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ABSTRACT
In this work we propose a ”copy and scale”method based on
the 1-NN paradigm to estimate time-localized parameters
and apply it to the problem of beat-tracking. The 1-NN al-
gorithm consists in assigning the information of the closest
item of a pre-annotated database to an unknown target. It
can be viewed as a ”copy and paste”method. The “copy and
scale” method we propose consists in ”scaling” this informa-
tion to adapt it to the properties of the unknown target.
For this, we first represent the content of an audio signal
using a sampled and tempo-normalized complex DFT. This
representation is used as the vectors over which the 1-NN
search is performed. Along each vector of the 1-NN space,
we store the corresponding annotated beat-marker positions
in a normalized form. Once the closest vector is found, its
tempo is assigned to the unknown item and the normalized
beat-markers are scaled to this tempo in order to provide the
estimation of the unknown item beat-markers. We perform
a preliminary evaluation of this method and show that, with
such a simple method, we can achieve results comparable to
the ones obtained with sophisticated approaches.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Sound
and Music Computing

General Terms
Algorithms

1. INTRODUCTION
Music Information Retrieval from audio signal can be

roughly divided into two categories: - estimation of global
parameters (global meaning that the parameters is applica-
ble to the whole file duration, an example of this is the
music genre) - and estimation of local parameters (local
meaning that the parameters is time-localized, examples of
this are beat/downbeat, chord or pitch). Problems of the
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first category are usually solved using machine-learning ap-
proaches including the K-NN method. For K equal 1 (1-NN
method) the method can be viewed as a “copy and paste”
method, where the parameters (the music genre or music
mood class) of an unknown item are estimated by “copy-
ing and pasting” the parameters of the closest item of a
pre-annotated database. Problems of the second category
are usually solved using signal processing algorithm with-
out machine-learning techniques. In this work we propose
a ”copy and scale” method based on the 1-NN paradigm to
estimate local (time-localized) parameters and apply it to
the problem of beat-tracking.

Suppose we have a very large database of audio-items,
each one of them has been annotated with beat positions.
Suppose we want to annotate an unknown audio extract with
beat positions. The usual process is to run a beat-tracking
algorithm on it. However, one may think of using an audio
fingerprint technique to look if this extract is present in the
database, get the precise time position of it and then simply
“copy and paste”the annotated beat-markers of the database
to the unknown item. However, this would require a very
large data-set and require that the unknown audio extract
is part of the database items. However, instead of using an
audio fingerprint techniques (which implies an exact match
of timbre, harmony, instrument and production), we relax
the code to only highlight one of the specific aspect of the
content. For example, we define a code such that the dis-
tance between two audio items is small when they have the
same rhythmic pattern, tempo and are time-aligned. Then
any item in the database with a very small distance to the
unknown item can be used to provide the beat-markers of
it; even if it is different from the unknown item. The re-
quired database may still be very large. We further relax
the constraint on the code to provide small distances when
the “rhythmic pattern” are close; this independently of the
tempi and time-alignments. Then the required database can
be much smaller since we only require it to represent the di-
versity of rhythm patterns. Of course, because the matching
is not anymore complete (maybe the closest item has a dif-
ferent tempo and/or alignment) it may be necessary to re-
aligned and re-scale the beat-markers before copying them.
The code must provide the necessary information for this.

Paper content and organization: Starting from this,
we propose in this work, a method which allows to ap-
ply a K-NN approach (with K = 1) for the estimation of
time-localized information and apply it to the case of beat-
marker estimation. Instead of the usual “copy and paste”
approach underlying the 1-NN approach, we propose a“copy
and scale” approach.



The above mentioned distance between two items is ob-
tained by coding the items using a sampled and tempo-
normalized complex DFT. This code is said to be tempo-
independent, since any two audio items with similar rhythm
pattern but different tempo will have the same code (see [11]
for more details). This is obtained by normalizing the fre-
quencies by the tempo frequency. The inclusion of the
DFT imaginary part provides the information for the time-
alignment between any two sequences (through phase rela-
tionships). We describe this representation in part 2.1 and
2.2. A K-NN database of annotated audio item is created.
For each annotated item, we store its coded representation
which will be used to perform the search. Along each code
we store the time-localized M.I.R. information which will
be used to “copy and scale” the estimation to the unknown
item. We store the item’s tempo, rhythm class and time-
normalized markers. We explain this in part 2.3. For an
unknown item, we then extract a set of codes corresponding
to possible tempo assumptions. For each code, we perform
a search in the K-NN database using a complex distance.
We describe this in part 2.4. The tempo assumption and
the database-item providing the smallest distance are cho-
sen to provide the estimation of the unknown item param-
eters: tempo, rhythm class and beat-markers. We describe
this in part 2.5. We perform an evaluation on the“ballroom-
dancer” test-set using a Leave-One-Out approach. We de-
scribe this in part 3. We finally conclude in part 4.

Motivation for the present work: There exist numer-
ous beat-tracking and tempo-estimation methods, all based
on complex signal processing algorithms. Failures to detect
correctly the tempo and beat markers are mainly caused
by 1) weak onsets, 2) time-variable tempo and 3) complex
rhythm patterns (such as Latin music, African music). The
third cause is due to the lack of knowledge of these pat-
terns. It is of course possible to introduce on a case by case
this knowledge. The proposed approach may be though as
an easy way to introduce this knowledge on a large scale
without explicit models (K-NN does not use any models).

Related works: A large number of works related
to tempo estimation, beat-tracking or rhythm classification
have been published. We refer the reader to [5] or [9] for an
overview of recent approaches and/or results. Works which
are the most related to our work are the followings. In [4],
Eronen proposes to use a database of templates and a K-
NN-regression to find the best tempo of an unknown signal.
However, he does not deal with beat-tracking in this paper.
In [11], we show that rhythm classification can be achieved
with a high accuracy using solely the observation of the nor-
malized amplitude DFT. In [8] Grosche proposes to use the
phase of DFT spectrum to derive the beat-positions. Al-
though not directly related to our approach, we also mention
the work of Gouyon [6] who use machine-learning to classify
signal-frames into beat and non-beat classes. We didn’t find
any previous work concerning the use of K-NN for beat-
tracking, or concerning K-NN in the complex domain. We
therefore think that our proposed approach is novel.

2. PROPOSED APPROACH

2.1 Item representation
For a given audio item, we first extract an onset-energy-

function o(n) representing at each time the likelihood of
an onset. The method used for this is explained in [10].

The function has a sampling rate of 200.45Hz. We per-
form a Short Time Fourier Transform analysis of o(n) using
a window length of 8s and hop size 1s. We denote it by
Xk(o, ti), where i is the frame index and k is the index of
the Fourier frequencies fk. Considering a tempo frequency
b(ti) (expressed in Hz) over time ti, we sample the complex
spectrum Xk(o, ti) at the frequencies fk = b(ti) · fl with
fl = {l/4 : 1 ≤ l ≤ 32} ∪ {l/3 : 1 ≤ l ≤ 24}. These frequen-
cies represent the harmonic series corresponding to a 4/4
meter (b(ti)/4) and a 3/4 meter (b(ti)/3) up to 8b(ti). We
note Xl(o, b(ti), ti) the 48-dimensional complex vector rep-
resenting time ti for a tempo b(ti). Xl(o, b(ti), ti) is made
amplitude independent by normalizing it by its maximum
value over l.

2.2 Unknown item representation
In order to estimate tempo, beat and rhythm class for

an unknown item u at frame ti, we compute the set of
Xl(u, bq, ti) corresponding to a set of tempo hypothesis
bq ∈ {B}. If there are Q different tempo hypothesis, we
compute Q different representations Xl(u, bq, ti).

2.3 K-NN database construction
For a given audio item d, annotated into tempo over time

bd(tj), rhythm class cd and beat positions {τ}d, we compute
the corresponding complex vectors Xl(d, bd(tj), tj). For each
frame j of each item d, we store the 48-dimensions vector
Xl(d, bd(tj), tj) in the database and the corresponding an-
notated tempo bd(tj), rhythm class cd and the sub-set of
normalized beat positions {β}d,j .

Normalized beat positions {β}d,j : If we note sj and
ej the starting and ending time of frame tj , the subset {τ}d,j

of beat positions are the τd for which sj ≤ τd and τd ≤ ej .
The normalized subset is then defined as ({τ}d,j −sj) ·bd(tj)
and is noted {β}d,j . It represents the beat markers of item
d at frame j for a normalized beat frequency of 1Hz.

2.4 Search over the K-NN database
In order to estimate the parameters of a frame ti of an

unknown item u we perform a K-NN search. Since u is
represented by Q complex vectors Xl(u, bq , ti) (representing
the Q tempo assumptions bq), we perform Q searches. Given
that X is a complex vector the search is performed using a
distance in a complex space. For each of the Q complex
vectors Xl(u, bq, ti) representing a frame ti of item u we
compute its distance to each frame j of each item d of the
database. The search is performed with K=1, i.e. we only
consider the closest item of the K-NN search.

For the K-NN search, we tested several distances (we com-
pare them in part 3):

Euclidean distance between the modulus of Xl(u, bq , ti)
and Xl(d, bd, tj),

One-minus-cosine distance between the modulus of
Xl(u, bq, ti) and Xl(d, bd, tj),

Complex distance between Xl(u, bq, ti) and
Xl(d, bd, tj). The distance between the complex spec-
trum Xl and Yl is defined by d(X, Y, T ) =

X

l

q

A2

X(l) + A2

Y (l) − 2AX(l)AY (l) cos(ΦX(l) − ΦY (l, T ))

where A represents the modulus, Φ the phase, l the index in
the complex vector, and T the best lag between the temporal
signal x(t) and y(t) (corresponding to X(l) and Y (l)) which



minimizes the complex distance (maximizes the temporal
synchronization). For this, each member T of a set of lags
is tested and the phase spectrum of Y (l) each time modified
according to ΦY (l, T ) = ΦY (l)−2πflT . Because X(u)/X(d)
are independent of tempo, it is possible to compare two vec-
tors with different initial tempo (this wouldn’t be possible
using the correlation between temporal sequences). Another
advantage of a spectral computation of T (instead of a tem-
poral correlation computation) is the possibility to give dif-
ferent weights to the various frequencies l in order to em-
phasize some of them.

2.5 Copy and scale the parameters
The result of the search therefore provides the reference to

a frame j, item d, tempo assumption q and lag T which min-
imize the distance to (u, ti): (u, i) → (d, j, q, T ). Rhythm
class estimation: From the Nearest Neighbor (j, d), we
assign the rhythm class cd to the unknown item at frame ti.
Tempo estimation: The tempo assigned to the unknown
item at frame ti is bq (for the q minimizing the distance).
Beat-position estimation / de-normalized beat posi-
tions: The beat positions assigned to the unknown item
at frame ti are given by ({β}d,j + T )/bq for the q and T
minimizing the distance.

2.6 Optimization
A set of optimization has been performed in order to re-

duce the computation time of the search.
1. For {B} (the set of tempo-assumption for the un-

known item), we only consider a subset of tempo. For this

we perform a first tempo estimation, noted b̂(ti), using the
tempo estimation algorithm of [10], and we define, at each
frame ti, the set {B}i as the set of typical errors (1/3, 1/2,

1, 2, 3 the correct tempo) corresponding to b̂(ti). {B}i is

therefore defined as [1/3, 1/2, 1, 2, 3]̂b(ti).
2. Only the K-NN database item (d, j) which initial

tempo bd(j) is close to the candidate tempo bq are consid-
ered. The closeness is defined as log

2
(bd(j)/bq) < 0.3785.

3. Since the computation time of the complex distance
is high, the K-NN search is performed in two steps: 1) a
rough search using a normal Euclidean distance or One-
minus-cosine distance (therefore considering only the am-
plitude part of the DFT); 2) a fine search over the closest
item using the complex distance to find the best alignment
T between (u, bq, i) and the tope ranked item (d, j).

Computation time: For the evaluation of part 3, the
number of items of the 1-NN space is 10470. With the pro-
posed optimization, the average number of searches in the
database is 7491 (instead of (5*10470*0.9) and the average
cost per unknown item of the process (search, complex dis-
tance, scaling) is 270ms using Matlab, an Intel Core 2 Duo
2.39GHz (only one processor used), 2Go of RAM.

3. EVALUATION
We evaluate the performances of the proposed approach

for tempo estimation, rhythm classification and beat-
tracking. We test the applicability of the method • when
b = the ground-truth tempo for the computation of the un-
known item’s Xl(u, b, ti), • when b = the set of tempo as-
sumption {B} (the 5 tempo assumptions mentioned above)
for the computation of it. We also compare the results ob-
tained when using • the Euclidean distance (DE) and • the
One-minus-cosine distance (DC). We finally compare the re-

Table 1: Performance measures for classification,
tempo estimation and beat-tracking in the case of
known and unknown tempo using distance DE and
DC, frame-level and item-level decision.

sults obtained • at the frame level (the target is ti), and • at
the item level (the target is u). For the results at the item
level, we have used a late-fusion integration method, i.e.
the method is applied for all the frames ti of u and a deci-
sion is taken from the whole set of frames of u. For this, a
majority voting method is used for the classification and the
median value over the frame’s tempo is computed for tempo
estimation. The “late-fusion integration” cannot be applied
to the beat-tracking method. In all cases, we have used a
Leave-One-Out evaluation method, i.e. testing in turn each
frame ti of each item u as a target, and removing each time
all the frames belonging to u from the K-NN database.

3.1 Test-set
The evaluation is performed on the“ballroom dancer”test-

set (as was used for the ISMIR2004 tempo induction contest)
[7]. This test-set is often used for evaluation since it contains
music for which the music genre and the rhythm class are
closely related. It is composed of 698 tracks, each of 30 sec
long, representing the following music genre: ChaCha (111
instances), Jive (60), QuickStep (82), Rumba (98), Samba
(86), Tango (86), Viennese Waltz (65) and Slow Waltz (110).
Annotations of beat positions have been made by the author
and have been cross-checked several times.

3.2 Evaluation rules
The following rules are used for evaluation.
Classification: we have used the global accuracy (this

is meaningful since the test-set is not highly unbalanced);
Tempo estimation: we have used the measure pro-

posed by [7], i.e. we measure the number of tracks for which
the estimated tempo is within a 4% Tolerance Window of
the annotated tempo (without considering octave errors);

Beat-tracking: we have used the F-measure of Dixon [2]
and the Gaussian error function of Cemgil [1].

3.3 Results and discussion
The results are shown in Table 1. Using anno-

tated tempo (“Known tempo” column) for the creation of
Xl(u, b, ti) and an Euclidean distance (DE) leads to 82%
correct class recognition at the frame-level, 92% at the
item-level. This accuracy slightly increases when using the
One-minus-cosine distance (DC): 82.6% and 93.1%. As in
many studies, we obtain better results using the One-minus-
cosine distance than using the Euclidean distance.The beat-
tracking performances (only applicable at the frame-level)



are: 73.7% for the F-measure and 64.9% for Cemgil scores
using DE. They also slightly increase when using DC: 74%
and 65.2%. When considering only the frames for which the
class has been correctly detected (“Beat (filter class)” row),
i.e. the 82% remaining frames for DE and 82.6% for DC, the
scores increases to 75.8% / 67.2% for DE and 76% / 67.3%
for DC. Using estimated tempo (“Unknown tempo” col-
umn) for the creation of the Q = 5 versions of Xl(u, bq , ti)
and an Euclidean distance (DE) leads to 52.9% correct class
recognition at the frame-level, 58.3% at the item-level. This
accuracy largely increases when using the One-minus-cosine
distance (DC): 59.1% and 65.8%. Tempo is correctly es-
timated at 60.4% at the frame-level and at 61.5% at the
item-level using DE; at 66.8% at the frame-level and 67.6%
at the item-level using DC. Remark that these results are
above the ones obtained with the input tempo [10] (65.3%).
The beat-tracking performances (only applicable at the
frame-level) are: 69.3% F-measure and 60.4% for Cemgil
scores using DE. They also slightly increase when using DC:
70.8% and 61.8%.

When considering only the tracks for which the class has
been correctly identified (“Tempo (filter class)” row), i.e. the
59.07% remaining frames or the 65.76% remaining items, we
obtain the following results for Tempo using DC: 97.9% at
the frame-level 95.9% at the item level. It means that, if
the class is correctly identified, the proposed approach suc-
ceeds to estimate the correct version of Xl(u, bq, ti) among
the Q = 5 versions in 98% of the cases. This very high
recognition rate has to be compared with the one obtained
on the same tracks (the ones correctly classified) by the al-
gorithm used for estimating the input tempo [10]: 60.3%
and 59.5%. We therefore think that improving the classifi-
cation part of our approach could lead to a very good post-
processing for tempo estimation algorithms. For the frames/
items for which the class has been correctly identified (“Beat
(filter class)” row), the performance of the beat-tracking
are 81.2% (F-measure) and 72% (Cemgil score) using DC.

We finally study the performance of the beat-tracking
when considering only frames for which the class and the
tempo have been correctly identified, i.e are within the 4%
Tolerance Window (“Beat (filter class tempo)” row): 82.3%
(F-measure) and 73.1% (Cemgil score) using DC. Given that
the tempo accuracy is very high when the class is correct,
adding a correct tempo filter makes little differences.

3.4 Comparison with previous results
Concerning beat-tracking, there is no previously pub-

lished results on the “ballroom dancer” test-sets. Concern-
ing tempo estimation, previous published results are in
the ISMIR-2004 tempo induction contest [7]: 63.2% (ex-
cluding octave errors) / 92% (including octave errors) and
in our paper [10]: 68.7% and 96.9%. The results obtained
here (67.62% excluding octave errors) can therefore be con-
sidered as nearly equivalent with the ones obtained with
dedicated signal processing algorithms. Concerning classi-
fication into rhythm classes, [3] obtained 85.7% track-based
classification, we obtained 88% in [11]. Results obtained
here (65.76%) with a 1-NN approach are therefore lower
than the ones obtained in [11] with an AdaBoost classifier.
Considering that the classification part our system can be
improved (up to 88%) and considering that, for the part of
correctly classified items our system reached 97.88% correct
tempo estimation, one could therefore potentially reach a
87% correct tempo estimation (97.88% times 88%).

4. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a new“copy and scale”method

for estimating M.I.R. time-localized parameters. It relies on
the use of complex spectrum as observation and a simple
1-NN with a distance in the complex domain. We apply
this method for the case of beat-marker, tempo and rhythm
classification. Using this direct approach on the “ballroom
dancer” test-set, a classification accuracy of 65.8%, a tempo
precision of 67.6% and a beat-tracking precision (F-measure)
of 70.8% are obtained. Analysis of the results show that con-
sidering only the correctly classified frames leads to 97.9%
tempo precision and 83.6% beat-tracking precision. The re-
sults presented here should only be considered as a proof of
concept of our method. However, since the performances of
each part of the proposed approach can easely be improved
(using K-NN regression for tempo [4], sophisticated machine
learning for rhythm classification [11] or introducing tempo-
ral continuity constraints in the decision), we believe this
approach is promising.
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