Geoffroy Peeters
STMS IRCAM CNRS UPMC

MUSIC STRUCTURE: WHAT IS SIMILAR?

Geoffroy Peeters Is partly founded by the French government Programme Investissements d'Avenir (PIA) through the Bee Music Project, and by the European Commission through the SKAT-VG (618067) Project.
Why interest in music similarity/structure?

2001 Research on Audio Identification by fingerprint
 -> Closest Matches = Music Similarity
 -> But Similarity is not homogeneous within a track
 -> Music Structure
Plan

What is Similarity ?

What is Music Structure ?

Sequence approach
 Factor Oracle
 DTW

State approach
 Summarizing time-evolution
 Hidden Markov Model

Model-based
 Joint key/chord/structure estimation
What is similarity?

- The sound timbre approach
 - Experiment (Lakatos, McAdams)
 - MDS sound timbre space
 - Then find the best acoustic correlates (audio features)
- The music similarity approach
 - Develop the technology then validate
 - Validation?
 - Perceptual Experiment?
 - What is the spread of the considered music space?
 - Results are good if same Genre, Artist
 - Perform experiment: Find Outlier
 - Use Pandora recommendation

Lakatos, McAdams Sound Timbre MDS Space

Ircam Music Similarity System, ISMIR 2010
0. What is music structure/similarity?

Franco Fabbri, «Verse, Chorus (Refrain), Bridge: Analysing Formal Structures of the Beatles’ Songs»
0. What is music structure/ similarity?

Various possible definitions of Structure
[Peeters, Deruty, 2009]

1) based on Musical Role
- Music role that a part plays in a song
 - Introduction, Verse, Chorus, Bridge, Ending
- Problems:
 - Intro, Outro = time position, can be the Chorus
 - Several versions of Chorus and Verse
 - Definition of Chorus and verse not clear (Rap, R'n'B)

2) based on Acoustic Similarity
- Acoustic similarity between parts
- Problems:
 - Similar = identical, What about if small variation?
 - How to quantify?
 - How to put the threshold?

3) based on Instrument Role
- Location of lead singer; location of solo guitar
- Problems:
 - Few insights into the global structure
 - Identify instrument: huge number of labels (guitar = classical? Folk? Electric? WhaWha?)
- Solution: Describe the instrument role: Primary Lead, Secondary Lead

4) based on Perceptual Tests
- Average human perception of structure
- Problems:
 - Very costly!
 - Labels used by people are usually not shared
What is music structure/similarity?

Various viewpoints on the content

- Moby – « Natral Blues »
 - Different views on the content highlight different structure
0. What is music structure/similarity?

Proposal of a Multi-dimensional annotation system
[Peeters, Deruty, 2009]
1. Sequence approach

Sequence approach: what is it?

\[\begin{bmatrix} a, b, c \end{bmatrix} = \begin{bmatrix} a, b, c \end{bmatrix} \]
1. Sequence approach

Factor Oracle

[Laburthe, Peeters 2002]

- Converting audio to symbols

\[[x(1), x(2) \cdots x(t) \cdots x(T)] \in R \rightarrow [a, b \cdots c \cdots a] \]

\[a == a \]

\[a \neq b \]

- Compute Factor Oracle [Alauzen, Crochemore, 1999]

```
Fonction add_letter(Oracle(p = p1p2…pm), \sigma)
1. Create a new state m + 1
2. Create a new transition from m to m + 1 labeled by \sigma
3. k ← S_p(m)
4. While k > -1 and there is no transition from k by \sigma Do
5. Create a new transition from k to m + 1 by \sigma
6. k ← S_p(k)
7. End While
8. If (k = -1) Then s ← 0
9. Else s ← where leads the transition from k by \sigma.
10. S_p(m + 1) ← s
11. Return Oracle(p = p1p2…pm\sigma)
```
1. Sequence approach

Factor Oracle
[Laburthe, Peeters 2002]

- Compute Length Repeated Suffix (LRS) using FO [Lefevre, Lecroq, 2000]

- Structural matrix based on LRS (from longest to shortest LRS)

- Grouping matrix based on pattern similarity
1. Sequence approach

Factor Oracle
[Laburthe, Peeters 2002]

- Converting distance to equivalence

\[d(x(t), x(t')) \leq \tau \rightarrow t == t' \]
\[d(x(t), x(t')) > \tau \rightarrow t \neq t' \]

- Adaptive Factor Oracle
1. Sequence approach

Dynamic Time Warping

[Mueller, 2012]

- Compute distance between continuous values

 \[[x(1), x(2) \cdots x(t) \cdots x(T)] \in \mathbb{R} \]
 \[d(x(t), x(t')) \]

 insertion, deletion, minimum – cost – path

- Find the best alignments between sub-sequences
State approach: what is it ?

\[[A = A = A] \equiv [A = A = A] \]
Instead of comparing distances between sequences \([x(1), x(2) \cdots x(t) \cdots x(T)]\)

- We model the evolution of \(x(t)\) over time:
 \[
 f([x(t - \delta) \cdots x(t) \cdots x(t + \delta)]) \rightarrow x'(t)
 \]
- Then compute the distance between the models (discriminant, invariant)
 \[
 d(x'(t), x'(t'))
 \]
- Two similar sequences will have two similar models -> state representation
2. State approach

Modeling Time Evolution

Some time evolution models:

- Modulation Spectrum [Peeters, Rodet, 2002]
2. State approach
Modeling Time Evolution

Some time evolution models:
• Scattering Transform [Anden, Mallat, 2014]
2. State approach

Modeling Time Evolution

Some time evolution models:

• Multi-Prob Histogram [Kaiser, Sikora, 2011]
2. State approach

Hidden Markov Model for Structure Estimation
[Logan, 2000] [Aucouturier, 2001] [Peeters, 2002]

- The hidden states of the HMM represent the various parts (repeated or not) of the music track
- The observations are $x'(t)$
3. Model Approach

Joint Estimation: Structure/Chord/Key

[Pauwels, Peeters, 2013]

- Hidden State $q=(s,k,c)$
 - Key k in N_k
 - Chord c in N_c
 - Structure $s=$
 - L: last state of structural segment
 - O: not the last state
 - R: no chord, no-key state

$$\hat{S}, \hat{K}, \hat{C} = \arg \max \prod_{t=1}^{T} P(y_t|s_t, k_t, c_t) P(z_t|s_t, k_t, c_t) P(s_t, k_t, c_t|s_{t-1}, k_{t-1}, c_{t-1})$$
Questions ?