

Introduction

ircam

Centre

- Automatic audio indexing
 - Increasing amount of applications based on audio indexing
 - sound event (musical instrument, sound FX) recognition,
 - music genre/mood,
 - singer genre, speaker recognition
 - speech/music segmentation
 - ➡ ...

Safe time -> develop a unique generic and modular system for indexing

Existing generic systems:

- 🔶 WEKA
- Extractor Discovery System EDS
- jAudio + ACE
- Marsyas
- ➡ M2K

(Waikato University) (Sony CSL Paris) (McGill Univeristy) (Tzanetakis) (IMIRSEL's)

Requirements

ircam

- Two main actions the system must perform:
 - training: a classification model is learned from hand-labeled data
 - indexing: the classification model is used to label (or segment) unknown data
 - -> the two actions must be clearly separated since they are not used by the same people

Training:

- extract features from a set of audio files
- find a mapping between
 - the characteristics of the features and
 - hand-annotated labels of the audio files
- labels ? they define the problem to be solved.
 An audio file can have a unique or a succession over time of labels
- -> the set of files and the corresp. labels must be easy to define and modify by the user
- Performances of the system depends strongly on
 - the choice of the features -> must be easy to be changed + include an automatic feature selection alg.
 - choice of the model to represent the mapping between features and classes (SVM, KNN, GMM, ANN)
 -> must be easy to be changed
- Testing the performances of the system:
 - Cross-database, N-fold cross validation, Leave-One-Out

Description of the system

ircam

Centre Pompidou

HINAS .

77

Description of the system

EXE Centre

Pompidou

Describing a new indexing problem

Defining a new problem using text files

➡ 1) Text file defining the list of audio files and the corresponding annotations

→ path_audio_file \t class

```
J:\sound\wav_training\16-air_suite_from_les_fetes_d_he.wav class:classical
J:\sound\wav_training\1-sartinal_i.wav class:electronic
J:\sound\wav training\6-three.wav class:metal punk
```

path_audio_file \t path_to_wavesurfer_file

L:\speechmusic\00_0003BB8A.wav L:\speechmusic\01_0003BB8D.wav class:file:L:\speechmusic\00_0003BB8A.lab class:file:L:\speechmusic\0003BB8D.lab

- wavesurfer_file :

time_begin \t time_end \t class\n time_begin \t time_end \t class\n ...

0.0000000 14.3621269 jingle-jingle001 14.3621269 220.5964666 music-music 220.5964666 237.0186157 talk-talk 237.0186157 244.4753160 jingle-jingle008 244.4753160 293.8578211 talk-talk 293.8578211 490.3433231 music-music 490.3433231 496.4073322 jingle-jingle028 496.4073322 671.0000000 music-music 671.0000000 677.0000000 jingle-jingle022 677.000000 874.6100077 music-music 874.6100077 880.4419017 jingle-jingle004 880.4419017 897.5603964 talk-talk

ircam

Describing a new indexing problem

- 2) Text file defining the list of classes
 - the list can be a subset of the annotated classes
 - ➡ the list can perform a mapping between annotated class and new class names
 - → allows mapping between different labels form different data-sets
 - → allows to create a hierarchy among classes ("talk-talk" + "ads-talk" = speech)

```
music-music music
talk-talk speech
ads-talk speech
```

➡ 3) Path to the feature extractor to be used

- feature extractor = independent executable
- input = audio filename
- output = feature filename
 - → file format of the feature filename
 - -> must guarantee compatibility between features and class definitions
 - features values
 - feature names
 - identifier to the used feature extractor
 - version of the feature extractor
 - parameters of the feature extractor

ircam

Description of the system

Centre

Pompidou

lam

Description of the system

Training

ircam

- Batch feature extraction
- Creation of a database containing feature values + corresponding classes
 - Weka export
 - Systat export

Training

- Feature selection
 - → IRMFSP algorithm (Peeters 2003)
- Feature space transform
 - → PCA: reduces the dim. of feature space while preserving most of the variances of the data
 - → LDA: reduces the dim. of feature space while maximizing the class separation of the data
- Class modeling
 - → Multi-dimensional Gaussian modeling,
 - → GMM,
 - → HMM
 - → K-Nearest Neighbors
 - → Clustering algorithm, Histogram learning

Output:

a CLASS model that can be used for indexing unknown data

ircam Generic audio indexing system Description of the system Indexing Local indexing assign various labels over the file duration → smoothing of the labels -> median filtering, local histogram → can be used for segmentation -> use class changes over time Global indexing ➡ assign a single label to the whole file (or segment) duration → case 1) due to the fact that the extracted features are timeless → case 2) need to make a global decision from a succession of instantaneous (local) decision

peeters@ircam.fr

11

Description of the system

- Global indexing methods: case 2)
 - Motivation

ircam

- ➡ 1) we know that all the frames of a given segment/ file should belong to the same class
- 2) the definition of the class does not come from the frame-class but from the distribution (or succession) of frame-class over time

Methods:

- Cumulated histogram
 - \rightarrow i(t) = argmax(p(c_i|f(t))
 - → maximum of cumulated histogram i(t)

Cumulated probability

- \rightarrow p(c_i) = 1/T sum_t p(c_i|f(t))
- \rightarrow maximum of the cumulated probability p(c_i)

Description of the system

- Global indexing methods: case 2)
 - Methods:

ircam

Centre

- Segment-statistical model
 - → Notation: s_i a specific segment of the training set belonging to class i
 - → for a specific class i
 - model the behavior of the bins c_i of p_{si}(c_i) over all the segment si belonging to class i

→ Model ?

- Gaussian modeling of the bins of p(ci) -> segment-statistical model

peeters@ircam.fr

- Cosine distance between the cumulated probability of the unknown segment p_s(ci) and the mean vector of each segment-statistical model
- → Example: case of music genre recognition
 - the bins i are the mg classes
 - each segment-statistical model represent the behaviour of the bin for a specific mg class

ircam Centre Pompidou Generic audio indexing system

Description of the system

Description of the system

Validation

ircam

- Cross-database validation:
 - one database is used for training, the other one for evaluating the performances of the system

- N-fold cross validation (Leave-One-Out)
 - ➡ the database is divided into N folds (as much independent as possible)
 - ➡ N-1 folds are used (in turns) for training, the remaining one for evaluation
 - → Specific case: if N = the number of observation (or segments) = Leave-One-Out

Description of the system

Features

ircam

- Dedicated audio features set
 - the extraction of high-level concepts is
 - → feasible: can be extracted considering current DSP limits
 - → meaningful: has a meaning for the given signal
 - example: audio content= single mono. note (instrument sound sample recognition)
 - → Attack-time, Fundamental frequency (assumption: time-extent of the signal, signal model)
 - → Peeters 2004

Generic audio features

- extraction of low-level concept because high-level concept extraction
 - → can be difficult
 - → can be meaningless
- example: audio content= generic audio (any kind of audio: music, radio, talks, ...)
 - → MFCC, SFM (no assumption on time-extent or signal model)

Too many data ! -> <u>Temporal modeling</u>:

- 24h of radio program * 20ms hop size = 4 millions feature vector !
- Temporal modeling = model the evolution of each feature over time (window length from 500ms to 2s)
- Various models can be used over the window:
 - → statistical moments (mean, variance),
 - → histogram of cluster belonging,
 - → spectral decomposition of feature evolution,
 - → sub-band grouping

Goal:

ircam

- develop a tool for the automatic segmentation of radio streams
- developed in a real industrial framework
 - in coordination with a company that produces managing and archiving software for radio station
 - categories and corpuses directly defined and provided by their clients (real world data)

Related works in speech/music segmentation

- Large amount of research in the last two decades
- Usual methods:
 - Iow-level features (ZCR, 4Hz energy modulations, MFCC, entropy)
 - KNN, GMM, SVM
 - References: Scheirer97, Saunders96, Carey99, Harb03, Pinquier06, Richard06
- Evaluation protocols:
 - DARPA (USA), ESTER (France)

Considered categories

- acoustical categories
 - 🔶 music
 - speech
 - <u>mix</u>: speech and music exist but do not overlap continuously over time (succession)
 - <u>bed</u>: speech and music overlap regularly over tome (introduction of radio news)

Industry / Acoustical	Music	Jir	ngle		Voice	Mix	Bed
Music	music-music						
Jingle		jing	gle-	ingle			
Talk					talk-voice	talk-mix	talk-bed
Ads					ads-voice	ads-mix	ads-bed

ircam

Centre Pompidou

riam

ircam

Centre Pompidou

Corpus

ircam

- Corpus Radio France
 - speech: a subset of MPEG-7 corpus (RadioFrance July 1998)
 - music: ISMIR2004 "song excerpts" dataset + a private music genre database

Corpus UK

➡ 24h of recording of a major commercial radio group in the UK

Description: high rate of audio compression, many ads, jingles, talks and music

Corpus SUD

Corpus name		RadioFrance		UK	SUD
Description		french speaking	g	english speakin	french speaking
Total duration		622m		1375m	1333m
Classes:	music-music	74% (460m)	music-music	57% (788m)	70% (945m)
	speech-clean	26% (162m)	talk-voice	16% (222m)	23% (312m)
			talk-mix	8% (111m)	1% (13m)
			talk-bed	3% (41m)	1% (10m)
			ads-voice	4% (51%)	1% (10m)
			ads-mix	6 (89m)	3% (35m)
			ads-bed	5% (70m)	1% (8m)

➡ 24h of recording of a regional radio station in France

2007

System configuration

Signal: 11KHz, mono, 40ms Blackman, 20ms hop size

Features

ircam

- ➡ 13 MFCC + Delta + Delta-Delta
- ➡ 4 SFM + Delta + Delta-Delta
- Temporal modeling: mean+variance 2s / 1s

Classifier (best configuration found ...)

- Feature selection: IRMFSP first 40 selected features
 Feature space transform: Linear Discriminant Analysis
- Class modeling: GMM with 20 mixtures and full-covariance matrix, training set highly unbalanced -> no use of prior information

lan

Results

ircam

Centre

- → <u>7 classes problem</u> (random=14.28%)
 - ➡ results for the UK corpus (the most difficult), ten-fold CV

					Found				
		'music-music'	'talk-voice'	'talk-mix'	'talk-bed'	'ads-voice'	'ads-mix'	'ads-bed'	
	'music-music' 79,4	0,5	1,7	2,9	0,9	8,5	6,1		
	'talk-voice'	0,5	71,8	8,1	5,0	12,4	1,3	0,8	
=	'talk-mix'	2,6	8,3	42,6	22,2	6,3	9,1	8,9	
Sea	'talk-bed'	4,1	3,9	34,9	39,8	5,3	6,4	5,6	
-	'ads-voice'	1,1	10,0	5,8	3,1	66,2	9,2	4,4	
	'ads-mix'	12,1	2,3	9,4	5,8	10,4	41,7	18,3	
	'ads-bed'	6,8	0,8	6,0	5,3	6,1	14,4	60,6	
									57,5

Iargest confusion between

- → the non-pure catgories (mix and bed),
- → talk and ads

<u>2 classes problem</u> (random=50%)

- we only consider the pure categories (no mix, no bed), we merge talk-voice and ads-voice into "speech", results for ten-fold CV
 - → UK: Rmusic=96.7%,
- Rspeech=94.4%
- → RadioFrance: Rmusic=96.48%,
- → SUD Rmusic=95.8%
- Rspeech=96% Rspeech=92.1%
- Conclusion: music tends to be more easily recognized than speech

lan

Results

ircam

Centre Pompidou

77

Cross-database validation: one corpus for training, two remaining for evaluation)

Mean Recall (Mean F-Measure) Music Recall - Speech Recall		Radio-France	NK	ans	
	Radio-France		86,5 (87,9)	95,2 (96,4)	
Ð			99 - 73,9	90,9 - 99,5	
nin	UK	92,1 (57,6)		89,4 (92,7)	
rai		84,3 - 99,9		79,1 - 99,8	
F	SUD	95 (78,1)	90,2 (91,3)		
		96,9 - 93,2	99,1 - 81,3		

Conclusion:

- Best results: RF->SUD, SUD->RF
- ➡ Worst results: RF->UK, UK->SUD
- ➡ RF / SUD very close , UK different
- Assumption: does the difference come from the language ? No
 - → UK speech -> RF speech / SUD speech = good
- Assumption: does the difference come from the music ? Yes
 - → UK music -> RF music / SUD music = bad
- Best corpus for training the music ?
 - → SUD music

Conclusion

ircam

- Good results considering that we did not perform any modification of our system for the problem of speech/music segmentation
- Problem for the "mix" and "bed" categories
 - need new features for these classes :
- Good results for the 2 "pure" classes speech and music
- Choice of the training set is important for the generalization of the system
 - ➡ a different training set may be used for the classes speech and music

Comment on the F-measure and Precision factor

- both depend strongly on the distribution of the test set (which is highly unbalanced in our case)
 - ➡ Recall: s->s / s
 - Precision: s->s / (s->s + m->s)
 - ➡ F-measure: 2RP/(R+P)

• example:

- UK-> RF : Recall speech =99.9% but Precision = 13.4%
- It looks like a large part of music has been classified as speech ?
- this part is small in comparison to the number of music data (only 15.6% of the music data)
- but the number of music data (m=48382) is large compared to the number of speech data (s=1175)
- Therefore the Precision drops
 - → Precision = 0.999s / (0.999s + 0.156m)

Goal:

ircam

develop a tool for automatic recognition of the music genre of an audio track

Music genre categories ?

Fuzzy and hill-defined concept

still it is important for understanding the underlying features of music similarity

Related works in music genre recognition

- Usual methods:
 - 1) low-level features: MFCC, spectral contrast, loudness, roughness
 - ➡ 2) high-level features: tempo, beat histogram, chroma, pitch contours
 - References: Aucouturier03, Jiang02, Burred03, Tzanatakis02, McKay04
- Evaluation protocols:
 - ISMIR2004, MIREX05/06/07

Corpus and categories

ircam

Centre Pompidou

DAY

lam

77

- ➡ ISMIR2004 music genre contest
 - training, development parts (not the evaluation parts)

➡ 6 categories

Highly unbalanced in favor of Classical music

Music Genre	Classical	Jazz / Blues	World	Electronic	Metal / Punk	Rock / Pop	Total
Training set	320	26	106	115	45	101	713
Development set	320	26	122	114	45	102	729

System configuration

Signal: 11KHz, mono, 40ms Blackman, 20ms hop size

Features

ircam

- ➡ 13 MFCC + Delta + Delta-Delta
- ➡ SFM + Delta + Delta-Delta
- Temporal modeling: mean+variance 4s / 2s

Classifier (best configuration found ...)

- Feature selection: no
 Feature space transform: Linear Discriminant Analysis
- Class modeling:
 GMM with 5 mixtures and full-covariance matrix,
 - training set highly unbalanced -> no use of prior information

lan

ircam

62.2% (14.3%)

76.2% (18.9%)

- 77.4% (16.8%)
- 78.7% (14%)

			Found						
		classical	electronic	jazz_blues	metal_punk	rock_pop	world		
	classical	90,6	0,0	0,3	0,0	0,0	9,1		
	electronic	1,8	73,7	0,9	2,6	9,6	11,4		
eal	jazz_blues	0,0	0,0	96,2	0,0	3,8	0,0		
Å	metal_punk	0,0	0,0	0,0	84,4	15,6	0,0		
	rock_pop	0,0	4,9	2,9	16,7	67,6	7,8		
	world	16,4	4,9	4,9	0,8	13,1	59,8		
								78,7	

Conclusion and future works

Generic system

ircam

- easy to use
- applicable to a wide range of indexing problems
- Application to speech/music segmentation (in a real industrial framework)
 - good performances when considering only the pure categories speech/ music
 - system can be generalizable across radio channels (cross-database valid.)
 - performances drop when considering the non-pure categories (mix and bed)
- Application to music genre recognition problem
 - we have proposed the use of segment-statistical model
 allows improving the results
 - results close to previous state-of-the-art algorithm (ismir2004)
- Future works
 - new features required for
 - bed and mix categories
 - → observe separately the various parts of the spectrum
 - music genre
 - → higher-level features such as rhythm patterns, chord succession
 - extend the current set of features on which the automatic selection is performed
 - real-world data-sets often unbalanced
 - take into account this unbalancing in our algorithm
 - → modify feature selection and feature space transform algorithms