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ABSTRACT

Most current tempo estimation algorithms suffer from the
so-called octave estimation problems (estimating twice,
thrice, half or one-third of a reference tempo). However,
it is difficult to qualify an error as octave error without a
clear definition of what is the reference tempo. For this rea-
son, and given that tempo is mostly a perceptual notion, we
study here the estimation of perceptual tempo. We consider
the perceptual tempo as defined by the results of the large-
scale experiment made at Last-FM in 2011. We assume
that the perception of tempo is related to the rate of vari-
ation of four musical attributes: the variation of energy, of
harmonic changes, of spectral balance and short-term-event-
repetitions. We then propose the use of GMM-Regression to
find the relationship between the perceptual tempo and the
four musical attributes. In an experiment, we show that the
estimation of the tempo provided by GMM-Regression over
these attributes outperforms the one provided by a state-
of-the-art tempo estimation algorithm. For this task GMM-
Regression also largely outperforms SVM-Regression. We fi-
nally study the estimation of three perceptual tempo classes
(“Slow”, “In Between”, “Fast”) using both GMM-Regression
and SVM-Classification.

Categories and Subject Descriptors

H.5 [Information Interfaces and Presentation:]: Sound
and Music Computing
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1. INTRODUCTION

There has been and there is still many studies related
to the estimation of tempo from an audio file (see [9] for
a good overview). In the tempo estimation community it
has been accepted that algorithms often make octave errors,
i.e. estimating twice, thrice, half or on third of a “reference”
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tempo. This has led to the creation of two evaluation mea-
sures which consider either the estimation as correct if it is
within 4% of the reference tempo (denoted by Accuracy-1),
or also considering octave errors as correct (Accuracy-2).

Recently, focus has been made on trying to solve this
octave-error problem, i.e. estimate exactly the “reference”
tempo. This is partly motivated by the fact that many
applications can simply not use a tempo estimation al-
gorithm that produces octave errors (generating play-lists
based on tempo continuity or searching music with slow-
tempo are not possible in the presence of octave-errors).
Studies on octave-error attempt to estimate exactly the “ref-
erence” tempo. But what is this “reference” tempo? Actually
this “reference” tempo is often considered as a ground-truth,
but in the case of tempo this is questionable considering
that tempo is mainly a perceptual notion. For example,
the experiment of Moelants and McKinney [12] highlighted
the fact that people can perceived different tempi for a sin-
gle track. Therefore, they propose to represent the tempo
of a track as a histogram of its various perceived tempi'.
Recently, Levy [11] did a large-scale experiment within the
framework of Last-FM. In this experiment, 4000 tracks have
been annotated using a crowd-sourcing method. Users were
asked to select a speed for each track in a 3-point scale
(“slow”, “in between”, “fast”, “hard to say”), they were then
asked to compare the track with a second track in terms of
perception of speed, finally they were asked to tap along to
provide a tempo estimation of the track.

1.1 Related works

Rather than a detailed overview of the works related to
the octave-error problems or the estimation of perceptual
tempo, we highlight here the differences between them.

The methods first differ by their goals and methodolo-
gies: estimation of perceptual tempo from scratch [18], esti-
mation of an octave correction factor to be applied to a pre-
vious estimation made by a dedicated tempo estimation al-
gorithm [19], estimation of tempo classes (“Slow”, “Medium”,
“Fast” for [10]), use of the estimated tempo class to correct
a previously estimated tempo [4], use of the class to cre-
ate a prior to be used by a tempo estimation algorithm [8].
They then differ on the audio features chosen to represent
the content of track: fluctuation patterns or autocorrela-
tion function for [18], MFCCs for [19], vector representing
the belonging to 101-moods for [4], large bag-of-features for
[10], sophisticated harmonic and percussive rhythm features
for [8]. They also differ on the machine learning method

!The current tempo-estimation measures of MIREX is ac-
tually derived from this.
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Figure 1: Overall schema of the proposed GMM
training and GMM-Regression method

used: KNN for [18], GMM for [19], bag of classifiers (KNN,
SVM, C4.5, AdaBoost ...) for [10], SVM for [4], SVM-
Classification and SVM-Regression for [8]. They finally dif-
fer on the data used: “song” and “ballroom” test-set for [18,
19, 8], Last-FM user-tags and YouTube audio for [10].

1.2 Proposal and paper organization

While previous works rely mostly on energy-based fea-
tures, timbre-features or a large bag-of-features, we start
here from a set of assumptions related to the perception of
tempo. For each of these assumptions we create a related
audio feature. We assume that the perception of tempo is
related to the rate of variation of four musical attributes: —
the rate of variation of energy (as did the previous works)
but also — the rate of variation of harmonic content, — the
rate of variation of spectral balance (the distribution in high
or low frequency of the energy) and — the rate of short-term-
event-repetitions. We assume that a track with a rapid chord
changes, rapid spectral-balance changes or rapid short-term
repetitions will be perceived as fast even if the tempo of the
sequencer was set to slow. The estimation of the related four
feature-sets is explained in part 2.

We then create a model to find the relationship between
the perceptual tempo, the perceptual tempo class and the
four feature-sets. This model is then used to predict the per-
ceptual tempo given the audio features. The model and the
prediction is done using a technique borrowed from speech
processing: GMM-Regression [5]. In [5], a GMM model is
trained to learn the relationship between pitch and spectral
envelope. The model is then used to predict the most-likely
pitch given an observed spectral envelope. This is done using
a regression over the values of the most-likely components
of the GMM. The same method is applied here to predict
the most-likely perceptual tempo and classes given the audio
features. This is explained in part 3.

Surprisingly, most studies on octave-errors do not make
use of a perceptual definition of the “reference” tempo. Their
“reference” tempo (as the ones provided with the “song” or
“ballroom” test-set) has often been only defined by one or
two annotators. Therefore, it does not necessarily corre-
spond to a shared perception of the tempo. As opposed to
these studies, we rely here on the results of the large-scale ex-
periment on perceptual tempo made by Last-FM [11]. From
these results, we select only tracks for which the perception

of perceptual tempo and perceptual tempo class is shared.
On the resulting 1410 tracks test-set, we then measure the
performances of GMM-Regression to predict the perceptual
tempo and the perceptual tempo class. We also test the
use of SVM-Classification and SVM-Regression. This is ex-
plained in part 4.

Finally we conclude in part 5 and give directions for fu-
ture works. The feature extraction, training and regression
processes of our method are illustrated in Figure 1.

Difference with previous works: The closest works to
our are the ones of [19] and [8]. [19] also tries to model the
relationship between the features (MFCC in [19]) and the
tempo using a GMM. However in [19] the GMM is only used
to compute the most-likely combination of tempo+MFCC.
In our case, the GMM is used to perform a regression, which
provides directly the tempo. [8] also tries to perform re-
gression but using SVM-Regression. However in [8], the re-
gression is only used to estimate the class (the tempo is
thereafter estimated using a peak-picking algorithm on the
periodicity function). In our case, the GMM-Regression is
used to provide directly the tempo.

2. AUDIO FEATURES

We explain here the four audio features related to our four
assumptions concerning the variation of the content of the
track. The extraction of the four feature sets is illustrated in
Figure 2 on a real signal. In this figure, each row represents
one of the feature-set.

2.1 Energy variation f.,..(7)

The variation of energy is represented by an onset-energy-
function. We used the function we proposed in [15], named
reassigned-spectral-energy-flux. We showed in [15] that this
function allows to highlight onsets successfully even in case
of weak onsets. Its computation is based on the time and fre-
quency reassigned spectrum (in order to improve frequency
separation and time location). The energy inside each fre-
quency channel of this spectrum is converted to log-scale,
low-pass filtered, differentiated over time and Half-Wave-
Rectified (see [15] for more details). The final function is the
sum over frequency of the individual functions. We denote
it by fener(t) where ¢ denotes the time. In the following we
consider as observation, the autocorrelation of this function
denoted by fener(7) where 7 denotes “lags” in second. This
is illustrated in the first row of Figure 2: column (a) repre-
sents the onset-energy-function and column (d) fener(7).

2.2 Harmonic variation f,q....(r,T:)

Popular music is often based on a succession of harmon-
ically homogeneous segments named “chords”. The rate of
this succession is proportional to the tempo (often one chord
per bar). Rather than estimating the chord succession, we
estimate the rate at which segments of stable harmonic con-
tent vary. For this we represent the harmonic content using
chroma vectors using the method we proposed in [13]. In or-
der to estimate the instant of changes between homogenous
segments we use the “novelty score” proposed by [7]. This
“novelty score” is obtained by convolving a Self-Similarity-
Matrix (SSM) with a checkerboard kernel of size 2L. The
diagonal of the convolved matrix will have a large value at
time ¢ if the segments [t— L, t] and [t, ¢+ L] are both homoge-
nous but differ between each others. The diagonal therefore
highlights instants where changes between stable parts oc-
cur. Since our assumption is that the rate of chord changes



is proportional to the tempo, L is chosen to be proportional
to the tempo T, (L =4-60/T.). Since we do not have any
prior on the tempo, we apply this method for various as-
sumptions of tempo T,. The resulting diagonals of the con-
volved matrices are then collected into a matrix denoted by
Sharmo(t, T>). We then consider as observation the autocor-
relation of each function, which we denote by frarmo (T, T%)
where 7 denotes the “lags”. This is illustrated in the second
row of Figure 2: column (a) represents the SSM, column (b)
fha'rnw (ty Tz) and column (C) fha7'mo(7_7 Tz)

2.3 Spectral balance variation f. ... (7, T.)

For music with drums, the balance between the energy
content in high and low frequencies at a given time depends
on the presence of the instruments: low > high if a kick is
present, high > low when a snare is present. For a typical
pop song in a 4/4 meter, we then observe over time ¢ a vari-
ation of this balance at half the tempo rate. This variation
can therefore be used to infer the tempo. In [17] we proposed
a more robust method that compute, for a given tempo 7%,
the likelihood that a given time ¢ is a strong beat (1 or 3
in a 4/4 meter) or a weak beat (2 or 4). This is done by
comparing the values of the balance function over a one bar
duration. This feature is named spectral balance variation
(see [17] for more details). Given that this function depends
on a prior tempo 7., we compute it for various tempo as-
sumptions 77 in order to form a matrix, which we denote by
fspecbal(t,T>). We then consider as observation the autocor-
relation of each function, which we denote by fspecbai (7, T%)
where 7 denotes the “lags”. This is illustrated in the third
row of Figure 2: column (a) represents the spectrogram,
column (b) fspecbai(ti, T>) and column (¢) fspecbat (7, T%)..

2.4 Short-term event repetition f,.,..(7)

We make the assumption that the perception of tempo is
related to the rate of the short-term repetitions of events
(such as the repetition of events with same pitch or same
timbre). In order to highlight these repetitions, we com-
pute a Self-Similarity-Matrix [6] (SSM) and measure the
rate of repetitions in it. In order to represent the various
type of repetitions (pitch or timbre repetitions) we use the
method we proposed in [14]. We compute three SSMs cor-
responding to three different aspects of the content: the
timbre (using MFCC features), the harmony (using chroma
features) and the harmonic/noise content (using Spectral
Crest/Valley features). We then compute a single SSM by
summing the individual SSMs. The SSM S(¢;,t;) is a ma-
trix where each entry represent the similarity between time
t; and time t;. We convert it to a lag-matrix [1] L(¢;,1;)
where l; = t; — t; denotes the “lag” between repetitions. In
the lag-matrix, a high value in the column /; indicates rep-
etitions that occur systematically at a lag-interval of [;. We
then sum up the matrix over time ¢; in order to obtain a
vector representing the amount of repetitions at the various
lags I. We denote this function by frepe:(7) where 7 de-
notes “lags”. This is illustrated in the fourth row of Figure
2: column (a) represents the SSM and column (d) frepet(7).

2.5 Dimension reduction

The four feature sets are denoted by fener(7),
frarmo(T,T%), fopecbat(TsT2), frepet(T) where 7 denotes the
lags (expressed in seconds) and T, the various tempo as-
sumptions. They are two possibilities to use these features
to predict the tempo.

The first (which is partly used in [19]) is to (a) make a
tempo assumption 7%, (b) use the column corresponding to
Tz in f}LaT“"LO(T7 Tz)7 fspecba,l (7_7 Tz)7 (C) Sample the four fea-
tures sets f;(7) at lags 7 corresponding to the sub-harmonics
and harmonics of T, (d) measure the likelihood of the result-
ing combination of sampled-features and tempo assumption.
However, this method was found very costly.

The second (which we use here) starts from the obser-
vation that the values of frarmo(7,T%) and fspecvai(7T,T%)
do not depend too much on the tempo assumption 7T, (see
the example of part 2.6). They can therefore be reduced to
fi(7) by summing their values over T>. The four resulting
vectors fi(7),i € {ener, harmo, specbal, repet} still have a
high dimensionality and are found too discriminative to be
used for inferring tempi which are not exemplified in the
training-set. We therefore applied a "blurring” technique
over their lag-axis. This is done by applying a filter-bank
(as [8] did) over their lag-axis. For this, we created 20 filters
logarithmically spaced between 32 and 208bpm with a tri-
angular shape. Each feature vectors f;(7) is then multiplied
by this filter-bank leading to a 20-dim vector, denoted by
fi(b) where b € [1,20] denotes the filter.

To further reduce the dimensionality and de-correlated
the various dimensions, we also tested the application of
the Principal Component Analysis. Only the principal axis,
which explain more than 10% of the overall variance, are
kept. In the experiment of part 4, this usually leads to a
reduction of 50% of the number of dimensions.

2.6 Ilustrations

In Figure 2, we illustrate the computation of the four au-
dio features (one on each row) on a real signal. As men-
tioned, the values of frharmo(T,T:) and fspecvai (7, T>) do not
depend too much on the tempo assumption 7>, and are there-
fore summed up over T to obtain frarmoe(7) and fspecvai (7).

On column (d), we super-imposed to the plots the anno-
tated tempo (continuous vertical line at 0.44s) as well as the
various harmonics and sub-harmonics of the tempo (dashed
lines). As can be seen on the top-part, the energy-variation
function has a strong value at the eighth note (0.22s), the
harmo-variation has two strong values around the whole-
note (1.75s) indicating a sort of shuffle in the harmonic
changes, the spectral-balance-variation has strong value at
the half-note (0.875s), the short-term-event-repetition has a
periodicity equal to the one of the tempo (0.44s). This figure
illustrates a track with the following music model: fastest
event (tatum) at the eight-note, chord variation once per
bar (+shuffle), kick/ snare alternating twice per bar, event
repetition at the quarter-note.

The functions f;(7) represented on the right-most column
are then summarized using the filter-banks to create f;(b).
The resulting functions f;(b) are illustrated in Figure 3. In
this figure we represent f;(b) for all tracks of our test-set
(see part 4). Each plot represents a specific feature i. The
tracks have been sorted by increasing reference tempo. One
can clearly see the specific patterns that expand while the
tempo increases.

3. PREDICTION MODEL

For the prediction of the perceptual tempo T or the per-
ceptual tempo class C. we use the GMM-Regression predic-
tion model proposed in [5]. We denote by y(l) the audio
feature vector for track | (concatenation of the four feature-
sets fi(b) for track l) and by x the parameter to be esti-
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Figure 2: Example of feature extraction on audio signal: Big Audio Dynamite ‘Looking For A Song” (7-
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Figure 3: All feature-sets fi23,.4(b) for all tracks [ of
the test-set sorted by increasing (from top to bot-
tom) annotated perceptual tempo T,(I).

mated. When we estimate the perceptual tempo of track [,
we set z(l) = Te(l); when it is the perceptual tempo class,
z(l) = Ce(l) . We then define z(l) to be the concatenation
of y(I) and z(1):

(1)

Given a set of tracks annotated into = (T, or Cy) and the
corresponding feature vectors f;(b) we train a Gaussian Mix-
ture Model with K component and full-covariance-matrix
using the Expectation Maximization algorithm. We denote
by N the normal distribution, g, the mean-vector of the
component k and X its covariance matrix. We can subdi-
vide p, and Xy in the parts corresponding to y (denoted
by p? and 3¥Y) and to = (denoted by py and X§*). The
terms 7Y and 37" represent the cross-dependency between
2 and y (hence between the parameter to be estimated and
the audio features). For a given audio feature vector y, x
(its perceptual tempo T, or its perceptual tempo class C.)
is then estimated in a maximum-likelihood way by

K

F(y) =E(zly) = > h [ + =20 N w—pd)] (2)
k=1

with
N (y|py, 377
haly) = Wl B 3)
Zk:1 WkN(y“Lkka )
with
_ | m _ |z
MKy = [ /"i ] and 3 = [ Eiy nie (4)

4. EVALUATION

We evaluate here the performances of the four feature sets
and the GMM-Regression to estimate the perceptual tempo
and perceptual tempo classes.

4.1 Test-Set

The raw results corresponding to the Last-FM experiment
are kindly provided by [11]. For each track [, it provides the
whole set of annotations into perceptual tempo (PT)
and into perceptual tempo classes (PTC): “Slow”, “In
between”, and “Fast”. The test-set is made of 4006 items,
which are provided without the audio. For 2425 items, at
least 3 annotations are simultaneously provided into PT and
PTC. For 1554 items, a majority? of annotators simultane-
ously agree on PT and PTC. We assigned to these items a
“reference” PT and PTC, denoted by T,(I) and Cq(l), de-
fined as the median value of PT and PTC among the anno-
tators that belong to the majority.

For each item, we used the 7-Digital API in order
to access a 30s audio extract from which audio fea-
tures has been extracted. This has been done query-
ing the API using the provided artist, album and title
names®. Matching have been found for 1410 items which
is our final test-set. ~We provide the list of 7-Digital-
ID wused, the reference PT and PTC at the following
URL: http://recherche.ircam.fr/anasyn/peeters/pub/
2012_ACMMIRUM/.

2Majority is here defined as: at least 50% of the annotators
agree (within 4%) on a reference tempo and class.

3When the API returned several items, only the first one
was used. Due to this process, part of the audio tracks we
used may not correspond to the ones used for the experiment
of [11]. We estimate this part at 9%.




4.2 Measures

The performances are measured by comparing the estima-
tion T. (1) and C. (1) to their references T,(1) and Cq(l).

Class-Accuracy (Ac): The quality of the class estima-
tion is measured using class accuracy.

Tempo-Accuracy-8% (Ar): Given that the manual
annotations into Ty (!) have been done using the spacebar of
a keyboard (which we believe is not very accurate), given
also that the filters used for dimensionality reduction do not
allow a 4% precision in the full-range, we used an 8% relative
precision, i.e. if T,(l)=120bpm, we still consider as correct
Te(1)=110.4 or 129.6.

The evaluation has been performed using a ten-fold cross-
validation, i.e. nine folds are used for training, the remaining
one for testing. Each fold is successively used for testing; the
results provided are average value over the ten-folds. Each
fold has been created in order to guarantee the same tempo
distribution and class-distribution as the original test-set.

4.3 Experimental protocol

In the following we test the estimation of the perceptual
tempo Te and class C. using GMM-Regression. For this, the
GMM is trained using the annotations (7, and C,) and the
four feature-sets f;(b). Given that the range of the variables
influences the creation of clusters in the GMM, we measure
this by testing various scaling factors to be applied to T,
and C,: arT, and acC,. For the GMM, we test various
numbers of components (K = {8,16,32,64}).

Te is then estimated directly as the output of eq. (2)
using x = T.. C¢ is estimated in the same way using x = C..
Given that the GMM-Regression provides a continuous value
of Ce., we round it to its closest integer: C, = round[Ce]
(1="Low”, 2="In Between”, 3="Fast”).

We test each features-set i separately as well as any com-
binations of them. We also test the influence of the dimen-
sion reduction by PCA. The implementation of the GMM-
Regression is the one corresponding to [2], the implementa-
tion of the SVM-Classification and SVM-Regression is pro-
vided by the LibSVM library[3]. For SVM, we used a RBF
kernel and an e—~SVM for regression. Grid-search has been
performed to find the best parameters ('y—parameter4, cost-
parameter and e-parameters).

4.4 Results

We first create a set of base-lines:

Oracle: For the classification, we created a simple model
which estimate C.(l) from the annotated T,(l). The eval-
uation is performed using a ten-fold cross-validation; each
class is modeled using a single Gaussian model.

ircambeat : We then do the same using the tempo es-
timation T(1) as provided by ircambeat ® instead of the
annotated one Tq(1).

The results are indicated into Table 1 for both Ac and
Ar. For each test, we performed an optimization over the
parameters indicated in the ”"Configuration” column. Not

4In practice, we optimize the parameters o which is inde-
pendent of the dimensionality: v = 1/(D - ¢%) where D is
the number of dimensions.

Sircambeat can be considered as a good representation
of current state-of-the-art algorithm. It ranked first in
the MIREX-2005 ”At-Least-One-Tempo-Correct” estima-
tion task and currently perform among the best in the
MIREX beat-tracking task.

Method | Ac | Ar
Oracle 70 -

| Configuration

ircambeat 51 67.3
GMM-Regression

1 (ener) 61.6 ar=1, ac=100, PCA=0
67.9 ar=1, ac=1, PCA=0
ar=0.005, ag=1, PCA=0
22.9 ar=1, ac=1, PCA=0
ar=1, ac=1, PCA=0
51.3 ar=1, ac=1, PCA=0
ar=0.005, ag=1, PCA=0
66.8 ar=1, acg=1, PCA=0

2 (chroma) || 45.1
3 (specbal) || 58.6

4 (repet) 62.9

1,2,3,4 61.3 ar=1, ac=100, PCA=1
70.4 ar=1, ac=1, PCA=1

ar=1, ac=100, PCA=1
72.9 ar=1, ac=100, PCA=0

SVM-Classification and SVM-Regression

Best: 1,3,4 || 64.8

Best: 1,3,4 || 68.3 o=1, C=31, PCA=1
55.8 | =1, C=171, e=0.1, PCA=1

Table 1: Evaluation of Classification into Perceptual
Tempo Classes (PTC) and Perceptual Tempo (PT)
using various algorithms and configurations.

indicated in the table is the fact that K = 16 was the best
choice for all GMM tests.

Tempo estimation: Among the four feature-sets
(i=1,2,3,4), the best performing are the energy variation
(i=1) and the short-term-event-repetition (i=4). The results
obtained with only i=1 are very close to the ones obtained
with ircambeat (Ar around 67%).

In the case of GMM and SVM, the best results for both A¢
and Ar were obtained using a combination of the features
related to energy variation (i=1), spectral-balance varia-
tion (i=3) and short-term-event-repetitions (i=4). There-
fore without the use of the harmo-variation (i=2). Actually
the pattern-over-tempo of the harmo-variation in Figure 3
is also more fuzzy than the ones of the other features. Given
the high dimensionality resulting for the combination of the
three feature-sets (60 dim), the use of the PCA was found
useful in most cases. Also, in the case of GMM, increasing
ac to 100 (in order to favor the creation of clusters repre-
senting classes in the GMM) was found beneficial.

On overall, GMM-Regression provides the best results for
tempo estimation (A7r=72.9%). It provides a tempo esti-
mation, which is 5.6% higher than ircambeat . The results
obtained with SVM-Regression (Ar=55.8%) are largely be-
low the ones obtained with GMM-Regression. In Figure 4
we present details of the tempo-estimation obtained using ir-
cambeat and the best GMM-Regression configuration. The
three corridors (indicated by dotted-lines) correspond to the
8% relative precision for the exact tempo, half and twice of
it. According to these two figures, we see that the amount of
doubling octave errors produced by the GMM-Regression is
much lower (5% against 20%) but the halving octave errors
are larger (9% against 3%).

As comparison, we provide the results published in [11]
on the tempo-accuracy obtained using the EchoNest algo-
rithm (40.7%), BpmList (69.1%), Vamp (58.3%). It should
be noted however that the methods used in [11] to select
tracks, to infer the reference TP and to compute the Tempo-
Accuracy differ from the present ones chosen here.
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[LEFT] ircambeat [RIGHT] GMM-Regression.

Class estimation: SVM-Classification provides the best
results (Ac=68.3%). It actually provides class estimation
(Ac=68.3%) very close to the one obtained using the Ora-
cle based on annotated tempo (Ac=70%). Since our best
tempo estimation is largely below 100%, this means that
our feature-sets are able to catch characteristics in the au-
dio that are related to the perception of the tempo classes
but which are not useful for tempo estimation.

“Ballroom test-set”: Finally, for comparison, we in-
dicate in Table 2 the results obtained on the ‘ballroom”
test-set. The best results are obtained using GMM-Reg:
Ar=87% (ircambeat achieves 66.1%). As comparison, the
best results so far were the ones of [18] with 78.51% (but
with a more restrictive 4% accuracy). For this test-set, SVM
achieves Ac = 88.5% which is slightly higher than the 88%
we obtained in [16] with our previous classification method.

Method Ac At
ircambeat 66.1
GMM-Regression 80.37 | 87

SVM-Classification and Regression | 88.5 | 55.1

Table 2: Evaluation on the “ballroom” test-set.

5. CONCLUSION AND FUTURE WORKS

In this paper, we studied the estimation of perceptual
tempo (as defined by the results of the large-scale experi-
ment made at Last-FM) using four assumptions related to
the rate of variations of musical attributes and a predic-
tion using GMM-Regression. We showed that using three
of these assumptions (rate of variation of the energy, of the
harmonic changes and short-term-event-repetitions) allows
to estimate the perceptual tempo at 73%, i.e. better than us-
ing a state-of-the-art tempo estimation algorithm. We also
showed that, for this task, GMM-Regression largely outper-
forms SVM-Regression. For classification into perceptual
tempo classes, we showed that SVM-Classification outper-
forms GMM-Regression. It allows achieving results (68.3%)
very close to the ones obtained by an Oracle knowing the
annotated tempo.

The use of the fourth assumption (rate of harmonic
changes) was not successful in our experiment. This may
be due to the fact that harmonic changes are not enough
periodic to be model as a periodic signal, or may be due
to the estimator we used to measure the harmonic changes.
Further works will concentrate on improving this estimator.
Further works will also concentrate on using the full range
of annotations provided for each track rather than the single
majority perceptual tempo derived from it.
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