Sequence representation of Music Structure using Higher-Order Similarity Matrix and Maximum likelihood approach

G. Peeters peeters@ircam.fr IRCAM (Sound Analysis/Synthesis Team) - CNRS (STMS)

supported by the RIAM Ecoute Project

rcam

peeters@ircam.fr 2

ircam

💳 Cantra

Music Structure Discovery (MSD)

- estimate automatically the structure of a music track by analyzing its audio signal
- Applications
 - active music listening (intra-document browsing)
 - acoustic browsing of music catalogues (audio summary)
 - music creation (automatic segmentation, music mosaicing)
 - media compression
 - automatic music analysis

Music listening tool

peeters@ircam.fr 3 E Genire

ircam

Pompidou

Music listening tool

peeters@ircam.fr 4 E Centre

ircam

Pompidou

Music Structure Discovery (MSD)

estimate automatically the structure of a music track by analyzing its audio signal

• Applications

- active music listening (intra-document browsing)
- acoustic browsing of music catalogues (audio summary)
- music creation (automatic segmentation, music mosaicing)
- media compression
- automatic music analysis
- MSD algorithms
 - extract a set of features
 - choice of the features determines what kind of repetitions can be observed (timbre, melody, rhythm repetitions ?)
 - search for repetitions in the set of extracted features
 - we can only detect repetitions, not evolution of patterns
- Visualization
 - recurrence plot, similarity matrix

History

peeters@ircam.fr 6

ircam

💳 Cantra

- 2002 ISMIR Peeters, Laburthe, Rodet "Toward audio summary generation ..."
 - state representation by Segmentation + K-means + HMM
 - dynamic features -> modulation spectrum ?
- 2002 Report Laburthe, Peeters "Sequence detection by Factor Oracle"
- 2003 ICMC Peeters "Sequence and state representation"
 - state representation ...
 - sequence representation by Similarity Matrix, 2D Structuring Filter + Matching
- 2003 MPEG-7 Test set for state and sequence representation
- 2005 Report Wronecki, Peeters "DTW for sequence detection"
- 2005 Report Mislin, Peeters "Audio summary for contemporary music"
- 2006 LSAS Boutard, Goldsmith, Peeters "Browsing inside a music track"
- => 2007 ISMIR Peeters "Sequence representation ..."
 - new method for sequence representation

State / Sequence representation

D D

DD

•	 music track = succession of parts called states, each time of a music track belongs to a specific state state= a set of contiguous times which contains similar acoustical information 	 Sequence representation there exists sequences of time in the music track that are repeated over the track sequence= a set of successive times, which is similar to another set of of successive times
	 all the times of a music track belongs to a state 	 all the times of a music track do not belong necessarily to a sequence
	 a state does not need to be repeated later in the track 	 sequence need at least to be repeated twice related to the notion of melody, chord progression in popular music
	 related to the notion of parts (intro, verse, chorus, bridge) in popular music 	- <u>algorithms</u> :
	 <u>algorithms</u>: segmentation (novelty measure), partitional, agglomerative or spectral clustering algorithms time time 	time a b c a b c time

d e

d e

peeters@ircam.fr

Pompidou

Sequence representation

- Related works
 - detect the most representative audio extract from the similarity matrix
 -> in order to create to create a thumbnail
 - estimating the actual sequences?
 - Dynamic Time Warping
 - Recent approaches: DTW + hierarchical approach
 - -> very heavy in computation time !

Feature extraction and similarity matrix

- Similarity can come from either
 - timbre,
 - harmony or
 - rhythm
- Feature extraction: 3 sets
 - 13 MFC coefficients (excluding the 0th/DC-component coefficient)
 - 12 Spectral Contrast coefficients (spectral contrast + spectral valley)
 - 12 Pitch Class Profile coefficients
 - window= 80ms, hop size=40ms

Feature extraction and similarity matrix

- Similarity can come from either
 - timbre,
 - harmony or
 - rhythm

peeters@ircam.fr 10

💳 Gentre

ircam

- Feature extraction: 3 sets
 - 13 MFC coefficients (excluding the 0th/DC-component coefficient)
 - 12 Spectral Contrast coefficients (spectral contrast + spectral valley)
 - 12 Pitch Class Profile coefficients
 - window 80ms, hop size=40ms
- Modeling over time: mean value of 4s/ 500ms
- Principal Component Analysis applied to the 3 sets separately
 - keep components >10% max variance
- Three similarity/distance matrices
 - using Euclidean distance
 - normalization between [0,1]
- Combining the three matrices:

 $S(t_x, t_y) = S_{mfcc}(t_x, t_y) + S_{scc}(t_x, t_y) + S_{pcp}(t_x, t_y)$

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y) =>$ then $o(t_y)=o(t_x)$

- can be hidden in the matrix
- Goal of HOS matrix
 - recover the missing values, emphasize the repetitions

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y)$ then $o(t_z)=o(t_y)$
- then $o(t_y) = o(t_x)$

- can be hidden in the matrix
- Goal of HOS matrix
 - recover the missing values, emphasize the repetitions
- Second order similarity matrix

$$S_2(t_x, t_y) = \int_{t_z} S(t_x, t_z) S(t_z, t_y) dt_z$$

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y)$ then
- then $o(t_y) = o(t_x)$

- can be hidden in the matrix
- Goal of HOS matrix
 - recover the missing values, emphasize the repetitions
- Second order similarity matrix

$$S_2(t_x, t_y) = \int_{t_z} S(t_x, t_z) S(t_z, t_y) dt_z$$

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y)$ the
- then $o(t_y) = o(t_x)$

- can be hidden in the matrix
- Goal of HOS matrix
 - recover the missing values, emphasize the repetitions
- Second order similarity matrix

$$S_2(t_x, t_y) = \int_{t_z} S(t_x, t_z) S(t_z, t_y) dt_z$$

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y)$ then $o(t_y)=o(t_x)$
 - can be hidden in the matrix
 - Goal of HOS matrix
 - recover the missing values, emphasize the repetitions
 - Second order similarity matrix

$$S_{3}(t_{x},t_{y}) = \int_{t_{z1}} \int_{t_{z2}} S(t_{x},t_{z1}) S(t_{z1},t_{z2}) S(t_{z2},t_{y}) dt_{z1} dt_{z2}$$

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y)$ then $o(t_y)=o(t_x)$
 - can be hidden in the matrix
 - Goal of HOS matrix
 - recover the missing values, emphasize the repetitions
 - Second order similarity matrix

$$S_{3}(t_{x},t_{y}) = \int_{t_{z1}} \int_{t_{z2}} S(t_{x},t_{z1}) S(t_{z1},t_{z2}) S(t_{z2},t_{y}) dt_{z1} dt_{z2}$$

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y)$ then $o(t_y)=o(t_x)$
 - can be hidden in the matrix
 - Goal of HOS matrix
 - recover the missing values, emphasize the repetitions
 - Second order similarity matrix

$$S_{3}(t_{x},t_{y}) = \int_{t_{z1}} \int_{t_{z2}} S(t_{x},t_{z1}) S(t_{z1},t_{z2}) S(t_{z2},t_{y}) dt_{z1} dt_{z2}$$

- Principle:
 - Transitivity rule:
 - if $o(t_z)=o(t_x)$ and $o(t_z)=o(t_y)$ then $o(t_y)=o(t_x)$
 - can be hidden in the matrix
 - Goal of HOS matrix
 - recover the missing values, emphasize the repetitions
 - Second order similarity matrix

$$S_{3}(t_{x},t_{y}) = \int_{t_{z1}} \int_{t_{z2}} S(t_{x},t_{z1}) S(t_{z1},t_{z2}) S(t_{z2},t_{y}) dt_{z1} dt_{z2}$$

ircam

Pompidou

zze Centre

Sequence representation Introduction

peeters@ircam.fr 20

💳 Gentre

Ircam

- Extract from the HOS matrix the sequence representation
 - 1) in the matrix -> detect the diagonals (lines) -> form segments
 - 2) from the detected segments -> estimate the sequences -> sequence representation

Sequence representation Introduction

Extract from the HOS matrix the sequence representation

- 1) in the matrix -> detect the diagonals (lines) -> form segments
- 2) from the detected segments -> estimate the sequences

-> sequence representation

- Definitions:
 - <u>Diagonal</u> (line):
 - possibly discontinuous set of points in the similarity (lag) matrix
 - <u>Segment</u>:
 - set of successive (continuous) times defined by a strating and ending times. Diagonal -> defines two segments (original + repetition)

- <u>Sequence</u>:

- set of segments representing similar information occuring at various times. Sequence = "mother" segment (most representative one) + set of times (indicates at which times the "mother" segment is instanciated).
- <u>Sequence representation</u>:
 - set of sequences

Sequence representation

1. Matrix -> Diagonals (lines) -> Segments detection

- Reinforce the diagonals elements, removing non-diagonal elements
 - Matrix filtering
 - convert to lag-matrix I_{ij} = t_i t_j
 - horizontal high-pass filter:
 combination of two opposed sign gaussian functions
 - vertical low-pass filter: simple averaging filter (length=8s)

Sequence representation

1. Matrix -> Diagonals (lines) -> Segments detection

- Reinforce the diagonals elements, removing non-diagonal elements
 - Matrix filtering
 - convert to lag-matrix I_{ij} = t_i t_j
 - horizontal high-pass filter: combination of two opposed sign gaussian functions
 - vertical low-pass filter: simple averaging filter (length=8s)

Segment detection

- Using of Goto [ICASSP 2003] method
 - (-) does not allow to detect repetitions with time variations
 - (+) fast and most of the time reliable
 - Method:
 - peak detection in the summation over the time-axis of the lag-matrix
 - for each detected peak, analysis of the constant-lag time-segment

- Goal ?
 - represent all the segments detected in the matrix using the smallest possible set of sequences (mother segments and repetitions times)
- How ?
 - For each candidate mother segment
 - -> measure how well it would explain the observed segments

- Goal ?
 - represent all the segments detected in the matrix using the smallest possible set of sequences (mother segments and repetitions times)
- How ?
 - For each candidate mother segment
 -> measure how well it would explain the observed segments
 - segment similarity matrix: S_{seg}(t_i, t_i)
 - m_{ij} candidate mother segment defined by T_i T_i

-> m_{ii} defines a <u>corridor</u> in the segment similarity matrix

peeters@ircam.fr bitue: bitue: 25

- summation over the width of the corridor
 - indicates how many segments cross simultaneously the corridor

$$\sigma(\tau) = \sum_{t=1}^{T} S_{seg}(\tau, t)$$

$$s_{ij}(t) = \sum_{\tau=\tau_i}^{\tau_j} S_{seg}(\tau, t) \ \forall t \in [1, T]$$

peeters@ircam.fr 26 ircam zze Centre

- summation over the length of the corridor
- summation over the width of the corridor
 - indicates how many segments cross simultaneously the corridor

 $\sigma(\tau) = \sum_{t=1}^{T} S_{seg}(\tau, t)$

$$s_{ij}(t) = \sum_{\tau=\tau_i}^{\tau_j} S_{seg}(\tau, t) \ \forall t \in [1, T]$$

- If one segment crosses the corridor simultaneously ... If two segments ...

peeters@ircam.fr 27

💳 Gentre

- summation over the length of the corridor
- summation over the width of the corridor
 - indicates how many segments cross simultaneously the corridor

$$\sigma(\tau) = \sum_{t=1}^{T} S_{seg}(\tau, t)$$

$$s_{ij}(t) = \sum_{\tau=\tau_i}^{\tau_j} S_{seg}(\tau, t) \ \forall t \in [1, T]$$

- If one segment crosses the corridor simultaneously ... If two segments ...
- <u>First condition:</u>

peeters@ircam.fr 28

💳 Genine

 $s_{ij}(t)$ must be <=1 -> change T_i and T_j to achieve that

- summation over the length of the corridor
- summation over the width of the corridor
 - indicates how many segments cross simultaneously the corridor

 $\sigma(\tau) = \sum_{t=1}^{T} S_{seg}(\tau, t)$

-> k segments $[t_x^k, t_y^k]$

$$s_{ij}(t) = \sum_{\tau=\tau_i}^{\tau_j} S_{seg}(\tau, t) \ \forall t \in [1, T]$$

- If one segment crosses the corridor simultaneously ... If two segments ...
- First condition:

peeters@ircam.fr 29

💳 Gentre

Ircam

- s_{ii}(t) must be <=1 -> reduce T_i and T_i to achieve that
- s_{ij}(t) is used for segmentation

Second condition:

peeters@ircam.fr 30

💳 Ganine

- s_{ij}(t) <=1 is not enough to
 - guarantee that $[t_x^k, t_y^k]$ is an instantiation of the mother segment $T_i T_j$
- could also be a part (beginning or ending) of another sequence
- could also be the succession of two non-overlapping segments

- Second condition:
 - $s_{ij}(t) <= 1$ is not enough to
 - guarantee that $[t_x^k, t_y^k]$ is an instantiation of the mother segment $T_i T$
 - could also be a part (beginning or ending) of another sequence
 - could also be the succession of two non-overlapping segments
- second score specific to each interval k:

$$\sigma_{ijk}(\tau) = \sum_{t=t_x^k}^{t_y^k} S_{seg}(\tau, t) \ \forall \tau \in [\tau_i, \tau_j]$$

peeters@ircam.fr aution 31 aution 31

- Best fit approach:
 - T_i and T_j should be modified until s_{ij}(t)<=1 and s_{ijk}(t)=1 for all k
 But this could lead to unnecessary corridor width reduction

 - best fit approach between reduction of errors and reduction of corridor-width
 - SEE PAPER FOR DETAILS
- How is the corridor reduced ?
 - increase T_i or decrease T_i?
 - each interval k may require a different solution
 - vote process: each interval vote either to increase T_i or decrease T_i
- Score computation

peeters@ircam.fr 32

💳 Gantre

- a score is attribute to each candidate mother segment
 - represents the likelihood that this mother segment explains the observed segments
 - score ? defined as the sum of the lengths of all explained segment $[t_x^k, t_y^k]$
- choose the condidate mother segment with the maximum likelihood

Example on "She Loves You" from The Beatles

For each candidate mother sequence, the temporal segments explained

ircam

Pompidou

💳 Gentre

Score of each candidate mother sequence

Segment similarity matrix + Final corridor width and segments expained by the winning candidate mother sequence

- Best fit approach:
 - T_i and T_j should be modified until $s_{ij}(t) \le 1$ and $s_{ijk}(t) = 1$ for all k But this could lead to unnecessary corridor width reduction
- Score computation
- Segment cancellation
 - cancel the values of the segment similarity matrix inside the corridor of the selected mother segment
- The process is <u>repeated</u> for the detection of the next mother segment
- T_i and T_j can be any starting and ending time but in practice T_i and T_j are chosen among the detected segments

- Test set
 - MPEG-7 Test Set (2003)
 - state annotations
 - sequence annotations: 11 tracks (up to 7 melodies)
 - QMUL test set ?
- Performance measure
 - ABCD -> AB CD or A BCD or AB- -BC- -CD
 - number of labels may differ
 - annotation tends to split melodies into sub-melodies (according to lyrics)
 - estimation tends to merge successive repeated melodies into a single one
 - allow mapping several annotated sequences to a unique estimated sequence
 - mapping between annotated a(i) and estimated labels e(j): k(j)=i
 - based on correlation between $a_i(t)$ and $e_i(t)$
- Score computation

$$s = \frac{\sum_{j} \left\langle a_{k(j)}(t), e_{j}(t) \right\rangle}{\sum_{j} \sum_{t} a_{k(j)}(t)}$$

peeters@ircam.fr 35

Example on "Smells like teen spirit" from Nirvana

Annotated

Mapped annotations

Detected

peeters@ircam.fr apreg 36

peeters@ircam.fr 37

E Gentre

ircam

Pompidou

- Results:
 - choice of features:
 - best results with combined features

Track name	Number of segments to be detected	MFCC	Spectral Contrast	PCP	Combined features	
Alanis Morisette "Head over feet"		23,2	0,0	34,4	61,9	
Dave Brubeck "Take Five"		38,7	3,9	29,6	44,1	
Moby "Natural Blues"		14,3	16,1	29,4	24,5	
Moby "Why does my heart"		22,5	18,9	40,6	43,8	
Nirvana "Smells like teen spirit"		28,9	51,3	46,0	73,1	
Oasis "Wonderwall"		27,2	41,1	36,7	36,0	
Pink Floyd "The Wall"		40,3	58,5	46,3	37,6	
Pink Martini "Je ne veux pas travailler"		17,6	32,2	49,4	45,6	
Beatles "Hard days night"		27,3	18,4	52,0	84,3	
Beatles "Love Me do"		62,2	56,5	86,0	84,9	
Beatles "She loves you"		26,2	21,3	30,7	66,8	
Average score		29,8	28,9	43,7	54,8	

• Results:

- choice of features
 - best results with combined features
- choice of the method (1st order SM or 2nd order SM)
 - only improvement for Brubeck, Moby "Natural Blues", Oasis, Pink Floyd
 - worst for Morisette, Nirvana
 - Why ? always the same chord progression -> to many segments

Track name	Number of segments to be detected		Combined features		SOH	
Alanis Morisette "Head over feet"	3		61,9	3	35,7	2
Dave Brubeck "Take Five"	2		44,1	3	68,8	3
Moby "Natural Blues"	4		24,5	3	33,4	3
Moby "Why does my heart"	3		43,8	3	26,6	3
Nirvana "Smells like teen spirit"	4		73,1	3	28,4	3
Oasis "Wonderwall"	7		36,0	2	52,6	3
Pink Floyd "The Wall"	3		37,6	3	40,9	3
Pink Martini "Je ne veux pas travailler"	6		45,6	3	35,7	2
Beatles "Hard days night"	4		84,3	3	76,0	3
Beatles "Love Me do"	4		84,9	2	72,1	2
Beatles "She loves you"	4		66,8	3	44,4	3
Average score			54,8		46,8	

Conclusion and future works

- Conclusion: we have proposed
 - Simultaneous use of several similarity matrix (timbre, harmony)
 - -> Improve the results
 - High-Order Similarity Matrix
 - -> only brings improvement in few cases
 - New method for sequence representation which allows to solve the problem on a global way
 - -> robust and much faster than usual DTW approach

Conclusion and future works

- Conclusion: we have proposed
 - Simultaneous use of several similarity matrix (timbre, harmony)
 - -> Improve the results
 - High-Order Similarity Matrix
 - -> only brings improvement in few cases
 - New method for sequence representation which allows to solve the problem on a global way
 - -> robust and much faster than usual DTW approach
- Future works

peeters@ircam.fr 40

💳 Cantra

- Most errors come from the segment detection (not from the sequence estimation)
 - -> adapt the sequence estimation algorithm to work directly on the similarity matrix (no need for segment estimation)
- The detected starting time of segments do not match the annotated one
 - introduce information about voice presence, beat/ measure positions
- Study other evaluation measures