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Abstract

In this work we propose a ”copy and scale” method
based on a Nearest Neighbor paradigm to estimate
time-localized parameters and apply it to the prob-
lem of beat-tracking. The Nearest Neighbor algo-
rithm consists in assigning the information of the
closest item of a pre-annotated database to an un-
known target. It can be viewed as a ”copy and
paste” method. The “copy and scale” method we
propose consists in ”scaling” this information to
adapt it to the properties of the unknown target.
In order to represent time-location, we represent
the content of an audio signal using a sampled
and tempo-normalized complex DFT of its onset-
energy-function. This representation is used as the
code over which the Nearest Neighbor search is per-
formed. Along each code of the Nearest Neighbor
space, we store the corresponding annotated beat-
marker positions in a normalized form. A search
is then performed for a set of tempo assumptions.
Once the closest code and best tempo assumption
are found, the normalized beat-markers of the clos-
est item are scaled to this tempo in order to provide
the estimation of the beat-markers of the unknown
item. We perform a preliminary evaluation of this
method and show that, with such a simple method,
we can achieve results comparable to the ones ob-
tained with sophisticated approaches.

1 Introduction

Music Information Retrieval from audio signal can
be roughly divided into two categories: - estima-
tion of global parameters (global meaning that the

parameters is applicable to the whole file duration,
an example of this is the music genre) - and esti-
mation of local parameters (local meaning that the
parameters is time-localized, examples of this are
beat/downbeat, onset or pitch; which take place at
specific time positions).

Problems of the first category are usually solved
using machine-learning approaches including the
K-Nearest Neighbor (K-NN) method. For K equal
1 (Nearest Neighbor method) the method can be
viewed as a “copy and paste” method, where the
parameters (for example the music genre) of an un-
known item are estimated by “copying and past-
ing” the parameters of the closest item of a pre-
annotated database. Problems of the second cate-
gory are usually solved using signal processing al-
gorithms without the use of machine-learning tech-
niques. In this work we propose a ”copy and scale”
method based on a Nearest Neighbor paradigm to
estimate local (time-localized) parameters and ap-
ply it to the problem of beat-tracking.

Suppose we have a very large database of audio-
items, each one of them has been annotated into
beat positions. Suppose we want to estimate the
beat positions of an unknown audio extract. The
usual process is to run a beat-tracking algorithm
on it. However, one may think of using an au-
dio fingerprint technique to look if this extract is
present in the pre-annotated database, get the pre-
cise time position of it and then simply “copy and
paste” the annotated beat-markers of the database
to the unknown item. However, this would require
a very large database and require that the unknown
audio extract is part of the database items. How-
ever, instead of using an audio fingerprint technique
(which implies an exact match of timbre, rhythm,
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harmony, instrument and production), we relax the
code to only highlight one of the specific aspects
of the content. For example, we define a code
such that the distance between two audio items is
small when they have the same rhythmic pattern,
tempo and are time-aligned. Then any item in the
database with a very small distance to the unknown
item can be used to provide the beat-markers of
it; even if this item is different from the unknown
item. The required database may still be very
large. We further relax the constraint on the code
to provide small distances when the ”rhythmic pat-
terns” are close; this, independently of the tempi
and time-alignments. Then the required database
can be much smaller (since we only require it to
represent the diversity of rhythmic patterns). Of
course, because the matching is not anymore com-
plete (maybe the closest item has a different tempo
and/or alignment) it may be necessary to re-aligned
and re-scale the beat-markers before copying them.
The code must provide the necessary information
for this.

1.1 Paper content and organization

Starting from this, we propose in this work, a
method that allows applying a Nearest Neighbor
(NN) approach for the estimation of time-localized
information and apply it to the case of beat-marker
estimation. Instead of the usual “copy and paste”
approach underlying the NN approach, we propose
a “copy and scale” approach.

The above-mentioned distance between two
items is obtained by coding the items using a sam-
pled and tempo-normalized complex DFT of their
onset-energy-function. This code is said to be
tempo-independent, since any two audio items with
similar rhythmic pattern but different tempo will
have the same code (see [29] for more details). This
is obtained by normalizing the frequencies of the
DFT by the one of the tempo. The inclusion of the
DFT phase part provides the necessary informa-
tion for time-alignment between any two sequences
(through phase relationships). We describe this
representation in part 2.1 and 2.2. A NN database
of annotated audio item is created. For each anno-
tated item, we store its coded representation, which
will be used to perform the search. Along each code
we store the time-localized annotations which will
be “copied and scaled” to provide the estimation of

the unknown item parameters. For this, we store
the item’s tempo, rhythm class1 and beat-marker
positions in a time-normalized form. We explain
this in part 2.3. For a known item, the code cor-
responding to the annotated tempo is computed
(part 2.2.1). For an unknown item, a set of codes
corresponding to a set of tempo assumptions are
computed (part 2.2.2). For each code of this set,
we perform a search in the NN database using a
complex distance. We describe this in part 2.4.
The tempo assumption and the database-item pro-
viding the smallest distance are chosen to provide
the estimation of the unknown item parameters:
tempo, rhythm class and beat-markers. For this,
the NN beat-markers are de-normalized according
to the estimated tempo. This is the ”scale” part
of the ”copy and scale”. We describe this in part
2.5. In part 3, we propose optimizations of the
method and provide figures related to its computa-
tion time. In part 4, we present the results of an
evaluation on the “ballroom-dancer” test-set using
a Leave-One-Out approach. The results obtained
in this primary study show the applicability of the
proposed approach. We finally conclude in part 5.

We summarize the various steps of the proposed
method in Figure 1.
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Figure 1: Training and evaluation part of the
”copy and scale” method for tempo, class and beat-
tracking estimation.

1In the following, the term “rhythm class” refers to the
grouping of items into classes according to their temporal
rhythmic pattern (such as the classes provided by the “ball-
room dancer” test-set).
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1.2 Motivations for the present work

There exist numerous beat-tracking and tempo-
estimation methods, all based on sophisticated sig-
nal processing algorithms. Failures to detect cor-
rectly the tempo and beat markers are mainly
caused by 1) weak onsets, 2) time-variable tempo
and 3) complex rhythmic patterns (such as in Latin
or African music). The third cause is due to the
lack of knowledge of these patterns. It is of course
possible to introduce this knowledge on a case by
case. The proposed approach based on a Nearest
Neighbor (NN) paradigm allows to introduce this
knowledge on a large scale without explicit models
(NN does not use any models).

1.3 Related works

We summarize here the main trends in the fields of
tempo-estimation, beat-tracking and rhythm clas-
sification. We refer the reader to [12] or [25] for
more details on recent approaches and/or results.

Tempo estimation algorithms can be first clas-
sified according to the analyzed materials: - sym-
bolic data or - audio data. Algorithms based on au-
dio data analysis usually start by a front-end which
either - plays the role of an “audio-to-symbolic”
translator [22] [11], - or extracts frame-based au-
dio features such as energy or energy variations
[32] [26] [23]. Depending on the kind of infor-
mation provided by this front-end and the con-
text of the application, a large variety of pro-
cesses are used to track/estimate the tempo: -
time interval histograms [4] [15], - periodicity mea-
sure (Fourier transform, auto-correlation function,
narrowed-ACF, wavelets, comb filter-bank). The
periodicity measure is then used - to estimate di-
rectly the tempo - or to serve as observation for the
estimation of the whole metrical structure through
(probabilistic) models [23] [11] [24]. Some authors
also propose the use of templates for tempo esti-
mation - in the time/phase domain [24] [23] [34], -
or in the spectral domain [27].

Beat-tracking methods can be roughly classi-
fied according to the front-end of the model: -
discrete onset representation [11], - or continuous-
valued onset function [32] [23] [3]. They can also
be classified according to the model used for the
tracking: - multi-agents model [11] [5], - use of res-
onating comb-filers [32] [21], - probabilistic formu-

lations [23] [1] [18] [24] [8] [3]. Recent approaches
succeed to use directly the phase information to
derive beat-phases [7] [17].

For rhythm classification, the proposed meth-
ods mainly differ on: - the type of information being
represented (event positions, acoustical character-
istics of the events, or both), - and the way they
are represented (sequence of events, histogram, pro-
files, evolution). Foote [10] proposes the use of a
beat spectrum. Tzanetakis [33] proposes the use of
a beat histogram from which various features are
derived. Paulus [26] models the rhythm charac-
teristics as a sequence of audio features and uses
DTW to compute the distance between two se-
quences. Gouyon’s [13] tests a set of 73 features de-
rived from the tempo, a periodicity histogram and
the Inter-Onset-Interval Histogram to characterize
the rhythm. Dixon [6] adds to Gouyon features a
representation of the temporal rhythmic patterns
derived from the energy evolution of the signal in-
side each bar. Holzapfel [19] proposes the use of
Dynamic Periodicity Warping (DPW) to compute
rhythmic similarity; or in [20], the use of the Melin
Transform (MT) to provide a scale and tempo in-
dependent rhythm representation.

Works which are the most related to our work,
are the followings. In [9], Eronen proposes to use
a database of templates and a K-NN-regression to
find the best tempo of an unknown signal. While
we also use templates, those are complex-valued in
our case. While we also use K-NN, our tempo as-
signment method is very different. Finally, [9] does
not deal at all with time-localized information such
as beat-markers. In [29], we show that rhythm clas-
sification can be achieved with a high accuracy us-
ing solely the observation of the normalized am-
plitude DFT of an onset-energy-function. We will
use here the complex DFT. In [17], Grosche pro-
poses to use the phase of DFT spectrum to de-
rive the beat-positions. [17] doesn’t use templates
or machine learning2. We didn’t find any previ-
ous work concerning the use of Nearest Neighbor
for beat-tracking, or concerning its use in the com-
plex domain. We therefore think that our proposed
approach is novel.

2Although not directly related to our approach, we also
mention the work of Gouyon [14] who use machine-learning
to classify signal-frames into beat and non-beat classes.

3



Au
th
or
m
an
us
cr
ip
t

Journal of New Music Research - Special Issue on Music and Machine Learning - 40 (2) 2011

2 Proposed approach

2.1 Complex spectral representation

In our method, each audio item is represented by
a complex spectral representation which is used as
the search code. The flowchart of its computation
is indicated in Figure 2.

For a given audio item, we first extract an onset-
energy-function o(n), representing at each time n
the likelihood of an onset, using the method ex-
plained in [27]. This function has a sampling rate
of 200.45Hz. We perform a Short Time Fourier
Transform analysis of o(n) using a rectangular win-
dow of 8s duration3 with a hop size of 1s. We
denote it by Xk(o, ti), where i is the frame in-
dex and k the index of the Fourier frequencies fk.
Considering a tempo frequency b(ti) (expressed in
Hz) over time ti, we sample the complex spectrum
Xk(o, ti) at the frequencies fk = b(ti) · fl with
fl = { l

4 : 1 ≤ l ≤ 32}∪ { l
3 : 1 ≤ l ≤ 24}. These fre-

quencies represent the harmonic series correspond-

ing to a 4/4 meter
(

b(ti)
4

)
and a 3/4 meter

(
b(ti)

3

)
up to 8b(ti). We denote by Xl(o, b(ti), ti) the 48-
dimensional complex vector representing time ti for
a tempo b(ti). Xl(o, b(ti), ti) is made amplitude in-
dependent by normalizing it by its maximum value
over l. The onset-energy-function o(n) around time
ti is therefore represented by a sum of L complex
components:

ô(n) = <

(∑
l

Xl(o, b(ti), ti)e
jΩl

n
sr

)
=
∑
l

Al(o, b(ti), ti) cos
(

Ωl
n

sr
+ Φl(o, b(ti), ti)

)
(1)

where we denote by Al and Φl the modulus and
phase of the complex Xl, by Ωl = 2πb(ti)fl the
frequencies in radian and by sr the sampling rate
(200.45Hz in our case). The three main advantages
of using this complex representation are: 1) the
representation is compact: an 8s signal (1600 sam-
ples) is represented using only 48*2 values, hence
the storage in the NN database is reduced; 2) the
use of the phase part allows to represent the time-
location of the events occurring in o(n), hence it

3The window length is chosen in order to achieve good
spectral resolution between the harmonics of the bar fre-
quency for tempi down to 60bpm in a 4/4 meter.

allows us to perform alignment of two codes; 3) it
allows a better modeling of the signal o(n) than the
one obtained using an amplitude-only based model
(using only Al without phase)4.
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Figure 2: Flowchart of the computation of the
complex spectral representation used as the search
code.

It should be noted that the code Xl does not
contain information about tempo. This code only
depends on the rhythmic pattern of the audio item.
Therefore if Track-A and Track-B have the same
rhythmic patterns (but different tempo or starting
time) then Code-A and Code-B will be equal. It
should be noted also that the position of the beat-
markers are specific to the rhythmic pattern, their
inter-distances depend on the tempo and the start
of their sequence depends on the signal relative po-
sition. Therefore, if Code-A=Code-B (i.e. the two
tracks have similar rhythmic patterns), then we can
use the beat-markers of A to get the ones of B. We
need of course to re-align them to synchronize the
respective start of their sequences and to re-scale
them to their corresponding tempi.

2.2 Item representation

The representation of a given audio item using the
proposed complex-code necessitates the knowledge
of the tempo b(ti). We here distinguish the compu-
tation of the code • for known-items (the ones used

4If we define the modeling error as ε = [
∑

n(o(n) −
ô(n))2]/[

∑
n o(n)2], the average ε obtained on the test-set

of part 4 is • ε = 0.4187 using Xl and • ε = 1.6223 using Al.
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for the creation of the NN database) for which the
tempo is known (from annotation); • for unknown-
items (the items for which we want to estimate the
parameters) for which the tempo is unknown (it is
one of the parameters to estimate).

2.2.1 Known item representation

For a given known audio item d, annotated into
tempo over time bd(tj), we compute the complex
code using b(tj) = bd(tj) to yield Xl(d, bd(tj), tj).
For each frame j of each item d, we store the 48-
dimensions complex vector Xl(d, bd(tj), ti) in the
NN database.

2.2.2 Unknown item representation

In order to compute the complex code of an un-
known audio item (therefore with unknown tempo),
we make a set of tempo assumptions bq ∈ {B},
where {B} is the set of tempo assumptions. For
each of these tempo assumptions we compute the
complex code using b(ti) = bq to yield Xl(u, bq, ti).
If there areQ different tempo assumptions, we com-
pute Q different representations Xl(u, bq, tj). The
set of tempo assumptions can be taken by sampling
the frequencies between a minimum and a maxi-
mum tempo frequency. For each of these tempo
assumptions bq, we will compare the corresponding
code Xl(u, bq, ti) to all the codes contained in the
NN database. The bq leading to the closest NN
item will define the best tempo for the unknown
item.

2.3 NN database construction

For a given audio item d at frame tj , annotated
into tempo over time bd(tj), rhythm class cd and
beat positions {a}d, we store in the NN database
- the 48-dimensions complex-code Xl(d, bd(tj), tj)
- the corresponding annotated tempo bd(tj), - the
rhythm class cd and - the sub-set of normalized beat
positions {α}d,j .

2.3.1 Normalized beat positions {α}d,j
If we note sj and ej the starting and ending time
of frame tj , the subset {a}d,j of beat positions is
made of the ad for which sj ≤ ad and ad ≤ ej . The
normalized subset is then defined as ({a}d,j − sj) ·
bd(tj) and is noted {α}d,j . It represents the beat

markers of item d at frame j for a normalized beat
frequency of 1Hz. This process is illustrated in the
upper part of Figure 3.

Figure 3: Computation of normalized (upper part)
and de-normalized (lower-part) beat-markers

Algorithm 1 summarizes the various steps for the
NN database construction. The variable definitions
are summarized in Table 1.

Algorithm 1 NN database construction

for all known items d of known rhythm class
cd, known tempo bd(tj) over time-frame tj and
known beat-markers {a}d do

for all frame tj do
Compute the complex spectrum Xk(d, tj) at
frame tj
Compute the complex code Xl(d, bd(tj), tj)
Compute the normalized beat-marker posi-
tions {α}d,j = ({a}d,j − sj) · bd(tj)
Add a new entry in the NN database with
Xl(d, bd(tj), tj), cd, bd(tj) and {α}d,j

end for
end for

2.4 Search over the NN database

In order to estimate the parameters of a frame ti
of an unknown item u we perform a Nearest Neigh-
bor search. Since (u, ti) is represented by Q com-
plex code Xl(u, bq, ti) (representing the Q tempo

5
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Variable Definition

o(n) onset-energy-function over sample n
u an unknown item
d a known item of the NN database

Xk(o, ti) complex spectrum of o(n) around
time ti and at frequency k

fk frequency [in Hz]
ti,tj time of frame i, j [in seconds]
si,ei starting and ending time of frame i
Xl(o, b, ti) sampled and tempo-normalized

complex template considering a
tempo b and a frame ti

fl normalized frequencies: fl = { l
4 :

1 ≤ l ≤ 32} ∪ { l
3 : 1 ≤ l ≤ 24}.

The frequencies fk of Xk which are
sampled to create Xl are: b · fl

l ∈ [1, 48] index of normalized frequencies

b(ti) tempo at time ti [in Hz]
bd(ti) annotated tempo at time ti
bq ∈ {B} one tempo assumption [in Hz]
{B} the set of tempo assumptions

cu, cd class of item u, of item d

{a}d beat-marker positions of item d [in
seconds]

{a}d,i sub-set of {a}d for markers belong-
ing to the frame ti

{α}d,i normalized version of {a}d,i

Table 1: Variable definitions for the ”copy and
scale” algorithm.

assumptions bq), we perform Q searches. Given
that Xl is a complex code the search is performed
using a distance in a complex space. For each
search, we compute the distances between one of
the Q complex code Xl(u, bq, ti) and all the codes
Xl(d, bd(tj), tj) of the NN database (representing
all the frames j of all the items d). We then per-
form a Nearest Neighbor search5.

In we denote by U(l) = Xl(u, bq, ti) the code of
the unknown item and by D(l) = Xl(d, bd(tj), tj)
one of the database items, the Complex distance

5The method could be extended to a K-Nearest Neighbor
search with K > 1. Because we did not find so far a proper
way to deal with several results of beat-marker positions, we
limit here our method to a Nearest Neighbor search.

between U and D can be defined as

dCP (U,D, T ) =

√∑
l

d2
l (U,D, T ) (2)

where

d2
l (U,D, T ) = A2

U (l) +A2
D(l)

− 2AU (l)AD(l) cos(ΦU (l)− ΦD(l, T ))
(3)

where AX represents the modulus of the complex
X, ΦX its phase, l the index in the complex vector,
and T the best lag between the temporal signal
u(n) and d(n) (corresponding to U(l) and D(l)).
The best lag is the one that minimizes the com-
plex distance (maximizes the temporal synchro-
nization). For this, each member T of a set of
lags is tested and the phase spectrum of D(l) mod-
ified according to ΦD(l, T ) = ΦD(l) − 2πflT . Be-
cause U and D are independent of tempo, it is
possible to compare two codes representing signal
with different initial tempo (this wouldn’t be pos-
sible using the correlation between temporal se-
quences). Other advantages of this spectral com-
putation (over a temporal correlation computation)
are: - the possibility to pre-compute the phase in-
crements (because the frequencies fl are known in
advance) - the possibility to give different weights
to the various frequencies l in order to emphasize
some of them.

Because the computation time of the complex
distance is high, in part 4 we will test a config-
uration of our method in which a rough search
is first made using an Euclidean or a One-minus-
cosine distance, then the fine search using the Com-
plex distance is only performed on the closet item.
In this case the Euclidean dE and the One-minus-
cosine dC distance between the modulus of U and
D are defined by

dE(U,D) =

√∑
l

(AU (l)−AD(l))2

dC(U,D) = 1−
∑

lAU (l)AD(l)√∑
lA

2
U (l)

√∑
lA

2
D(l)

(4)

2.5 Copy and scale the parameters

The result of the search over the NN database pro-
vides the reference to an item d, a frame j, a tempo
assumption q and a lag T which minimize the dis-
tance to (u, ti): (u, ti)→ (d, tj , q, T ).
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Rhythm class estimation: We assign the
rhythm class of the closet item d to the
unknown item at frame ti: cu,ti = cd.

Tempo estimation: The tempo assigned to the
unknown item at frame ti is the best tempo
assumption bq (for the q minimizing the dis-
tance): bu(ti) = bq

6.

Beat-position estimation: The normalized
beat-markers {α}d,j of (d, tj) are used to get
the beat-markers of (u, ti). This is obtained
after a de-normalization part, which is the
”scale” part of our method. For the q and T
minimizing the distance, the beat positions
assigned to the unknown item at frame ti are
given by {a}u,i = ({α}d,j + T )/bq. This is
illustrated in the lower part of Figure 3.

Algorithm 2 summarizes the various steps of the
search over the NN database and of the ”copy and
scale” of the parameters. The variable definitions
are summarized in Table 1.

Comments on time-varying tempo: In the
case of time-varying tempo, computing the DFT of
o(n) is equivalent to compute the DFT of a signal
with time-varying frequency. As explained in [31],
the consequence of this is a widening of the main-
lobes of the DFT amplitude and a curvature of the
corresponding DFT phase. The proposed complex-
code does not allow representing this and will pro-
vide the code corresponding to the average tempo
over the analysis window. Also, the use of a single
frequency bd(tj) to sample the DFT and the beat-
markers over the whole frame, does not take into
account time-varying tempo. One possible solution
to this, would be to reduce the length of the anal-
ysis window over which the DFT is computed in
oder to approximate local parameter stationarity.

6It should be noted that this a major difference with the
method proposed by [9] which would have assigned a tempo
value based on a regression over the tempi of the closest K-
Nearest Neighbor items. During our experiments, we found
that the choice bu(ti) = bq (our choice) leads to a 15% in-
crease in tempo precision over the choice bu(ti) = bd(tj)
(which would have been Eronen’s choice for the case K = 1).

Algorithm 2 Search over the NN database and
”copy and scale” of the parameters

for all unknown item u do
for all frame ti do

Compute the complex spectrum Xk(u, ti) at
frame ti
for all tempo assumptions bq ∈ {B} do

Compute the complex code Xl(u, bq, ti)
Search over the Nearest Neighbor
database the closest Xl(d, bd(tj), tj)
Store the information of the closest item
to (u, ti, bq) and the best alignment T :
(u, ti, bq)→ (d, tj , T )

end for
Choose the minimum distance over the bq.
The results is: item d at frame tj with lag T
with tempo assumption bq
assign class: cu = cd
assign tempo: bu(ti) = bq
assign beat-markers: {a}u,i = ({α}d,j +
T )/bq

end for
end for

3 Implementation

3.1 Optimizations

A set of optimizations have been performed in order
to reduce the computation time of the search.

1. For a given tempo assumption bq, we only
consider the items (d, tj) of the NN database which
have an initial tempo bd(tj) close to bq. The close-
ness is defined as | log2(bd(tj)/bq)| < 0.37857. The
goal of this is not only to reduce the number of
comparisons but also to avoid using codes of the
NN database largely outside their initial context
(defined by the tempo).

2. Since the computation time of the Complex
distance is high, the NN search can be speeded up
by performing it in two steps: 1) a rough search
using an Euclidean distance or a One-minus-cosine
distance (therefore considering only the amplitude
part of the code); 2) a fine search over the clos-
est item using the Complex distance to find the
best alignment T between (u, bq, ti) and the top-
ranked item (d, tj). In part 4, we will compare the

7For example for bq = 100, we consider all the items
(d, tj) which have a tempo ranging from 77 to 130 bpm

7



Au
th
or
m
an
us
cr
ip
t

Journal of New Music Research - Special Issue on Music and Machine Learning - 40 (2) 2011

results obtained when using the Euclidean or One-
minus-cosine distance before the Complex distance
or when using solely the Complex distance.

3. In part 4, we will also compare the results
obtained with two different set of tempo assump-
tions. The first set {B} is the whole set of tempi.
We test 321 candidate tempi representing all the
possible tempi between 60 and 220 bpm with a
step of 0.5 bpm. In this case, each frame ti of
an unknown item u is represented by Q = 321
complex vectors. The second set {B} is a re-
duced set based on the output of a front-end tempo-
estimation algorithm. The tempo estimation algo-
rithm we used is the one described in [27]. We

denote it by b̂(ti). We then define {B}i as the set
of typical octave errors of tempo-estimation algo-
rithms (1/3, 1/2, 1, 2, 3 times the correct tempo).
The reduced set at time ti is therefore defined as
{B}i = [1/3, 1/2, 1, 2, 3] b̂(ti). In this case, each
frame ti of an unknown item u is represented by
Q = 5 complex vectors.

3.2 Computation time

For the evaluation of part 4, the number of items
of the Nearest Neighbor database is 10470. We
indicate here the computation time obtained us-
ing an Intel R©Xeon R©CPU 2.4GHz (only one pro-
cessor used) with 24.6GB of RAM. The computa-
tion time depends on the configuration of the sys-
tem (number of candidate tempi, distance used)
and also depends on the distribution of the Near-
est Neighbor database8. In Table 2, we indicate the
average number of searches and the corresponding
computation time for processing one frame (includ-
ing search, alignment and scaling) for each config-
uration (choice of Q) and type of distance (using
the Euclidean or One-minus-cosine distance before
the Complex distance or using solely the Complex
distance).

4 Evaluation

In this part we evaluate the performances of the
proposed approach for tempo estimation, rhythm

8When using the first optimization, the number of
searches depends of the tempo distribution of the NN
database.

Q Nb
searches

Computation Time in seconds

Euclidean
dist.

Cosine
dist.

Complex
dist.

1 4827 0.012 s 0.015 s 26.92 s
5 8480 0.021 s 0.026 s 39.89s
321 1 303 699 2.48 s 2.96 s -

Table 2: Number of searches and computation time
per frame for various configurations of the ”copy
and scale” method.

classification and beat-tracking using various con-
figurations of our system. It should be noted that
the estimation of the three parameters are obtained
at the same time based on the closest item found
in the NN database.

4.1 Test-set

The evaluation is performed on the “ballroom
dancer” test-set (as was used for the ISMIR2004
tempo induction contest) [16]9. This test-set is
often used for evaluation since it contains music
for which the music genre and the rhythm class
are closely related. It is composed of 698 tracks,
each of 30 s long, representing the following music
genre: ChaCha (111 instances), Jive (60), Quick-
Step (82), Rumba (98), Samba (86), Tango (86),
Viennese Waltz (65) and Slow Waltz (110). Anno-
tations into beat positions have been made by the
author and have been cross-checked several times.

4.2 Evaluation rules

In order to evaluate the classification perfor-
mances, we have used the global class accuracy
(this is meaningful since the test-set is not highly
unbalanced).

In order to evaluate the tempo precisions, we
have used the measure proposed by [16], i.e. we
measure the number of frames/ items for which the
estimated tempo is within a 4% Tolerance Window
of the annotated tempo. It should be noted that
we do not consider octave detection as correct in
this study10.

9The other MIREX test-sets are not available for testing
outside the MIREX framework.

10Estimating one third, half, twice or three times the an-
notated tempo is not considered as correct in this study.
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In order to evaluate the beat-tracking perfor-
mances, we have used the F-measure proposed by
Dixon [5] and the Gaussian error function proposed
by Cemgil [2]11.

4.3 Configurations

We first compare various definitions of the set of
tempo assumptions {B}.

Known Tempo (Q=1): {B} is the annotated
tempo. In this case, Q = 1 and the complex-
search-code of u is correct. We therefore test
the upper bound of the performances of our
system.

Unknown Tempo (Q=5): {B} is the reduced
set of Q = 5 tempo assumptions defined by
the tempo-estimation front-end.

Unknown Tempo (Q=321): {B} is the whole
set of Q = 321 tempo assumptions ranging
from 60 to 220 bpm) without using any front-
end.

We then compare the distances used to perform
the search:

dE: the Euclidean distance is used to perform the
rough search before the Complex distance.

dC: the One-minus-cosine distance is used in-
stead.

dCP: the Complex distance is used to perform
the whole search. Because of computation
time, not all configurations are tested with this
distance.

For comparison, we indicate in the ”IB” rows the
performances obtained using a dedicated tempo/
beat-tracking estimation system12.

We finally compare the results obtained at the

Frame level: the target is ti,

11We have used the implementation of these criteria as
provided by M. Davies in the evalbeat toolbox http://
www.elec.qmul.ac.uk/ digitalmusic/downloads/ beateval/
beateval.zip.

12We have use the ircambeat software [27] [30]. This
tempo/ beat-tracking system has been positively evaluated
in the MIREX-09 and MIREX-10 contests.

Item level: the target is u hence all the frames
ti belonging to u. For the results at the item
level, we have used a late-fusion integration
method, i.e. the method is applied for all the
frames ti of u and a decision is taken from the
whole set of frames of u. The average number
of frames ti for an item u is 15. For deciding on
the item class, we have used a majority voting
method among the frame’s classes. For decid-
ing on the item tempo, we have used the me-
dian value over the frame’s tempi. The “late-
fusion integration” cannot be applied to the
beat-tracking method. For beat-tracking, we
therefore only present the results at the frame
level.

In all cases, we have used a Leave-One-Out eval-
uation method, i.e. we test in turn each frame ti
of each item u as a target, and remove each time
all the frames belonging to this u from the NN
database. Therefore no frames that belong to the
target item are used in the NN database.

4.4 Results and discussion

The results are indicated in Table 3. The gray ar-
eas represent configurations for which the estima-
tion is not applicable. The top part of the table
indicates the results considering all frames. In or-
der to have a better understanding of the errors, we
present in the bottom part of the table (”Only cor-
rect Classes”), the results obtained considering only
the frames/ items which have been correctly clas-
sified with the corresponding configurations. Since
the subset of frames/ items correctly classified is
different for each configuration, we indicate for each
one the value obtained with IB on the correspond-
ing subset.

4.4.1 Using annotated tempo

When bq is the annotated tempo (“Known tempo”
columns) the best results for class accuracy are ob-
tained using the One-minus-cosine distance: 82.6%
at the frame and 93.1% at the item-level. The fact
that the One-minus-cosine distance provides bet-
ter results than the Euclidean distance is in agree-
ment with previous studies [10]. Surprisingly, the
exhaustive search using the Complex distance does
not lead to the best results for class recognition.
In the opposite, the best beat-tracking results are
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Table 3: Performance measures for classification,
tempo estimation and beat-tracking in the case of
known tempo, unknown tempo with Q = 5 tempo
assumptions and with Q = 321; using Euclidean
(dE), One-minus-cosine (dC), or solely Complex
distance (dCP) with a decision at the Frame-
level and Item-level decision. Comparison with
the results obtained using a dedicated tempo/beat-
tracking estimation system (IB). We denote by
”nc” the ”non-computed” values because of too
high computation time.

obtained using the Complex distance: 79.0/70.1
which is above the results obtained using IB (78.4
and 71). It means that, when the correct tempo is
used for creating Xl(u, b, ti), the beat-tracking per-
formances of the ”copy and scale” algorithm can be
higher than the ones obtained with a state of the
art dedicated beat-tracking algorithm. For the sub-
set of correctly classified frames/ items, we observe
the same ranking of the methods.

4.4.2 Using the reduced set of tempo as-
sumptions

Using the reduced set of tempo assumptions (“Un-
known Q=5” columns) the best class accuracy and
tempo estimation are again obtained using the One-
minus-cosine distance. It should be noted that the
tempo estimations obtained (66.8% and 67.6%) are

above the ones obtained with the dedicated algo-
rithm IB. Again, while the Complex distance does
not lead to the highest class accuracy or tempo es-
timation, it does again lead to the best results for
beat-tracking: 71.8/ 62.7. This could indicate that
a correct beat-tracking can be obtained by ”copy-
ing and scaling” markers from items of different
rhythm class and tempo. The beat-tracking perfor-
mances are however 7% lower than with IB. For the
subset of correctly classified frames/ items, the sit-
uation is different. All configurations of the ”copy
and scale” algorithms outperform the IB algorithm.
The best results are obtained using the Complex
distance both for tempo (98.2% and 97.8%) and
beat-tracking (88.2/ 79.3). It means that, if the
class is correctly identified, the proposed approach
succeeds to estimate the correct tempo in 98% of
the cases. This very high recognition rate has to
be compared with the one obtained on the same
frames/ items by the dedicated tempo-estimation
algorithm (IB) which is much lower (around 60%).
It should be noted that, because the tempo estima-
tion performance of IB one these frames/items is
lower than on the whole set, these frames/items do
not appear to be the easiest ones.

4.4.3 Using the whole set of tempo assump-
tions

We now test our ”copy and scale” method without
using any front-end (“Unknown Q=321” columns).
Because the computation time of the Complex dis-
tance is too high, we only indicate the results ob-
tained using the Euclidean and One-minus-cosine
distance. The best results are again obtained us-
ing the One-minus-cosine distance. The tempo es-
timations obtained with it (64.9% and 66.9%) are
equivalent to the ones obtained with the dedicated
algorithm IB. However the beat-tracking perfor-
mances obtained are 10% lower than the ones of IB.
Considering only the subset of correctly classified
frames/ items, the situation is again different. All
configurations of the ”copy and scale” algorithms
outperform the IB algorithm. The best results are
obtained using the One-minus-cosine distance with
tempo estimation of 96.9% and 97.7% and beat-
tracking performances of 81.3/ 71.6. We therefore
think that improving the classification part of our
approach could lead to a very good tempo estima-
tion and beat-tracking algorithm.
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4.5 Comparison with previous re-
sults

Concerning beat-tracking, there is no previously
published results on the “ballroom dancer” test-
set (the annotation into beat positions has been
made especially for the present paper). This was
the reason for running the IB algorithm on it.

Concerning tempo estimation, previous pub-
lished results are in the ISMIR-2004 tempo induc-
tion contest [16]: 63.2% (excluding octave estima-
tion) and in our paper [27]: 68.7%. The results
obtained here (67.6% with Q = 5 and 66.9% with
Q = 321) can therefore be considered as nearly
equivalent to the ones obtained by dedicated signal
processing algorithms.

Concerning classification into rhythm classes,
[6] obtained 85.7% track-based classification, we
obtained 88% in [29] with an AdaBoost classifier.
Results obtained here (65.8% with Q = 5 and
63.2% with Q = 321) with a Nearest Neighbor ap-
proach are therefore largely lower than the ones
obtained in [29].

Considering that the classification part of our
system can be improved (up to 88% using [29]) and
considering that, for the part of correctly classified
items our system reached 98% correct tempo es-
timation, one could therefore potentially reach a
87% correct tempo estimation (98% times 88%).
The same is true for beat-tracking performances.

5 Conclusion and future
works

In this paper, we proposed a new “copy and scale”
method for estimating M.I.R. time-localized pa-
rameters and applied it to the problem of beat-
tracking, tempo-estimation and classification into
rhythm classes. In this method, time-localization
is obtained by the use of a code in the complex
domain, derived from the complex spectrum of an
onset-energy-function. A simple Nearest Neighbor
algorithm with a distance in the complex domain is
then used to find the closest item of a pre-annotated
database. Using this direct approach on the “ball-
room dancer” test-set, a classification accuracy of
65.8% (63.2% without using a tempo prior front-
end), a tempo precision of 67.6% (66.9% without)
and a beat-tracking precision (F-measure) of 71.8%

(68.2% without) are obtained. Analysis of the re-
sults shows that considering only the correctly clas-
sified frames leads to 98% tempo precision and 88%
beat-tracking precision.

The results presented here should only be con-
sidered as a proof of concept of our method and
testing our method using other test-sets with a
wider diversity of rhythms needs to be done. How-
ever, considering the current results and the fact
that the performances of each part of the proposed
approach can easily be improved, we believe this
method is promising. Potential improvements con-
cern - the use of more sophisticated machine learn-
ing methods for rhythm classification as we did
in [29], - the use of K-NN-regression for tempo es-
timation as proposed by [9], - making the beat-
tracking performed at the frame-level benefits from
the late-fusion integration performed at the item-
level (tempo and class estimation benefits from the
late-fusion integration at the item-level), - the in-
troduction of temporal continuity constraints in the
tempo, class and beat-marking decision (as we did
in [28] using HMM to constrain tempo and class
variations over time). Future works will also con-
centrate on the reduction of the search time in the
NN database when using the Complex distance.
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