score.
In this paper, we will test both methods. We will also test
a proposed decision method based on modeling the succes-
sion of chroma-vectors over time by a set of hidden Markov
models representing the various keys.



Pre-processing
Silence detection, Tuning

f
v v
Harmonic Peak
Subtraction

[ I
2

Spectrum (DFT)

‘ Scale (lin, ener, sone) ‘

Chroma

Harmo. Krumhansl
contrib. Temperley
Main triads Diatonic
nitiv Y ; HMM for Cm
Kg;ih:on:}a ﬁ Dectsion HVM HMM for C#m
" method decoding
profiles

— ——
Key
key-note/ mode

Figure 1. Global flowchart of the key estimation system.

The paper is organized as follows. In section 2.2, we
propose our Harmonic Peak Subtraction function for spec-
tral observation of periodicities. In section 2.3, we propose
the mapping of it to the chroma domain. We show the im-
portance of the scale used for the mapping and propose the
use of a sone scale. In section 2.4, we present the various
key decision methods and propose a method based on hid-
den Markov modeling of the keys. In section 3, we evaluate
the performances of our system in comparison with various
other systems. The evaluation is performed using a database
of 302 baroque, classical and romantic music tracks.

2. Key estimation system

The global flowchart of the key estimation system is indi-
cated in Figure 1. We detail it in the following.

2.1. Pre-processing stages

A set of pre-processing algorithms are first applied to the
signal. The signal is first down-sampled to 11025Hz and
converted to mono by mixing both channels. The exact
starting time of the music piece in the sound file is estimated
by a method based on loudness and spectral flatness mea-
sure. The tuning of the track is then found using the method
we have proposed in [12]. In short, we test a set of candidate
tunings between 427Hz and 452Hz (the quarter-tones below
and above A4). For each candidate tuning, we estimate the
amount of energy of the spectrum explained by the frequen-
cies corresponding to the semitones based on this candidate
tuning. For the database we will use in section 3, we have
found tunings ranging from 438 to 447Hz with concentra-
tion at 440Hz and 443Hz. Using this estimation, the signal
is re-sampled (using a polyphase filter implementation) in
order to bring its tuning back to 440Hz. The rest of the sys-
tem is based on a tuning of 440Hz.

2.2. Spectral observation: Harmonic Peak Subtraction

The front-end of most key estimation systems extracts a
spectral representation from the signal. Since this represen-
tation will be mapped to the chroma domain, it is important
that it represents only information about the pitches and not

all their harmonics. Indeed, the presence of the harmon-
ics of the pitches will distort the chroma representation (for
example the harmonics i1 = 3,6 will strengthen the pres-
ence of the fifth note and h = 5 the presence of the third)
and induce error in the key estimation (especially the fifth
up/down confusion). In this paper we propose the use of a
Harmonic Peak Subtraction function, which allows reducing
the influence of the higher harmonics of each pitch.

In the case of mono-pitch signals, we have proposed in
[11] a function which combines a frequency representation
S(fx) (the DFT or the Auto-Correlation of the DFT) with
a temporal representation r(7;) (the Auto-Correlation of the
signal or the Real-Cepstrum function) mapped to the fre-
quency domain. The mapping consists in considering that
the value of r(7;) is a measure of the periodicity at lag 7
or at the frequency 1/7;. We interpolate the values of r(7;)
in order to obtain the values of r(7) at the same frequency
as the DFT 7 = 1/ fi. Only the positive values of (1/ fi)
are considered (Half Wave Rectification). We now have two
measures of the periodicity at the same frequencies fj and
the final function is obtained by computing the product of
both: h(fr) = S(fx) - r(1/fx). This function has been
tested in [11] for a task of pitch estimation. For this, we sim-
ply take the frequency corresponding to the maximum peak
of h(fx) as the pitch estimation. This process has achieved
97% correct recognition over a large database.

The underlying process of this method is that the ACF
(or Real-Cepstrum) r(7) can be considered as the decom-
position of the power spectrum (log-amplitude spectrum),
A(fx), on a cosine function g, ( fx,) = cos(2w f7) and there-
fore measures the periodicity of the peaks of A(fy). This is
illustrated in Figure 2 where we superimposed g, (fx) on
A(fy) for various lags: 7 = Ty/5, 7 = Tp and 7 = 27Tj.
We decompose g (fx) into its positive and negative part:
9 (fx) = gt (fx) — g7 (fx). Positive values of r(7) occur
only when the contribution of the projection of A(f;) on
g (fx) is greater than the one on g- (f)) (this is the case
for the sub-harmonics of fo, 7 = k/fy, k € NT). Non-
positive values occur when the contribution of g (fx) is
larger than or equal to the one of g, (fx) (this is the case for
the higher harmonics of fo, 7 = 1/(kfy), k > 1,k € N*).
On the other side, energy in the spectrum S( fx) only exist
for f = fo,2f0, ... so that when multiplying S(fx) and
r(1/ fi) only the peak at f = f, remains.

This function is not a pitch detection algorithm but a rep-
resentation that strengthens the energy at the pitch frequency
and reduces the energy at the other harmonics. Because of
that we would like to use this method as a front-end for key
estimation which would therefore avoid the effect we have
mentioned above about the presence of higher harmonics.

However in the case of multi-pitch signals, the above-
mentioned function cannot be applied directly. For multi-
pitch signal, the relationship between r(7) and the period-
icity of the various pitches becomes intricate. We therefore
use the same underlying process but without the use of the
projection on cosine functions. This process can be summa-
rized as testing the hypothesis that fj is a pitch (value given
by the projection of A(f;) on g (fi)) against the hypothe-
sis that f is a higher harmonic (projection on g (f)) or a
lower harmonic of another pitch (multiplication by S(f))!.

!'Tt should be noted that this method does not allow to solve the missing
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Figure 2. [Top] Magnitude of the DFT of the signal; super-
imposed: cosine at 7 = T,/5, 70,270 and f = 5fo, fo, fo/2;
[bottom] ACF function; superimposed: 7 = Ty /5, 7 = Ty,
T = 2T} positions; on a periodic signal at fo=1/7,=2Hz.

We first compute at each frame the energy spectrum (or
the log-amplitude spectrum) A(k). For each frame and each
frequency f;, we then compute a score > defined as

H
P(fr) =Y A(hfi) — max{a(fi), B(fx). 7 (fr)} (D)
h=1

=5 4 ((2) 1)

Bfe) = {%H,l%ir’l%’%}A(hfk) @)
v(fr) = min  A(hfy)
he{$,2,2.5}

7(fx) is the sum of the energy (log-amplitude) of the spec-
trum explained by the hypothesis that fy, is a pitch, penalized
by the hypothesis that f is an even («), third (/) or fifth ()
harmonic of a lower pitch.

e The first term of (1) is equivalent to the projection of
A(fr) on g (fx) but using a narrower and constant-
over-7 frequency bandwidth basis 3. It is the sum of
the harmonic of the current frequency fj.

e « penalizes frequencies which are even harmonics of
a lower pitch (the current frequency is potentially the
second, fourth, sixth, ... harmonic of a lower pitch).

e /3 penalizes frequencies which have third harmonic
relationship with a lower frequency. We make the un-
derlying assumption of spectral envelope continuity
by taking the minimum over the considered harmon-
ics: if f) was the 3rd harmonic of a pitch fj/3 then
energy should be present at %, %, %, %

e v is the same as (3 but for the fifth harmonic.

fundamental problem.

2 This score plays the same role as 7(fy) in the previous method; how-
ever 7(fy) is directly computed at the frequencies f5 of the DFT bins.
Therefore no interpolation is required.

3 The frequency bandwidth corresponding to the positive-valued part of
gr (f) varies with 7.
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Figure 3. [Top] Magnitude spectrum A(f:); [Bottom] Har-
monic Peak Subtraction function i (f) (see text).
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Figure 4. [Top] Spectrogram S(fx,t); [Bottom] Harmonic

Peak Subtraction function over time A (f%,t) (see text).

We finally take the maximum over the three penalties.
As for the mono-pitch case, we then compute the product of
both measures: h(fr) = S(fr) - 7(fx).

We illustrate the computation of the Harmonic Peak Sub-
traction function in Figure 3 for a multi-pitch signal which is
the superposition of C4 (261.6Hz), C#4 (277.2Hz), and F5
(698.5Hz) viola sounds. The upper part represents A(f).
The frequency being analyzed with 7( fx) is 698Hz. We su-
perimposed the various possible interpretation of this fre-
quency: - 1% harmonic of a F5 note (1), - 2"¢ harmonic of
a F4 (2) - 3¢ harmonic of a A#3 (3) or - 5t" harmonic of a
C#3 (5). The resulting function h(f}) is represented in the
lower part of the figure showing emphasis on the C4, C#4,
and F5 frequencies. In Figure 4, we illustrate the results of
the Harmonic Peak Subtraction function over time in com-
parison with the spectrogram on the first 10s of J.S. Bach,
Well-Tempered Clavier, 02 Fugue in CM.

In the rest of the paper, the results are presented for A( fy)
corresponding to the log-amplitude spectrum and S(k) to
the magnitude spectrum. The use of a log-amplitude scale
allows reducing the influence of the spectral envelope of

each instrument in the computation of h(f}).



2.3. Mapping to chroma scale
Shepard [14] proposes to represent the pitch as a two di-
mensional structure: the tone height (octave number) and
the chroma (pitch class). Based on that, the chroma spec-
trum or Pitch Class Profile (PCP) has been proposed in order
to map the values of the Fourier transform (or Constant-Q
transform) frequencies to the 12 semi-tones pitch classes C.
In our system, we first map the values of the Fourier
transform to a semi-tone pitch spectrum, smooth the cor-
responding channels over time and then map the results to
the semi-tone pitch class spectrum (chroma spectrum).
Semi-tone pitch spectrum: The mapping function be-
tween the frequencies fj, of the Fourier transform and the
semi-tone pitch scale n (expressed in a midi-note scale) is
defined as:
n(fr) = 12log, <440>+69 neR 3)
The computation of the semi-tone pitch spectrum is made
using a set of filters H,,» centered on the semi-tone pitch fre-
quencies n' € [43,44,...,95] (corresponding to the notes
G2 to B6 or the frequencies 98Hz to 1975 Hz). In order to
increase the “pitch resolution”, we define a factor R € NT
which fixes the number of filters used to represent one semi-
tone. The center of the filters are now defined by n’ €
(43,43 + %,43 + 2, ...,95]. Each filter is defined by the
function
Ho(fy) = %tanh (x(1— 22)) + % @
where «x is the relative distance between the center of
the filter n’ and the frequencies of the Fourier transform:
x = R|n' — n(fi)|- The filters are equally spaced and sym-
metric in the logarithmic semi-tone pitch scale, extend from
n’ — 1ton’ + 1 with a maximum value at n'.
The values of the semi-tone pitch spectrum N(n') are
then obtained by multiplying the Fourier transform values
A(fr) by the set of filters H,,:

N(n') =" Hu(fx)A(f) )
fr

Smoothing: The semi-tone pitch spectrum N(n') is
computed for each frame ¢. The output signal of each fil-
ter N(n',t) is then smoothed over time using median fil-
tering. This provides a reduction of transients and noise in
these signals. Also, for the rest of the process, only the fil-
ters centered on the exact semi-tone pitches are considered
(i.e. among the R filters representing one semi-tone, we
only consider the middle one; for example if R = 3, we
only keep n’=69 but not n’=68.666 and n’=69.333). We can
do this because the tuning is guaranteed to be 440 Hz. This
process also allows a reduction of the influence of noise in
the computation of the chroma spectrum.

Semi-tone pitch class spectrum (chroma spectrum):
The mapping function between the semi-tone pitches n and
the semi-tone pitch classes (chroma) ¢ is defined as ¢(n) =
mod (n,12). The mapping to the 12-chroma scale vector
C(1) (pitch classes) is achieved by adding the equivalent
pitch classes

o) = > N(n') 1€0,12[ (6)

n’ SO that ¢(n)=1

Parameters: The analysis is performed using Short Time
Fourier Transform with a window of type Blackman, length
371.5ms and 50% overlap. Because of frequency resolution
limits (the frequency distance between adjacent semi-tone
pitches becomes small in low frequency), we only consider
frequencies above 100Hz. The upper limit is set to 2000Hz.
The value of R is set to 3.

Choice of the amplitude scale: The choice of A(f) in
(5) plays a crucial role. In section 3, we will compare the use
of the DFT and HPS for A(fx). We will also test for each
case, the influence of the scale of A(fy): amplitude scale,
energy scale but also a sone-converted value scale. The sone
values are obtained in a similar way as proposed in [9]:

Ag(fi,) = 210 Aar(f)=40) §¢ A4, (£ > 40

)
= 1/40Adb(fk)2'642 else

where Agy(f1) = 101ogyo(A(fx)10%9/20) is the spectrum

after scaling to the maximum signal resolution and conver-

sion to decibel scale.

2.4. Key estimation from the chroma-vectors

The key is estimated from the succession of chroma-vectors
over time C(t). This can be done in several ways.

2.4.1. Key estimation based on cognitive models
Key-chroma profiles: This approach is close to the one
proposed in [5]. The key profiles are created by extending
the Temperley-Diatonic pitch-distribution-profiles* to the
polyphonic case (several pitches) by considering the con-
tribution of the three main triads (tonic, dominant and sub-
dominant) in each key. The key profiles can be further ex-
tended to the audio case (harmonics of each pitch) by con-
sidering a contribution of the h harmonic of each pitch with
an amplitude of 0.6"=1. In [5], the first H=4 harmonics are
considered. In section 3, we will test the simple polyphonic
model (H=1) and the extended-to-audio model (H=4). In
both cases, the result is a 12-dimensions key-chroma profile
for each of the 24 keys: C; i € [1, 24].

Key decision method: In the following we note C(t)
the 12-dimension chroma-vector extracted from the signal
at time ¢. [5] proposes to estimate the global key of a piece
as the key-chroma profile C'; which has the highest correla-

tion with an averaged over time chroma-vector: maX{Qi .
1(C(t))} We have found better results using the maximum
of the average correlation between key-chroma profiles and

instantaneous chroma-vectors: max{u(C, - C(t))}. We call
this method MeanlInstCorrel. We also test the decision method
proposed in [6]. At each time ¢, we estimate the C'; that has
the highest correlation with a cumulated-over-time chroma-
vector> . We attribute a score to this key proportional to
the distance between its correlation value and the correla-
tion value of the second most likely key. This score acts as
a reliability coefficient. The final key is chosen as the one
with the maximum score cumulated over time. We call this
method ScoreCorrel Cumul.

4During our experiment, we have found better results using the
Temperley-Diatonic profiles proposed in [6] than the Krumhansl ones.

5 At time ¢, the cumulated-over-time chroma-vector is computed by
averaging the chroma-vector C(7) since the beginning of the track:

1/t320 o C(7).



2.4.2. Key estimation based on HUM Table 1. Distribution of the test set.

In [12], we have proposed a method for key estimation based Feeer) |k |Oianas

on training a set of hidden Markov models on the chroma Baroque 61 37 5l 104
representation corresponding to the various keys. No a pri- Classical 42 N/A 47 89
ori musical knowledge at all is introduced in this method. Romantic 46 10 53] 109
The characteristics (signal and musical) of the keys are learned 149 47 106
directly from the training. In this case the chroma-vectors
were derived from the DFT expr@ssed in sone scale. ) 24 Table 2. MIREX score (MI), recognition rate of key (KE), key-
models corresponding to each possible key need to be trained. note (KN) and mode (MO) for various configurations.
However, because the number of instances in our database YT oo
strongly differs among the 24 keys, training directly the HMMs Ao COTEOME L,
on the set of items belonging to a specific key could lead to 8 g g g
over-fitting (learning the track characteristics instead of the 3 8 2 3 g 2
key characteristics). We therefore start by training only two <[ sl s 8| x| B| B B
: : gl o eof o Wl o of o
models, a Major and minor mode model, and then map the % sl 8l & % sl 8l &
two trained models to the various possible keys. For this the BFT amp) T=T 1 86 1| 79.8| 82.8| 91,41 86.7 81.8| 84.4] 97 1
chroma-vectors of all the tracks are mapped to a key-note of H=4 | 88,4| 83,4| 86,4 92,1] 87,9] 83,8 86,1| 91,7
C (by using circular permutation of chroma-vectors). Two DFT ener H=1 | 84,9] 78,5] 80,8] 90,7} 80,5| 73,2| 75,2| 86,4
HMMs are trained corresponding to C Major and C minor. H-4 185,11 76,81 8081 91,1] 79.7) 71,9 74.2) 86,1
S ) . DFT sone H=1 | 84,6] 76,5 79,8] 90,7] 86.,6] 81,8] 85,4 90,7
The training is done using the Baum-Welsh algorithm. The H=4 | 88| 82,5 84,8] 92,7] 87,6| 83,8 87,1] 92,1
parameters of the two models are then used to construct the HPS ampl H=1 | 86,4] 80,5] 83,1] 91,4] 84,3[ 79,5] 82,8] 88,1
24 HMMs corresponding to the various keys. This is done H=4 | 86]80,1)828| 91,4§819]755| 80,1| 86,8
by circular permutation of the mean vectors and covariance HPS ener ::1 gf'g ;gg sg'g gg’j sg'z gs’g ;?g 2;’2
matrices of the state observation probability. For a song with HPS sone =1 | 85.9] 80.5] 83.1] 90.4] 89,1] 84.8] 87.7] 93
unknown key, we evaluate the log-likelihood (using the for- H=4 [ 87,8 83,1] 85,4] 92,1] 88,2 84,1 87,1 92,1

ward algorithm) that its chroma-vector sequence has been
produced by each of the 24 HMMs. The model with the 855] 81]87.4] &3]

maximum log-likelihood gives the key. In a 10-fold cross-
validation, we have obtained the best results using the fol-

lowing configuration: 3 hidden states / 3 Gaussians per state choir music was considered in the present study. The distri-
(GMM) with diagonal matrices. bution of the test set is indicated in Table 1. As in [6], the
database was derived from the NAXOS web radio service.
3. Evaluation The ground-truth key (key-note and mode) was derived from
) the title of the piece. Only the first movement of each piece,
So far, we have proposed several alternatives for each stage supposed to correspond to the provided key, was used. Note
of the key estimation system. We would like now to com- that we had to manually correct the annotation of part of
pare the effect of each of them on the global recognition rate. the baroque pieces, since they were based on a tuning of
We would especially like to test the influence of: e the peri- Ad=415Hz.
odicity observation (DFT or HPS), e the scale used to repre-
sent the value before the mapping to chroma (amplitude, en- 3.2. Results
ergy or sone scale),  the value of H in the key-chroma pro- In Table 2, we indicate the recognition rate of key (KE),
files (H=1 means ignoring the harmonic contribution, H=4 key-note alone (KN), and mode alone (MO). We also in-
means considering the first four harmonics), e the key de- dicates the score used for the MIREX-2005 key estimation
cision method (MeanlInstCorrel or ScoreCorrelCumul). We contest (MI) % . According to this evaluation the best recog-
also test the performances of the HMM-based approach [12] nition rate of key (KE), as well as the highest MIREX score
applied directly to the chroma-vectors derived from the DFT (MI) are obtained using the HPS using a sone scale and the
in sone scale. ScoreCorrelCumul decision method (MI1=89.1%, KE=84.8%).
For each track of the database, only the first 20s are an- We also see that changing only one of the processes (scale,
alyzed. We therefore make the underlying hypothesis that H or decision method) can change drastically the results.
the main key is used in the beginning of the track but not What conclusion can we draw from this evaluation?
necessarily right at the beginning of the track (as it is often Concerning the choice of a specific decision method: there
the case in romantic music). is no clear trend in the results, the highest value of MI is not
necessarily obtained with the same decision method as the
3.1. Test set highest value of KE.

A database of 302 European baroque, classical and roman-
tic music extracts have been created. This includes pieces
by Bach (48), Corelli (12), Handel (16), Telleman (17), Vi-
valdi(6), Beethoven (33), Haydn (23), Mozart (33), Brahms p— ) ) o
(32), Chopin (29), Dvorak (18), Schubert (23), Schuman (7). This score uses the fQHOWl.l’lg weights: - .1 for correct key estimation,

" i > . ] - 0.5 for perfect fifth relationship between estimated and ground-truth key,
The pieces are for solo keyboard (piano, harpichord), cham-

) - 0.3 if detection of relative major/minor key, - 0.2 if detection of parallel
ber and orchestra music. It should be noted that no opera or major/minor key.




Table 3. Recognition rate of key by music genre and instru-
mentation type (HPS, sone scale, ScoreCorrelCumul).

Keyboard Chamber Orchestral
Baroque 89,8 94,6 100| 92,1
Classical 96,2 N/A 93| 94,5
Romantic 85,4 92 76,8 81,8
90,3 94 85,3

Concerning the choice of a scale: the choice of the en-
ergy scale systematically decrease both MI and KE. The am-
plitude and sone scale give very close results in the case of
the DFT, but the sone scale surpasses the amplitude in the
case of the HPS.

Concerning the value of H: in the case of the DFT, H=4
allows increasing MI and KE (this can be understand by
the fact that the DFT does not remove the higher harmon-
ics contribution therefore it is necessary to include it in the
key-chroma profiles), while in the case of the HPS choosing
H=4 decreases the results (for the opposed reason).

Concerning the choice of the periodicity observation (DFT
or HPS): in the case of the sone scale, the HPS surpasses the
DFT, however this is not the case for the amplitude scale.

Why are the results better in sone scale for the HPS ?:
This can be explained considering Figure 3 where we see
that the HPS allows to emphasize the existing pitch frequen-
cies but does not provides an accurate estimation of their
amplitude. Because the sone scale performs a compression
of A(fy) it provides a reduction in the amplitude discrep-
ancy.

The last row of Table 2, indicates the recognition rate
obtained using the HMM-based approach. This result has
been obtained using a ten-fold cross-validation. It is inter-
esting to consider that this method without any introduction
of musical knowledge achieves quiet reasonable results (the
KN value is very close to our winning algorithm).

To conclude we indicate in Table 3, the MI score of the
winning algorithm by music genre and instrumentation type.
This table emphasizes the fact that the results strongly de-
pend on the considered music genre. The lowest recognition
rate is obtained for the romantic period (81.8%). Part of the
tracks of this period (Brahms, Schuman) actually contains
mainly a neighboring key in the first 20s.

4. Conclusion and Future Work

In this paper, we have presented a system for the automatic
estimation of key based on chroma representation. The main
contribution of this paper is the Harmonic Peak Subtraction
function expressed in a sone scale to be used as front-end
for spectral representation of the signal. We have tested
various way of estimating the key from the succession of
chroma-vector over time including a proposed HMM-based
approach. In an evaluation using a database of 302 baroque,

classical, romantic music tracks, the best results (89.1% MIREX

score) were obtained using our HPS function in sone scale

with Gomez polyphonic key-chroma profiles and Izmirli score-

based key decision method. It is however worth mentioning
that the results obtained during the evaluation strongly de-
pends on the music period. The more harmonically com-
plex romantic music has a lower recognition rate than the

baroque and classical music. This could indicate the limita-
tion of such a straightforward approach for key estimation.

On the signal side, future works will concentrate on im-
proving the amplitude associated to the peaks of the HPS
function. We would also like to test the performance of
a multi-pitch detection algorithm ([7][18]) mapped to the
chroma domain in order to know the limits of the chroma-
based approach. On the music analysis side, the key deci-
sion method should certainly be improved in order to take
into account potential modulation over time, this was in fact
the prime reason for testing the HMM approach.
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