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ABSTRACT

In this paper, we present a novel method for the automatic
estimation of the structure of music tracks using a sequence
representation. A set of timbre-related (MFCC and Spec-
tral Contrast) and pitch-related (Pitch Class Profile) features
are first extracted from the signal leading to three simi-
larity matrices which are then combined. We then intro-
duce the use of higher-order (2nd and 3rd order) similarity
matrices in order to reinforce the diagonals corresponding
to common repetitions and reduce the background noise.
Segments are then detected and a maximum-likelihood ap-
proach is proposed in order to derive simultaneously the
underlying sequence representation of the music track and
the most representative segment of each sequence. The
proposed method is evaluated positively on the MPEG-7
“melody repetition” test set.

1 INTRODUCTION

Music structure discovery (MSD) aims at estimating auto-
matically the structure of a music track by analyzing its
audio signal. It has become a major topic of interest in
the recent years because it allows the development of new
paradigms: active music listening (intra-document brows-
ing [4]), acoustic browsing of music catalogues (fast brows-
ing using automatically generated audio summaries [20]
or using automatically located chorus, key-phrase, audio-
thumbnail [15] [5] [3]), music creation (automatic segmen-
tation into cognitively similar parts [12], music mosaicing),
media compression [12] and automatic music analysis (un-
derstanding music structure through acoustic analysis).

MSD algorithms always start by extracting a set of fea-
tures from the audio signal. The features are then used
to detect repetitions of the signal content over time. This
notion of “repetition” and “detection of repetition” is the
basis of all MSD algorithms developed so far. It is also
their main limitation since it does not allow detecting varia-
tions or evolutions of a part 1 . The choice of the features
therefore plays a central role since it guides the kind of
repetitions that can be observed: repetitions can be based
on instrument-background repetitions (timbre-related fea-
tures are for example used by [8]), repetitions of melody or
chord-succession (pitch-related used by [3]) or repetitions

1 Note however that [11] takes tonality modulation into account.
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of rhythm patterns (rhythm-related used by [20] [13]). In
the current work both timbre-related and pitch-related fea-
tures are used.

The temporal structure of a music track can then be vi-
sualized using a recurrence plot more often called a simi-
larity matrix in the case of music [9] which represents the
similarity between each pair of features over time. In or-
der to extract from this visual representation, a numerical
representation of the structure of a track, two kinds of rep-
resentation can be used leading to two different approaches
[19]: the state and the sequence representation.

The “state” representation (see left part of Fig. 1) con-
siders that a music track is a succession of parts called states
and that each time of a music track has emitted a specific
state. A state is defined as a set of contiguous times, which
contains similar acoustical information. A state does not
need to be repeated later in the track. The notion of states is
closely related to the notion of parts in popular music (in-
troduction, verse, chorus and bridge) because for popular
music the musical background is often constant during the
duration of each part. In this case, the goal of MSD algo-
rithms is to find the states that have been emitted at each
time. The algorithms rely mainly on segmentation (nov-
elty measure of [8]), partitional, agglomerative or spectral
clustering algorithms [15] [6] [1] or hidden Markov models
([15], [20]).

The “sequence” representation (see right part of Fig. 1)
considers that there exist sequences of time in the music
track that are repeated over the track. A sequence is defined
as a set of successive times, which is similar to another set
of successive times. However the times inside a given se-
quence do not need to be necessarily identical to each other.
All the times of a music track do not belong necessarily to
a sequence. The notion of sequence is closely related to the
notion of melody (sequence of notes) or chord succession in
popular music. These sequences are visible in a similarity
matrix through the diagonals, which represent succession of
pairs of times with high similarity. The sequence approach
allows a more precise description than the state approach,
since it allows to detect only the parts which are repeated
melodies and are therefore cognitively more memorable.

When considering the sequence representation, most ap-
proaches only attempts to detect the most representative
audio extract from the similarity matrix in order to cre-
ate a thumbnail [3], [5]. Few papers address the problem
of estimating the actual sequence representation from the
similarity matrix. When dealing with this problem most
authors use Dynamic Time Warping or pattern matching
techniques [7] [2] [16] [11]. Recent approaches combine



Figure 1. Structure representation in a similarity matrix as
[left part] states: we observe three states noted A, C and D.
The times noted A belong to the state A. Note that the state
C is not repeated later in the track. [right part] sequences:
we observe two sequences noted abc and de. Note that a
sequence cannot exist if it is not repeated later in the track.

DTW with a hierarchical approach of the structure detec-
tion [18] [17]. Despite its efficiency, the DTW approach
remains very heavy in computation time. In this paper, we
propose a fast method for the estimation of the sequence
of a music track based on a maximum-likelihood approach
(parts 2.4 and 2.5). Other contributions of this paper are the
simultaneous use of timbre and harmonic-related features
combined into a unique similarity matrix (part 2.1) and the
use of higher-order similarity matrices (part 2.2). Finally
part 3 presents the evaluation of our system on the MPEG-
7 “melody repetition” test set.

2 PROPOSED METHOD

2.1 Feature extraction and similarity matrix

The first stage of our system extracts features from the au-
dio signal. For the reasons mentioned above (the fact that
repetitions can be related either to timbre or pitch observa-
tions), three set of audio features are extracted:

• 13 Mel Frequency Cepstral Coefficients (excluding
the 0th/ DC-component coefficient),

• 12 Spectral Contrast coefficients [14] (spectral con-
trasts and spectral valley coefficients into 6 frequency
bands [0, sr

26 ], [ sr
26 , sr

25 ], ... [ sr
22 , sr

2 ] 2 ),

• 12 Pitch Class Profile coefficients [10].

The frame analysis is performed with a window length of
80ms and a hop size of 40ms. Each dimension of the fea-
tures is then modeled over time by its mean values over a
sliding window of 4s with hop size of 500ms.

Principal Component Analysis is then applied to the three
feature sets separately. For each set, only the principal com-
ponents explaining more than 10% of the total variance are
kept. The data are then projected on the retained principal
components leading to the final features.

From the three modified feature sets, we compute sepa-
rately three similarity matrices using an Euclidean distance.
The matrices are then normalized to the range [0, 1] and
added. We note S(tx, ty) the resulting matrix.

2 sr stands for sampling rate.

Figure 2. Computation of a [left] 2nd order similarity ma-
trix [right] 3rd order similarity matrix

2.2 Higher order similarity matrix

We note o(tx) the feature vector extracted at time t = tx.
The similarity matrix S(tx, ty) represents the similarity be-
tween two times tx and ty through the computation of the
distance between the feature vectors extracted at time tx
and ty. If tz is a repetition of tx, we observe a high value
at S(tz, tx). In the same way, if tz is a repetition of ty ,
we observe a high value at S(tz, ty). By transitivity, since
o(tz) ' o(tx) and o(tz) ' o(ty), we should have o(ty) '
o(tx) and observe a high value at S(ty, tx). However, in
practice, because repetitions are not exact repetitions and
because of the noise in the features, this repetition can be
masked. The higher order similarity matrix uses the transi-
tivity property to recover those missing values and empha-
size the repetitions.

We define a second order similarity matrix S2(tx, ty) as
the similarity between times tx and ty through all the times
tz (see left part of Fig. 2):

S2(tx, ty) =
∫

tz

S(tx, tz)S(tz, ty)dtz (1)

S2(tx, ty) measures the similarity between tx and ty using
the fact that if tx is similar to tz , and tz to ty then tx and ty
should be similar.

In the same way, we can define a third order similarity
matrix as the similarity between time tx and ty through all
the times tz1,tz2 (see right part of Fig. 2):

S3(tx, ty) =
∫

tz1

∫

tz2

S(tx, tz1)S(tz1, tz2)S(tz2, ty)dtz1dtz2

(2)
S3(tx, ty) measures the similarity between tx and ty using
the fact that if tx is similar to tz1, tz1 to tz2 and tz2 to ty
then tx and ty should be similar.

In Fig. 3, we represent the 1st, 2nd and 3rd order similar-
ity matrix for the track “She Loves You” from The Beatles.
Using the 2nd and 3rd order matrices, the repetitions, espe-
cially at the beginning, become more visible.

2.3 Sequence representation

From the higher-order similarity matrix we derive the se-
quence representation. This is done in two steps. We first
detect in the matrix sets of diagonals from which we derive
a set of segments (part 2.4). We then estimate the sequence
representation that best explains the detected segments (part
2.5). In the rest of this part, we will use the following terms:
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Figure 3. From left to right: 1st, 2nd, 3rd order similarity matrix on “She Loves You” from The Beatles

diagonal (line): a diagonal (line) is defined as a possibly
discontinuous set of points in the similarity (lag) ma-
trix,

segment: a segment is a set of successive (continuous) times
defined by a starting and ending time. A diagonal in
the matrix defines two segments: the original (projec-
tion on the x-axis) and the repetition one (projection
on the y-axis).

sequence: a sequence is a set of segments representing sim-
ilar information occurring at various times. A se-
quence is defined by a “mother” segment (the most
typical segment) and a set of times which indicate at
which times the “mother” segment is instantiated,

sequence representation: a sequence representation is de-
fined by a set of sequences.

2.4 Diagonals (lines) and segments detection

2.4.1 Matrix filtering

In order to reinforce the diagonal elements in the matrix
while removing the non-diagonal elements, a filter is ap-
plied to the matrix. The matrix S(ti, tj) is first converted to
a lag-matrix [3] L(lij , tj) with lij = ti − tj . The lag ma-
trix transforms a diagonal repetition into a vertical constant-
lag–line. The filter we use is the combination of a hori-
zontal high-pass filter and a vertical low-pass filter. The
high-pass filter is a gaussian kernel filter which is the com-
bination of two opposed sign gaussian function: g(t) =
gσ+(t) − gσ−(t) 3 . In the experiment of part 3, we will
use the following parameters: σ+ = 0.3s., σ− = 2s. The
low-pass filter is a simple averaging filter with length 8s.

2.4.2 Segment detection

The segments are detected from the resulting filtered high-
order lag matrix using a method close to the one proposed
by Goto [11]. Despite the fact that this method does not
allow to detect repetitions of segments with time variations
(accelerando, ritardando. . . ), it was chosen because it is fast
and most of the time reliable. We refer the reader to [11]
for details about the method.

3 gσ(t) = 1√
2πσ

e
−(t−µ)2

2σ2

2.5 Sequence estimation using a maximum likelihood
approach

The goal of the sequence representation is to represent all
the segments detected in the matrix using the smallest pos-
sible set of sequences (mother segments and repetition times).
In [19], we have proposed a method for solving this prob-
lem. The segments were first connected, then for each set
of connected segments a mother segment was chosen. In
this paper, we present a new approach, faster and more reli-
able, which allows solving the problems using a maximum
likelihood approach. For each candidate mother segment,
we measure how well it would “explain” the observed seg-
ments. We define Sseg(ti, tj) a matrix with values set to 1
when a segment exist at (ti, tj) and to 0 otherwise The algo-
rithm presented below is applied to Sseg(ti, tj). The term
“explain” is expressed by a score inspired by the “summary
score” proposed by [5].

Proposed algorithm. We define mij as a candidate mother
segment starting at time τi and ending at time τj > τi (note
that mij does not need to correspond to an existing seg-
ment). The times τi and τj define a row corridor in the
matrix (see Fig. 4[A]). The summation over the length of
the corridor (over all the columns of the matrix) is noted

σ(τ) =
T∑

t=1

Sseg(τ, t) (3)

The summation over the width of the corridor (over the
rows of the matrix defined by the corridor)

sij(t) =
τj∑

τ=τi

Sseg(τ, t) ∀t ∈ [1, T ] (4)

Using this notation, the “summary score” [5] for a seg-
ment mij would be

∑τj

τ=τi
σ(τ) but would be computed us-

ing the feature-similarity matrix and not the segment-similarity
matrix. Because of the use of Sseg , σ(τ) indicates the num-
ber of segments which are repetitions of a sequence existing
at time τ .

First condition: If one segment crosses the corridor
[τi, τj ] during an interval t = [tx, ty] then sij(t) = 1 ∀t ∈
[tx, ty] (see Fig. 4[A]). If two segments cross simultane-
ously the corridor during an interval t = [tx, ty] then sij(t) =
2 ∀t ∈ [tx, ty] (see Fig. 4[B]). Therefore sij(t) provides
an information about the number of simultaneous segments
occurring during the interval t = [tx, ty]. Since two se-
quences cannot occurred simultaneously (only one mother



segment can be instantiated at a given time), values of sij(t)
larger than 1 should be avoided and τi and τj adapted in or-
der to achieve that (by reducing the width of the corridor).
The first condition is then: sij(t) ≤ 1 ∀t and τi and τj

should be modified in order to fullfill that.
Segmentation: When sij(t) ≤ 1 ∀t, applying a simple

threshold (sij(t) > 0) allows to detect automatically the
various segment occurrences of the mother segment mij .
We note [tkx, tky ] k ∈ [1,K] the starting and ending time of

the kth segment occurrence of the mother segment mij .
Second condition: However the condition sij(t) = 1

∀t ∈ [tkx, tky ]) does not guarentee that [tkx, tky ] is an instan-
tiation of the mother segment mij . [tkx, tky ] could also be -
a part (the beginning or ending) of another sequence (see
Fig. 4[C]) - the succession of two non-overlapping seg-
ments (see Fig. 4[D] and Fig. 4[E]). For this reason, we
need to add a second condition. For this, we define a sec-
ond score which is specific to each interval k ∈ K:

σijk(τ) =
tk
y∑

t=tk
x

Sseg(τ, t) ∀τ ∈ [τi, τj ] (5)

In the ideal case σijk(τ) should be equal to 1 ∀τ ∈ [τi, τj ]
(such as sij(t) should be equal to 1 ∀t ∈ [tkx, tky ]). If there
exists a value τ ∈ [τi, τj ] such that σijk(τ) = 0, it indicates
that the segment only partially covers the duration of mij

(see Fig. 4[C]). If there exists a value τ ∈ [τi, τj ] such that
σijk(τ) > 1, it indicates that the interval contains several
segments (see Fig. 4[D][E]). The second condition is then:
σijk(τ) = 1 ∀τ ∈ [τi, τj ] ∀k ∈ K. τi and τj should be
modified in order to fullfill that condition too.

Best fit approach: Theoretically the width of the corri-
dor should be reduced until sij(t) ≤ 1 ∀t and σijk(τ) =
1 ∀τ ∈ [τi, τj ] for all the k ∈ K intervals. In practice,
since the detected segments are not perfect, this could lead
to unnecessary reduction of the corridor width hence of the
mother segment length. A best fit approach between errors
and corridor-width-reduction is therefore used. For this, we
define the following scores:

• εs(k): the number of frames fow which sij(t ∈ [tkx, tky ])
is > 1, relative to the length of the interval (tky − tkx)

• εs: the number of intervals k ∈ K for which εs(k)
exceeds a given threshold Ts

• εσ(k): the number of frames for which σijk(τ ∈
[τi, τj ]) differs from 1, relative to the length of the
interval (τj − τi)

• εσ: the number of intervals k ∈ K for which εσ(k)
exceeds a given threshold Tσ

The corridor is reduced until both εs and εσ fall below a
third threshold T . T = 0 indicates that we do not allow
any overlap of sequences. T = 1 indicates that we allow
any overlap or partial sequences (this is the summary score
proposed by [5]).

How is the corridor reduced ? The corridor can be
reduced by increasing τi or decreasing τj . For a specific
interval k ∈ K, a value of σijk(τ) > 1 for τ close to τi

indicates that an extra segment appears at the beginning of

the interval [tkx, tky ]. In this case the width of the corridor
ij should be reduced by increasing the value of τi. A value
of σijk(t) > 1 for τ close to τj indicates that an extra seg-
ment appears at the end of the interval [tkx, tky ] and the width
of the corridor should be reduced by decreasing τj . Each
interval [tkx, tky ] may require a different solution. Therefore
the global action is made taking into account the best global
action. This is made according to a vote: each interval k
votes either to increase τi or decrease τj .

Score computation: After adaptation of τi and τj , a
score is assigned to the current mother segment mij . It is
defined as the sum of the lengths of all explained segments
[tkx, tky ], it represents the likelihood that this mother segment
explains the observed segments. This process is repeated
for each candidate mother segment. The candidate mother
segment with the highest score (maximum likelihood) is
chosen as the first (most important) mother segment.

Segment cancellation: The segments belonging to (that
can be mostly explained by) this mother segment are then
canceled. In order to do that, the values of the segment
similarity matrix inside the corridor defined by the selected
mother segment mij are canceled (set to 0). A new set of
segments is then derived from the analysis of the new seg-
ment similarity matrix and the process is repeated for the
detection of the next mother segment.

In theory any values of τi and τj can be chosen as the
starting and ending time of a candidate mother segment.
However, in order to save computation time, τi and τj are
chosen from the set of detected segments.

3 EVALUATION

In this part we evaluate the performances of our algorithm.
In particular, we compare the influence of the choice of the
feature sets and the use of higher-order similarity matrix.
This is, as far as we now, the first time an evaluation of
sequence detection algorithm is performed.

3.1 Test set

For the evaluation of our system we have used the “melody
repetition” part of the MPEG-7 test set. The MPEG-7 test
set has been developed by the author for the task of music
structure discovery. It is composed of two parts: state an-
notations (this part is currently merged with the QMUL test
set 4 and sequence annotations 5 . The sequence test set
is composed of 11 songs annotated into all their repeated
melodies over time (up to 7 melodies).

3.2 Performance measure

Evaluating the performances of MSD algorithms is not an
easy task. [1] and [18] already raised this issue and did pro-
posals in the case of state representation (measuring seg-
ment boundaries and segment labels). In the case of se-
quence representation, measuring segment boundaries makes
few sense: an annotated sequence ABCD can be detected
as two sequences AB and CD or as A and BCD or as three
sequences AB-, -BC- and -CD. Measuring sequence labels

4 available at http:// www.elec.qmul.ac.uk/ digitalmusic/ downloads/
5 available at http:// recherche.ircam.fr/ equipes/ analyse-synthese/

peeters/ mpeg7audio msd testset/



Figure 4. Sequence detection by maximum likelihood al-
gorithm: [A] corridor [τi, τj ] of the candidate mother seg-
ment mij and corresponding function sij(t); sij(t) ≤ 1
indicates no simultaneous segments and allows segmenta-
tion; [B] sij(t) > 1 indicates simultaneous segments and
requires further corridor width reduction; [C] σijk(τ) = 0
for the majority of [tkx, tky ] indicates that the interval con-
tains a partial sequence; [D] σijk(τ) > 1 indicates that the
interval contains successive non-overlapping segments; [E]
σijk(τ) 6= 1 indicates that the interval contains either suc-
cessive non-overlapping segments or no segments
.
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Figure 5. Mapping between annotated and detected se-
quence labels [top] annotated sequences ai(t) [middle]
mapped annotated sequences ak(j)(t) [bottom] detected se-
quences ej(t) on “Smells like teen spirit” by Nirvana. The
colors represent the various labels.

requires a previous mapping between annotated sequence
labels and estimated sequence labels. The number of la-
bels may differ between both: - 1) the annotation may gives
finer details than what can be detected - 2) the annotation
may group segments with different acoustical properties.
The first case is more usual since - annotations tend to split
melodies into sub-melody (according to lyric changes) - es-
timation tends to merge successive repeated melodies into
a single one (if the verse is always repeated by the cho-
rus then only the grouped verse-chorus segment will be de-
tected). Therefore we allow mapping several annotated se-
quences to a unique estimated sequence (but not the oppo-
site). We note ai(t) (ej(t)) the time vector having a value
of 1 when the annotated (estimated) sequence i (j) exists at
time t and 0 otherwise. We assign each annotated sequence
i to the estimated sequence j with the largest dot product:
k(j) = argmaxi 〈ai(t), ej(t)〉 (j is the estimated sequence
that best explains i). The mapping process is illustrated on
Fig. 5. Finally, we assign a score to the estimated represen-
tation. This score is the sum of all “mapped” sequence dot
products normalized by the total duration of the annotation:

s =

∑
j

〈
ak(j)(t), ej(t)

〉
∑

j

∑
t ak(j)(t)

(6)

This score indicates how much are the annotated sequences
explained by the estimated sequences.

3.3 Results

We present the results of the sequence estimation for vari-
ous configuration of our system into Tab. 1. The rows in-
dicate the individual track scores. The last row indicates
the average score over the 11 tracks. We first compare
the results obtained using the three individual feature sets
(MFCC, Spectral Contrast and Pitch Class Profile) with the
ones obtained when combining their normalized individual
similarity matrices (“Combined features” column). In al-
most all cases, the results obtained with the combined fea-
tures (54.8%) are better than the ones obtained with the in-
dividual feature sets. We then compare the estimation of the
sequences using a 1st order similarity matrix (54.8%) with
the estimation using higher-order similarity matrix (“HOS”
column). A 2nd order matrix has been used here. For
the two cases, we indicate the individual track score and
the number of detected segments. On average the use of



Table 1. Comparison between various configurations of
the sequence estimation algorithm on the MPEG-7 “melody
repetition” test set.

the HOS makes the score decreases from 54.8% to 46.8%.
However, for the Brubeck, Moby “Natural Blues”, Oasis
and Pink Floyd tracks, the use of the HOS allows improv-
ing the estimation. For the Morisette and Nirvana tracks,
the scores decrease. These two tracks have in common a
chord progression repeated many times over the track dura-
tion. In this case, the use of HOS produces many diagonals
in the matrix and masks the real melody repetitions.

4 CONCLUSION AND FUTURE WORKS

In this paper we proposed a system for the automatic esti-
mation of the structure of music tracks using the sequence
representation. Three sets of features were used (related
to timbre and pitch) and combined into a unique similarity
matrix. During an experiment, we showed that the combi-
nation of these three sets allows improving the estimation of
the structure. We introduced the notion of higher-order sim-
ilarity matrix, which allows taking into account higher or-
der time repetitions in the computation of the matrix. How-
ever, the use of it only brings improvement in few cases. We
finally presented a maximum likelihood approach to esti-
mate the structure of the track from the segment detected in
the similarity matrix. This approach allows to solve the esti-
mation problem in a global way by looking at the sequences
that best explain all observed segments and is much faster
than the usual DTW algorithms. Finally, we introduced the
MPEG-7 “melody repetition” test set and evaluated our al-
gorithm positively on it.

In our current system, most estimation errors originate
from the segment detection part (not from the sequence
estimation part). Further works will therefore concentrate
on adapting our sequence estimation algorithm to work di-
rectly on the similarity matrix, i.e. without requiring a pre-
vious detection of the segments. Also, it appeared that the
starting time of most detected sequences did not match the
annotated one. The annotation tends to start at the begin-
ning of the lyrics. Information about voice presence and
beat/ measure positions should certainly allows improving
the location of this starting time. Finally, other measures

should be studied for the evaluation of the quality of the
sequence estimation.
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