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ABSTRACT

This paper deals with the problem of beat-tracking in an audio-
file. Considering time-variable tempo and meter estimation as in-
put, we study two beat-tracking approaches. The first one is based
on an adaptation of a method used in speech processing for lo-
cating the Glottal Closure Instants. The results obtained with this
first approach allow us to derive a set of requirements for a ro-
bust approach. This second approach is based on a probabilistic
framework. In this approach the beat-tracking problem is formu-
lated as an “inverse” Viterbi decoding problem in which we de-
code times over beat-numbers according to observation and tran-
sition probabilities. A beat-template is used to derive the obser-
vation probabilities from the signal. For this task, we propose the
use of a machine-learning method, the Linear Discriminant Anal-
ysis, to estimate the most discriminative beat-template. We finally
propose a set of measures to evaluate the performances of a beat-
tracking algorithm and perform a large-scale evaluation of the two
approaches on four different test-sets.

1. INTRODUCTION

Beat-tracking, i.e. locating the times in an audio signal where
beats are perceived or notated in the corresponding score, is one
of the most challenging subject in the music-audio research com-
munity. This is due to the large use of the beat information in
many applications: beat-synchronous analysis (such as for score
alignment or for cover-version identification), beat-synchronous
processing (time-stretching, beat-shuffling, beat-slicing ...), music
analysis (beat taken as a prior for pitch estimation or onset de-
tection) or visualization (time-grid in audio sequencers). This is
also due to the complexity of the task. While tempo estimation is
mainly a problem of periodicity detection (with the inherent octave
ambiguities), beat-tracking is both a problem of periodicity detec-
tion and location of the periods inside a signal (with the inherent
ambiguities of the rhythm itself).

Considering that the best results obtained in the last Audio
Beat Tracking contest (MIREX-2006) are far from being perfect,
this problem is far from being solved. If most beat-tracking al-
gorithms achieve good results for most rock, pop or dance music
track (except for highly compressed tracks), this is not the case
when considering classical, jazz or world music. Moreover recent
Western music styles such as Drum’n’Bass or R’n’B (which use
more complex rhythms than pop, rock and dance) bring back the
problem to the mainstream music.

Considering the numerous methods proposed for beat-tracking,
it would be difficult to summarize them here. We therefore refer
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the reader to [1] and [2] for a good overview of the recent advances
in this domain.

In this paper we present two different approaches for locating
the beat-markers. The first one is based on an algorithm developed
in the framework of speech processing for locating the Glottal Clo-
sure Instants. We name it P-sola. We apply this method here to
the problem of beat-tracking. The second one uses a probabilis-
tic formulation of the problem of beat-tracking with observation
and transition probabilities. Because of the use of a probabilistic
framework, it shares some ideas with the methods based on Dy-
namic Programming [3] [4] [5] (as opposed to the ones based on
Multiple-Agent [6] [7]), although the formulation of the proba-
bilistic framework is different in our case and the input is a “con-
tinuous” onset function rather than “discrete” onsets.

Paper organization: In part 2, we give an overview of the
system used to estimate the onset-energy-function, time-variable
tempo and meter which are used as input variables in the remain-
ing of the paper. In part 3, we propose a P-sola beat-tracking al-
gorithm and highlight the drawbacks of it. In part 4, we propose
a probabilistic model for beat-marking. In part 4.4.1, we propose
a machine learning approach to estimate the best beat-template to
compute the observation probabilities. Finally in part 5, we pro-
pose a set of evaluation measures and perform a large-scale evalu-
ation of the two beat-tracking algorithms on four test-sets.

2. OVERALL PRESENTATION OF THE TEMPO/METER
ESTIMATION ALGORITHM

This paper concerns the beat-tracking problem. For this, we con-
sider an onset-energy-function, time-variable tempo and meter as
input parameters of the algorithms. The system used for the esti-
mation of these input parameters is the one described in [8]. Since
the evaluation performed at the end of the paper will used these in-
put parameters, we briefly summarized their estimation here. The
first stage of the system described in [8] extracts an onset-energy-
function. This function is a 172Hz function with high values at
the onset positions and low values at the other positions. This
function is obtained by computing a reassigned-spectral-energy-
flux function from the signal (time and frequency reassignment of
the spectrogram are used for better time and frequency resolution).
Log-scaling, adaptive thresholding, low-pass, high-pass filtering,
Half-Wave-Rectification and summation are then applied to obtain
the function. In the remaining, we note this function f(t). The sec-
ond stage of the system measures the dominant periodicities over
time of f(t). The dominant periodicities are obtained by com-
bining a Discrete Fourier Transform with a Frequency-Mapped
Auto-Correlation Function [9]. The combination of both func-
tions allows to better distinguish the dominant periodicities from
the sub-harmonics and over-harmonics in f(t). The last stage of
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Figure 1: Overall schema of tempo/ meter estimation system of [8].

the system estimates the tempo and meter over time from the ob-
served dominant periodicities. For this, we define a hidden Markov
model which states are the specific combinations of possible tempi
and meters (2/4, 3/4 or 6/8). The observation probabilities come
from the comparison of state’s templates to the observed domi-
nant periodicities. The best path over time of tempo/ meter is
obtained using a Viterbi decoding algorithm. In the remaining,
we note Tb(t) the estimated temporal period between two beats
(Tb(t) = 60/bpm(t)). The overall schema of the system is repre-
sented in Figure 1.

3. BEAT-TRACKING USING P-SOLA BASED METHOD

P-sola (Pitch Synchronous Over-Lap Add) is a speech processing
method allowing pitch-shifting and time-stretching of a speech sig-
nal. The first stage of the processing aims at locating the Glottal
Closure Instants (GCIs) of the speech signal. The characteris-
tics of these GCIs are (a) to be close to the local maxima of the
energy-signal and (b) to have an inter-distance close to the local
pitch-period T0(t) of the signal. The problem of locating the beat-
markers is close to the one of locating the GCIs: (a) the positions
of the beat-markers are often close to local maxima of the onset-
energy function f(t), (b) the inter-distance between successive
beat-markers is close (equal) to the local tempo-period Tb(t). Be-
cause of this proximity, we propose here an adaptation of a method
we have previously developed for GCIs location [10] to the case
of beat-tracking . The method proceeds in two separated stages.
The first one locates a set of local maxima of f(t) with an inter-
distance close to Tb(t). The second one performs a least-square
optimization in order to satisfy simultaneously two constraints: (a)
markers close to the local maxima of f(t), (b) inter-distance be-
tween markers close to Tb(t).

3.1. Local maxima detection

We define a vector of times Θ = [θ0, θ1, ..., θi, ...]. The values
of θi are recursively defined. For this, we define around the time

θi, an interval Ii =
h
θi − Tbi−1

α
, θi + Tbi

α

i
in which Tbi is the

local tempo period around θi and α defines the relative length of
the interval (α ∈]2,∞[). Small values of α (large intervals) favor
energy constraint, while large values of α (small intervals) favor
periodicity constraint.

The maximum of f(t) in the interval Ii is noted τi. θi+1 is
given by θi+1 = τi + Tbi. The process is repeated for several
initialization time θ0 of the vector Θ. The vector Θ with the ini-
tialization time leading to the maximum value of

P
i f(τi) defines

the best set of energy markers τi.

3.2. Least-square optimization of energy and tempo constraints

We define mi as the beat-markers to estimate. These markers must
satisfy simultaneously the two constraints: (a) markers mi must
be close to the local maxima τi of the onset-energy function f(t),
(b) the inter-distance between two successive markers mi must be
equal to the local tempo-period Tbi. These constraints can be ex-
pressed mathematically as:

8
><
>:

(a) : mi = τi

(b) : mi −mi−1 = Tbi−1

(b) : mi+1 −mi = Tbi

(1)

Given that modifying one mi has consequences on the left and
right periods (the same for mi−1, mi+1), we need to solve the
above equations for all mi simultaneously. This leads to the mini-
mization over mi of the following sum of the square error ε:

ε =
X
i∈I

ˆ
((mi −mi−1)− Tbi−1)

2 + β(mi − τi)
2˜ (2)

where β is a weights: β > 1 favors the energy constrains (a),
β < 1 favors the periodicity constrains (b). The solution to this
problem is the following. If we note m = [m0m1...mi...mI ] the
vector of beat markers to estimate, their optimal positions are given
by

m = M−1 ·

0
BBBBBBBBBB@

0 −Tb0 +βτ0

Tb0 −Tb1 +βτ1

...
...

...
Tbi−1 −Tbi +βτi

...
...

...
TbI−2 −TbN−1 +βτI−1

TbI−1 0 +βτI

1
CCCCCCCCCCA

(3)

where M is defined as

M =

0
BBBBBBB@

1 + β −1 0 . . .
−1 2 + β −1 0 . . .
0 −1 2 + β −1 0 . . .

. . .
. . .

. . .
. . .

. . .
0 −1 2 + β −1

. . . 0 −1 1 + β

1
CCCCCCCA

(4)
For the evaluation presented in part 5, we will use α = 8 and

β = 1.

4. BEAT-TRACKING USING INVERSE VITERBI
FORMULATION

4.1. Motivations for a probabilistic model

When experimenting with the method presented in part 3, a set of
marking problems were observed that we highlight here.

At the first stage of the P-sola algorithm, a binary decision is
taken: a time is a local maximum of f(t) or not. Also only one lo-
cal maximum per period Tb is estimated. The consequences of this
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are: - If the estimated local maximum is not the one correspond-
ing to the beat positions, the marking will be incorrect because the
second stage of the algorithm will also fail. - If there is no local
maximum in the signal (for example a part of a track without any
onset such as a beat in the middle of a silence part), the algorithm
also fails. A solution to these problems would be to have several
candidates for the local maxima and associated probabilities.

At the second stage, there is no adaptive weighting between
the constraints (a) "close-to–local-maxima" and (b) "inter-distance
close to local period". The two constraints are taken into account
with a constant weight β over time. Ideally, if a part of a track has
no clear onsets, the periodicity constraint should be favored.

For all these reasons, we formulate the beat-marking problem
in a probabilistic framework, with probabilities associated to the
times and to the transitions between times. The formulation pro-
posed in the following allows applying a Viterbi decoding algo-
rithm [11] but requires inverting the x and y axis of the usual for-
mulation. Hence we call it “inverse” Viterbi decoding. We first
present this inversion of the axis.

4.2. Viterbi and inverse Viterbi decoding

Viterbi decoding: We take here as example the formulation of the
Viterbi decoding as used for the tempo/ meter tracking in [8]. In
this formulation, a hidden state sij is defined as a specific combi-
nation of a tempo i and a meter j. We estimate the best succession
of states sij over time given the probability to observe a given state
sij at a given time tk: pobs(o(tk)|sij), and given the probability
to transit from a state sij to a state si′j′ : ptrans(si′j′ |sij) (the
transition probability aims to ensure tempo and meter continuity).
We decode states over times. This is illustrated in the left part of
Figure 2.

Inverse Viterbi decoding: We want to formulate the Viterbi
algorithm in order to decode the beat-marker positions over time.
This raises the problem that beat-marker positions are “times” that
we want to decode over “time”. In order to solve this problem, we
inverse the x and y axis as follows: we decode times over beat-
numbers bk (bk is a monolithically increasing function). For this,
we define the states si as the various times ti of the time axis of
the track: si is defined as “time ti is a beat”. We then look for
the best succession of states si (or times ti) that explain the beat-
number succession bk. We define - an initial probability pinit(si)
which represents the probability to be in hidden state si (“ti is a
beat”) at the beginning of the decoding, - an emission probabil-
ity pobs(o(t)|si) which is the probability to observe o(t) given a
specific state si (given that “ti is a beat”), - a transition probabil-
ity ptrans(si′ |si) which represents the probability to transit from
state si (or “ti is beat”) to state s′i (or “t′i is the next beat”). We
compare the Viterbi formulation to the inverse Viterbi formulation
in Figure 2.

4.3. Initial probability pinit(si)

pinit(si) represents the probability to be in hidden state si (“ti is
a beat”) at the beginning of the decoding. We favor ti to be a time
close to the beginning of the track. For this, we use a gaussian
function with µ = 0 and σ = 0.5 evaluated on the ti of all the
states si.

timetk-1 tk tk+1

si,j

si'j'

si'',j''

state

pobs(o(tk) | si'j' )

ptrans (si'j'|sij)

beat num.

si=ti

state/ tim
e

bk-1 bk bk+1

si'=ti'

si''=ti''
pobs(o(t)|t i'' )

ptrans (ti''|ti')

Figure 2: [Left:] Viterbi decoding: we decode the states sij over
time tk given the probability to observe a state si′j′ at time tk

(pobs(o(tk)|si′j′)) and given the probability to transit from state
sij to state si′j′ (ptrans(si′j′ |sij)). [Right:] Inverse Viterbi
decoding: we decode the states si (or times ti) over the beat-
number bk given the probability to observe a state si′′ (or time
ti′′ ) at beat number bk (pobs(o(t)|si′′)) and given the probabil-
ity to transit from state si′ (or time ti′ ) to state si′′ (or time ti′′ )
(ptrans(ti′′ |ti′)).

4.4. Observation probabilities pobs(o(t)|si)

The states si are defined as the various times ti of the time axis
of the track. si is defined as “time ti is a beat”. We associate to
each state si an emission probability, which represent the proba-
bility of observing o(t) given that we are in state si, i.e. given
that ti is a beat. In practice, we estimate this probability using
pobs(si|o(t)) = pobs(t = ti) · pobs(si|o(t)). The hidden state si

has a non-nul emission probability only when t = ti in o(t). We
associate to each state si an observation probability, which rep-
resent the likelihood that this state si is a beat. pobs(si|o(t)) is
estimated by computing the likelihood that a beat-template gTb(t)
starting at time ti and corresponding to the local tempo Tb(ti) ex-
plains the content of the onset-energy-function o(t) = f(t, t ∈
[ti, ti + 4Tb]). This likelihood is estimated using correlation. The
beat-template can be a simple function with values of 1 at the ex-
pected beat-position and 0 otherwise (as in [3]). We propose here a
method that allows finding by machine-learning the beat-template
that maximizes the discrimination between the correlation values
obtained when ti is a beat-position and when ti is a non-beat po-
sition..

4.4.1. Learning the best beat-template by Linear Discrimi-
nant Analysis

The beat-template must be chosen such as (a) to have the maxi-
mum correlation with the local signal when ti is a beat-position,
(b) to provide the largest discrimination between the correlation
values when ti is a beat-position and a non-beat position. The
condition (b) is needed in our case since the values of correlation
will be used as observation probability in our framework. In the
following, we only discuss the case of a “binary subdivision of
the beat” and “binary grouping of the beat into bar”. Extension to
other meters is straightforward.

Using a discrete notation, we note g(1)...g(N) the discrete
sequence of values of the beat-template representing a one-bar du-
ration beat-pattern. Considering a 4/4 measure, g(1) represents the
value of the beat-template at the downbeat position, g(1 + jN/4)

DAFX-3



Proc. of the 12th Int. Conference on Digital Audio Effects (DAFx-09), Como, Italy, September 1-4, 2009

g(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8)

1 2

f(t)

F(1) F(2) F(3) F(4) F(5) F(6) F(7) F(8)

g(1) g(2) g(3) g(4) g(5) g(6) g(7)

g(1) g(2) g(3) g(4) g(5) g(6)

beat-class

non-beat-class

g(1) g(2) g(3) g(4) g(5) non-beat-class

3 4
F(9) F(10) F(11) F(12) F(13) F(14) F(15) F(16)

g(9) g(10) g(11) g(12) g(13) g(14) g(15) g(16)

g(16) g(8) g(9) g(10) g(11) g(12) g(13) g(14) g(15)

g(7) g(8) g(9) g(10) g(11) g(12) g(13) g(14)g(15) g(16) non-beat-class

g(6) g(7) g(8) g(9) g(10) g(11) g(12) g(13)g(14) g(15) g(16)

beat-classg(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8) g(9) g(10) g(11) g(12)g(13) g(14) g(15) g(16)

n

Figure 3: Correlation computation as a multiplication of signal
F (n) by weights g(n): time-norm. and sampled observation func-
tion F (n) and time-norm. and sampled beat-template g(n).

with j ∈ [1, 2, 3] the values at the other beat positions. We de-
fine F (n) as the function obtained by sampling the local values
of f(t, t ∈ [ti, ti + 4Tb]) by N value: F (1) = f(ti)...F (N) =
f(ti+4Tb). We look for the beat-template (the values of g(n), n ∈
[1, N ]) which maximize the correlation with F (n) when ti is a
beat-position and minimize it when ti is not a beat-position. If ti

is a beat-position (hence F (1 + jN/4) with j ∈ [0, 1, 2, 3] are
also beat positions), this can be expressed as

• F (1+ j)g(1)+F (2+ j)g(2)+ ...+F (N + j)g(N) must
have a maximum value for j ∈ [0, N/4, 2N/4, 3N/4],

• F (1+ j)g(1)+F (2+ j)g(2)+ ...+F (N + j)g(N) must
have a minimum value for all the other values of j.

We illustrate this in Figure 3 for the case N = 16.
According to the equations above, the problem of finding the

best values of g(n) is close to the problem of finding the best
weights to apply to the dimensions of multi-dimensional obser-
vations in order to maximize class separation. This problem can
be solved using Linear Discriminant Analysis (LDA) [12]. In our
case the weights are the g(n), the dimensions of the feature vectors
are the successive values of F (n) and the classes are “beat” and
“non-beat”. We therefore apply a two-class Linear Discriminant
Analysis to our problem.

Creating observations for the two-classes LDA problem:
Linear Discriminant Analysis necessitates observations to learn
from. We therefore create observations for the two classes “beat”
and “non-beat”. These observations are coming from a test-set
annotated into beat and down-beat positions. Knowing the down-
beat locations, we create for each track l of the test-set and for
each annotated bar m inside a track, the corresponding Fl,m(n).
For a specific track, we compute the vector Fl(n) by averaging the
values of Fl,m(n) over all the bars of the track. In Figure 4, we
illustrate this for the RWC-Popular-Music test-set [13]. The upper
part represents the vectors Fl(n) for the 100 tracks of the test-set
for the case N = 64. The lower part represents the average (over
the 100 tracks) vector F (n).

From the observed Fl(n), we then create two sets of observa-
tions corresponding to the two classes “beat” and “non-beat”. This
is obtained simply by shifting (circular permutation is assumed in
the following) Fl(n) as follows:

• “beat” class: the four patterns F b
l (n) = Fl(n + j) with

j ∈ [0, N/4, 2N/4, 3N/4],

• “non-beat” class: all the remaining patterns F nb
l (n) = Fl(n+

j) with j ∈ [1, N ] j 6= 0, N/4, 2N/4, 3N/4
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Figure 4: [Top part] Time-norm. and sampled observation func-
tion Fl(n) for each of the 100 tracks of the RWC Popular-Music
test-set [13] [Bottom part] Average (over all tracks) value F (n).

From the set of L observations, we therefore create 4L obser-
vations representing the “beat” class (the sequences starting in one
of the 4 beat positions), and (N−4)∗L observations representing
the “non-beat” class (all the other sequences).

Linear Discriminant Analysis: We then apply Linear Dis-
criminant Analysis considering the two new set of observations
(F b

l (n) and F nb
l (n)) and their associated classes “beat” and “non-

beat”. We compute the matrix U such that after transformation of
the features by this matrix, the ratio of the Between-Class-Inertia
and the Total-Inertia is maximized. If we note u the column vec-
tors of U , this maximization leads to the condition T−1Bu = λu
where T is the Total-Inertia matrix and B the Between-Class-
Inertia matrix. The column vectors of U are then given by the
eigen vectors of the matrix T−1B associated to the eigen values
λ. Since the problem is a two-classes problem, only one column
remains in U . This column gives us the weights to apply to F (n)
in order to obtain the best separation between the classes “beat”
and “non-beat”. It therefore defines the best beat-template g(n).

In Figure 5, we illustrate this for the RWC-Popular-Music test-
set [13]. We represent (in thin line) the average (over the 100
tracks) vector F (n). We represent (in thick line) the values of
g(n) obtained by Linear Discriminant Analysis. As one can see,
the LDA-trained beat-template assigns - large positive weights at
the beat-positions (1, 2, 3, 4) and - negative weights at the counter-
beat positions (1.5, 2.5, ...) and at the just-before/ just-after beat
positions. The use of negative weights is a major difference with
the weights used in usual beat-templates (as in [3]) which only use
positive or zero weights. The specific locations of the negative
weights allow reducing the common counter-beat detection error
(negative weights at the counter-beat positions) and the precision
of the beat location (negative weights at the just-before/ just-after
beat positions). This wouldn’t be achieved by using a model where
all the positions outside the main beats are set to a constant nega-
tive number.

Use of the LDA-trained beat-templates: In the beat-tracking
process, the LDA-trained beat-templates g(n) are used to create
the beat-template which corresponds to the local tempo Tb(ti).
For this, g(n) is considered as representing the interval [0, 4Tb(ti)]
and is interpolated to provide the values corresponding to the sam-
pling rate of f(t): 172 Hz. In order to save computation time, the
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Figure 5: [Thin line] Average value F (n) for the RWC-Popular-
Music test-set [Thick line] LDA-trained beat-template g(n).

values of gTb(t) for all possible tempo Tb can be stored in a table.
In the evaluation presented in part 5, we will compare various sam-
pling and interpolation method of the LDA-trained beat-templates.

4.4.2. Optimization considerations:

In order to reduce the number of states si
1, we apply a discretiza-

tion of the time axis of the track. A sampling rate of 20Hz (hop size
of 50ms) is used for the creation of the states (20 states/ second).
The observation probability (obtained using the beat-template) is
then computed for each of the discrete states si. Because of this
discretization, we reassign the time ti of the state si to the posi-
tion around ti which leads to the maximum correlation between
the local signal f(t, t ∈ [ti, ti + 4Tb]) and the one-bar beat-
template gTb(t). The horizon on which the maximum correlation
is searched for is proportional to the local tempo Tb(ti) and de-
fined by L = Tb(ti)/τ . We illustrate this process in Figure 6,. In
the evaluation presented in part 5, we will compare the two follow-
ing values of τ : 32 and 82.

4.5. Transition probabilities ptrans(s
′
i|si)

Since the states si represent the times ti of the successive beat
numbers bk, the distance between successive states must be close
to the local tempo period Tb(ti). The transition probability models
the tolerated departure of the distance between successive beat-
markers from the local tempo. The model used for the probability
to transit from state si to state s′i is a Gaussian function with µ =
Tb(ti) and σ = 0.02s or 0.05s evaluated at ∆ = t′i − ti. Also,
considering that the states are ordered in increasing time, it is not
possible to transit from a state si to a state s′i with i′ ≤ i. This
makes our model a Left-Right HMM.

4.6. Decoding

The decoding then consists in finding the best succession of states
si over beat-numbers bk given pinit(si), pobs(o(t)|si) and ptrans(s

′
i|si).

1Defining a state si for each value of the onset-energy-function f(t)
(sampling rate of 172Hz) would lead to 40.000 states for a 4 minutes track

2Note that too small values of τ (hence large temporal horizon) leads
to reassign several states si to the same time (since the successive horizons
overlap), while too large values of τ (hence small temporal horizon) can
lead to the miss-detection of the real beat locations (since the horizons do
not overlap anymore)
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Figure 6: Observation probability for state si: onset-energy-
function (continuous line), initial positions of states si (dotted ver-
tical lines), final positions of states si (cont. vert. linez) and asso-
ciated observation probability (cont. vert. lines’ height).

We note τk the time ti associated to the most-likely ending state
si for a forward path going until step bk. We stop the forward al-
gorithm when τk reaches the end of the music track. In the usual
Viterbi algorithm, the decoding occurs over the time axis of the
signal, which length is known before the decoding. Hence the var-
ious possible decoding paths over the states have all the same pre-
determined length. The final path is found by using the backward
algorithm starting from the most-likely ending state.

Modified backward algorithm: In our reverse Viterbi decod-
ing formulation, the last decoded hidden states (at the end of the
music track) can be a time ti in a silent part (the end of the files
can be a silence period after the music) which is not a beat. In
other words, we do not know which the best ending state is. We
therefore modified the backtracking algorithm as follows. Instead
of computing a single backward path, we compute all the back-
ward paths for all the bk with τk close to the end of the track.
Since these various paths can have different (but close) lengths,
we normalize the log-likelihood of each path by its length before
comparing them. We finally choose the path with has the highest
normalized log-likelihood. This path attributes to each beat num-
ber bk the best state si, hence the best time ti, hence the best beat
locations. We illustrate the decoding algorithm in Figure 7.

Memory consideration: Given that a 4 minutes track leads
to the definition of over 4800 states, hence a 4800*4800 transi-
tion matrix, memory consideration has to be taken into account
when implementing the above mentioned algorithm. Because of
the Left-Right nature of the HMM and because of the definition
of the states (states are times), most transitions are equal (or close
to zero) in the transition matrix. Therefore, the whole transition
matrix does not need to be stored. One can use for example sparse
matrices. Another optimization concerns the number of compar-
isons for the forward algorithm. In order to reduce the computa-
tion time, we only consider the states in a time-corridor around the
current state.

5. EVALUATION

5.1. Evaluation measures

The evaluation performed here only concerns the quality of the
estimation of the beat-tracking algorithms. However, because the
time-variable tempo and meter used here, are estimations coming
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Figure 7: Viterbi decoding and backtracking: onset-energy-
function (continuous thin line), states si and associated observa-
tion probability (dots), maximum observation probability of each
bk (O sign), best path (continuous thick line and 5 sign).

from the algorithm of [8], the results obtained also depend on the
quality of these estimations. What we measure is therefore the
performances of the whole system3. It is important to note that
the same estimation of tempo and meter is used for both the P-
sola and the Viterbi algorithm; hence the comparison between the
P-sola and Viterbi algorithms is possible.

We propose here a set of measures to evaluate the perfor-
mances of a beat-tracking algorithm. Considering a given beat-
marker annotation and a given track, we note - A the number of
annotated beats, - D the number of detected beats and - CD(PW)
the number of correctly detected beats within a given Precision
Window (PW). From this we derive the following measures:

• Recall(PW) = CD(PW) / A

• Precision(PW) = CD(PW) / D

• FMeasure(PW) = 2 R(PW) P(PW) / (R(PW)+P(PW))

Note that the Precision Window is centered on the annotated beat
for the Recall and on the estimated beat for the Precision. For a
correct beat marking but at twice (three time) the tempo (tatum
marking), the Recall will be 1 but the Precision 0.5 (0.33). For a
correct beat marking at half (one third of) the tempo, the Precision
will be 1 but the Recall 0.5 (0.33).

In our evaluation the Precision Window depends on the local
tempo. This is done in order to avoid drawing misleading conclu-
sion from the results 4. The Precision Window is defined as a per-
centage of the local annotated beat length Tb: PW=α means that
the estimated beat should be at a maximum distance of ±αTb the
annotated beat (α = 0 considers only exact estimations, α = 0.5
considers the counter-beat estimations as correct5).

For a given track, the considered value of Tb is the minimum
value of Tb(ti) over time (the fastest annotated local tempo of the
track). The values given in the “table of results” correspond to

3The performances of the tempo and meter estimation algorithm of [8]
have been thoroughly evaluated in [8] and in the MIREX-2005 contest [14].

4Indeed a fixed PW of 0.166s would be restrictive for slow tempi (half-
beat duration of 0.5 at 60bpm) but will mean accepting counter-beat as
correct for fast tempi (half-beat duration of 0.166s at 180bpm).

5In case of binary subdivision of the beat.

the average (over all tracks of a test-set) of the Recall(PW=0.1),
Precision(PW=0.1) and F-measure(PW=0.1).

We have also computed for each test-set the average (over
all tracks of a test-set) curve of the F-measure versus Precision-
Window. This curve indicates the influence of the PW on the F-
measure. As a summary of this curve we give the Area Under this
Curve (AUC). Given that the maximum considered PW is 0.5, the
maximum possible value of the AUC is also 0.5. This is illustrated
in the left part of Figure 8.

Since this curve only represents average (over the tracks) val-
ues of the F-measure (it does not represent the spread over the
tracks), we also provide two other measures. For this we com-
pute the histogram of the values of the F-measure(PW=0.1) for
all the track of a given test-set. This histogram indicates the per-
centage of tracks having a specific F-measure(PW=0.1). This is
illustrated in the right-top part of Figure 8. From this histogram
we compute a cumulated-histogram. This cumulated-histogram
indicates the percentage of tracks having “at least” a specific F-
measure(PW=0.1). This is illustrated in the right-bottom part of
Figure 8. From this cumulated histogram we derive the two fol-
lowing measures:

1. percentage of tracks with F-measure(PW=0.1)≥ 50%,

2. Area Under Curve (AUC) of the cumulated-histogram.
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Figure 8: [Left part] Average curves of Recall(PW), Preci-
sion(PW) and F-measure(PW) versus Precision Window; [Right-
top part] Histogram of the F-measure(PW=0.1) values; [Right-
bottom part] Cumulated histogram of the F-measure(PW=0.1)
values; for the “PopRock extract” test-set and P-sola algorithm.

5.2. Test-set

For the evaluation, we have used the following four test-sets. The
“PopRock extract” is a collection of 155 major top-ten hits of the
past decades. Only 20s extract of the tracks are considered. The
annotations have been made by the author. The “RWC Popular
Music” [13] is a collection of 100 tracks in full-duration of Pop-
rock-ballad-heavy-metal popular music. The “RWC Jazz Music”
[13] is a collection of 50 tracks in full-duration of Jazz-music with
solo piano, guitar, small ensemble or modern-jazz orchestra. The
difficulty of this test-set comes from the complexity of the rhythms
used in Jazz-music. The “RWC Classical Music” [13] is a collec-
tion of 59 tracks in full-duration of Classical-music. The difficulty
of this test-set comes from the tempo variations used in Classical-
music. The annotations of the three RWC test-sets are provided by
the AIST [15].
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5.3. Beat-templates comparison

Before evaluating the beat-tracking, we first validate the assump-
tion that LDA-trained beat-templates provide a better discrimina-
tion between the “beat” and “non-beat” classes than usual beat-
templates. The usual beat-template considered here is composed
of values of 1 at the beat-positions and 0 otherwise (as in [3]).

In order to check this assumption, we compute the values of
the correlation between f(t) and g(t) when using the LDA-trained
or the usual beat-templates for g(t). From the correlation values,
we then compute the ratio r of the Between-Class-Inertia to the
Total-Inertia (the larger this ratio is, the best the separation is be-
tween the two classes beat and non-beat). In Figure 9, we give
as example the histogram of the correlation values when using as
training-set and test-set the RWC-Popular-Music (note that the y-
axis for the class “beat” has been reversed - negative y-values -
for better visualization). A larger separation is observed when
using the LDA. For this example, we obtain the following ratio:
rLDA = 0.73 and rusual = 0.54. We now test the generability of
our approach: training on a specific set A and testing on a differ-
ent set B. In Table 1, we indicate the various ratios r obtained. The
lower rows of the table gives for comparison the value r obtained
with the usual beat-template (which is independent of the training
set). In all cases, even when A 6= B, the discrimination is better
when using an LDA-trained beat-template. On average (over the
test-sets), the most generalizable LDA-trained beat-template is the
one trained on the RWC-Jazz-Music.
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Figure 9: Histogram of the values of the correlation using [top]
LDA-trained beat-templates g(n) [bottom] Usual beat-templates
for the two-classes “beat” and “non-beat”.

Table 1: Cross-database evaluation of the LDA-trained beat tem-
plate in comparison with the usual beat-template. Each cell repre-
sent the value of the ratio r.

5.4. Results and discussion

The results of the beat-marking evaluation are summarized in Ta-
ble 2. In this table we compare the results obtained with the P-sola
based algorithm and with several versions of the Viterbi algorithm.
For the Viterbi algorithm, three parameters must be fixed: - τ : the
correlation horizon for the reassignment of the time of the states,
- σ: the standard deviation for the transition probability between
states, - the choice of the beat-template. In Table 2, we show the
results obtained with the following parameters: τ = 32 and τ = 8,
σ = 0.02 and σ = 0.05. The choices of the beat-template are: a)
“LDA shared”: a beat-template created by manually analyzing the
shared properties of the various LDA-trained beat-templates over
test-sets, b) “LDA sam” a sampling at the sixteen notes of the LDA
beat-template trained specifically for each test-set, c) “LDA all” an
interpolation of the whole LDA beat-template (N = 64) trained
specifically for each test-set, d) “usual”: the “usual” beat-template
with value of 1 on-beats and 0 otherwise.

Table 2: Comparison of the P-sola and Viterbi based beat-tracking
algorithms on the four test-sets.

Variations among test-set: The performances are best for the
PopRock extract (FMeas=0.93) and RWC-Popular-Music (FMeas=0.85)
test-sets than for the more complex Jazz rhythms (FMeas=0.59) or
the time-variable tempi of Classical music (FMeas=0.43).

P-sola against Viterbi: Considering all criteria (all the columns
of the table) and all test-sets, the Viterbi method leads system-
atically to better results than the P-sola one. In particular, the
improvements of the F-Measure(PW=0.1) for the test-sets RWC-
Popular-Music (from FMeas=0.75 to 0.85), RWC-Jazz-Music (0.45
to 0.59) and Classical Music (0.38 to 0.43) are large. Consid-
ering that the values given in the table are only estimates of the
average F-measure, we perform a set of statistical tests (Student
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T-test) in order to decide on the statistical significance of these
differences. For this we test the H0 hypothesis that the average
F-measure(PW=0.1) are equal for the P-sola and Viterbi (τ = 8
and σ = 0.05) algorithms against the H1 hypothesis that they are
different. The results of the tests are that for the test-sets RWC
Popular-Music and RWC Popular-Jazz we can reject the null hy-
pothesis at a 5% significance level, i.e. there is a statistical signifi-
cance: the results are better with the Viterbi algorithm.

Best parameters for the Viterbi algorithm: All the results
obtained with the Viterbi approach are pretty close. On average
(over the test-sets), a slight improvement is obtained when using
the following parameters τ = 8 and σ = 0.05. This means that
using a larger horizon for state reassignment (τ = 8) and allowing
more marker-discontinuities (σ = 0.05) helps the algorithm. De-
spite the results obtained in part 5.3, the larger discrimination ob-
tained with the LDA-trained beat-templates seems of few uses for
the final beat-tracking problem. All beat-template methods give
very close results except for the Jazz-Music and Classical-Music
where, surprisingly, the usual beat-template performs slightly bet-
ter (from Fmeas=0.57 to 0.59 and from 0.4 to 0.43). This disap-
pointing result must be taken with care since the differences are
not statistically significant.

Discussions: The use of the proposed Viterbi method allows
to improve the beat-tracking estimation for all test-sets. Consider-
ing the difficulty of beat-tracking for Jazz and Classical music, this
result is particularly important. The Recall and Precision values
obtained for the Jazz (R=0.66 and P=0.55) and Classical (R=0.54
and P=0.38) test-sets indicates that a large part of the errors are
insertions errors. This is representative of an estimation of twice
the correct tempo (which was considered as an error in this study).
The use of LDA-trained beat-templates (over usual beat-templates)
allows to slightly improve the results for the PopRock extract test-
set. However, this is not the case for the Jazz and Classical test-
sets. This can be explained by the fact that using LDA-trained
beat-templates somehow assumes tracks with a specific constant
rhythm pattern. This is usually the case for pop-rock music but
surely not for Jazz and Classical music. Moreover for Classical
music, the main problem comes from rapid tempo changes (this
problem is partly solved using the proposed Viterbi method) rather
than ambiguities of rhythms.

6. CONCLUSION AND FUTURE WORKS

In this paper we have proposed two approaches for the beat-tracking
problem given time-variable tempo and meter as input: a P-sola
approach and a Viterbi approach. For the second approach we
have proposed to use a machine-learning method, the Linear Dis-
criminant Analysis, in order to estimate the best beat-template.
Measures of performances have been proposed and a large-scale
evaluation performed. In all cases, the results obtained using the
Viterbi approach were better than with the P-sola approach. A
statistical significance at 95% between the two methods has been
obtained for two test-sets over four. Concerning the choice of the
best parameters for the Viterbi approach, no statistically significant
differences have been observed. While the use of LDA-trained
beat-templates allows a better discrimination between the “beat”
and “non-beat” classes (whatever the training-set and the test-set
used), their use in the framework of beat-tracking do not change
the performances of the system. This point will be the subject of
future works. The performances given in this study were obtained
by evaluating the whole tempo, meter and beat-tracking system.

Considering the octave errors in our tempo estimation for the Jazz
and Classical music test-sets, future work will concentrate on eval-
uating the performance of the beat-tracking algorithm alone using
the exact annotated tempo and meter as input. Although the com-
putation time and the memory cost of the Viterbi method is higher
than for the P-sola method, this approach is particularly promising
since, apart from the better performances, the framework can eas-
ily be extended. Future works will therefore concentrate in adding
new types of observations probabilities in order to allow distin-
guishing the role of the various beat-numbers and hence the down-
beats among the succession of beat-numbers.
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