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ABSTRACT

In this paper, we present for the first time the fingerprint IRCAM
system for audio identification in streams. The baseline system relies
on a double-nested Short Time Fourier Transform. The first STFT
computes the energies of a filter-bank, that are then modelled over
2 s, using a second STFT. We then present recent improvements of
our system: first the inclusion of perceptual scales for amplitude
and frequency (Bark bands), then the synchronization of stream and
database frames using an onset detection system. The performance
of these improvements is tested on a large set of real audio streams.
We compare our results with the results of re-implementations of the
two state-of-the-art systems of Philips and Shazam.

1. INTRODUCTION

Audio identification aims at detecting occurrences of known audio
samples (or items) in an unknown audio signal or stream, generally
through the use of a fingerprint code. The latter is designed to make
a compact numerical representation of audio samples that is highly
discriminative between different items, while remaining robust to
typical distortions expected on an audio recording. Its applications
are numerous, though the most straightforward is the detection of
musical tracks on broadcast radio or TV streams, for copyright su-
pervision.

The field of audio fingerprinting is covered by many industrial
actors, among which Philips [1] proposes a very compact repre-
sentation (32 bits) of sub-band energy differences, combined with
an exact match search in a hash table. The Shazam system [2] is
based on numerous compact key signatures representing peak pairs
in the spectrogram ; the accumulation of many keys for a given item
during search determines its detection. AudibleMagic [3] (based
on the Muscle Fish technology) relies on a common pattern clas-
sification framework to classify the codes among the tracks in the
database. The AudiolD technology developed by Fraunhofer [4],
is also built on a classical pattern classification framework, using
a standard Nearest Neighbor rule on MPEG-7 descriptors, coded
through Vector Quantization.

While some authors propose detection schemes based on the en-
tire signal of a sole analyzed audio track [3], most address the prob-
lem of the audio identification in a live stream. This implies both
a short delay on the system output, and a highly optimized code
computation, in order to cope with real-time constraints. The signal
frame used for the creation of each code must thus be kept as short as
possible, while maintaining it discriminative enough to avoid false
alarms. Philips and Shazam systems both rely on very short term
horizons for each fingerprint (a few milliseconds), compensating the
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lack of robustness of the short-term code by an analysis of the suc-
cession of multiple codes over time. We propose here a different
scheme for audio identification, based on an original and more ro-
bust fingerprint, computed through the spectral modeling of Bark-
band energies, and extracted from larger frames (a few seconds) at
a much lower rate. The latter characteristic drastically reduces the
volume of the search database. However, we will see that reduc-
ing the sampling rate of the fingerprint codes necessarily implies
considering time shifts between the frames in the stream and in the
tracks used for learning. We address this problem by proposing a
new method to synchronize the codes efficiently between the ana-
lyzed signal and the database items.

We provide here, for the first time, a detailed description of the
IRCAM audio fingerprint framework (originally developed in 1998),
recent improvements on it, as well as a comparative evaluation with
our implementations of two major contributions of the literature
(Philips and Shazam), that is unprecedented, as far as we know.

The article is structured as follows : the base-line IRCAM sys-
tem will be presented in section 2, which also includes a brief pre-
sentation of the search strategy in section 2.2. The perceptual scales
in the code computation will then be introduced in section 3 and
the frame synchronization issue will be addressed in section 4. Sec-
tion 5 will then assess the importance of synchronization through
a study on the code robustness in subsection 5.1. We then provide
evaluation of both the onset detection proposition, in subsection 5.3,
and the overall system, compared to state-of-the-art techniques, in
subsection 5.4. A brief conclusion in section 6 will sum up our con-
tributions on the problem and perspectives for future work.

2. BASE-LINE SYSTEM

Our base-line audio identification system is the one proposed in [5]
and [6]'. The system is composed of a coding and a search part.

2.1. Fingerprint code computation

The global idea of our code is to represent directly the evolution
of the signal characteristics over time and not only the characteris-
tics around a specific time (as most coding schemes do). The goal
is to allow a fast search, which is possible since our code directly
represents the evolution of the signal. We can therefore only use a
single search, if the frame is long enough (several seconds). On the

Tt should be noted that the code used for audio identification has also
been used in [7] in the framework of audio structure by similarity (estimating
repetitions inside a single track).



opposite, algorithms based on local (short-term) codes need to per-
form several searches corresponding to the succession of codes. The
evolution of the characteristics of the signal is represented using a
spectral representation of the energy content of the signal in several
different spectral bands. Although this method is known today as
”modulation spectrum” [8] [9] [10], our initial proposal of this for-
mulation dates back to 1998 [5]. We summarize the computation of
our code in the following.

We consider the sampled audio signal z(n) of sampling rate f.

The signal is first normalized according to &(n) = x(n)lo%. The
signal is then analyzed using a Short-Time Fourier Transform with
a Blackman window w(n) of [ = 100 ms duration and h = 25 ms
hop size. The STFT at time m and frequency k is expressed as

N-1
X(k,m) =

n=0

& (m +n) w(n) exp (_m%n) )

where m is the start of the so-called short-term analysis window, of
length N samples. The amplitudes | X (k, m)| are considered as a
set of K low-pass signals over time m. Considering the properties
of the analysis window, the output signal | X (k, m)| has a sampling
rate of 40 Hz.

Second STFT A second STFT is then performed over the times m
(times of the short-frames) for a specific frequency k:

M—-1
Y(kokop) = D X (kip+m) wm) exp (j2r-m) . ()
m=0

where p is the start of the long-term analysis window of length M
short-term frames. w(m) is a rectangular window of L = 2 s dura-
tion and H = 0.5 s hop size. The final fingerprint code at time p is
then created by grouping the frequencies &k and x (merging adjacent
frequencies) until reaching a 36 dimensional concatenated vector.

2.2. Search strategy and post-processing

The search strategy is straightforward and consists in selecting
among the code database the k nearest neighbors to the code an-
alyzed. The result is a pair of matrices containing the audio item
indexes and the time position in the item. The columns denote the
sorted neighbors and the rows the timestamps p. Figure 1 shows an
example of these matrices, where the each color denotes an item.
The post-processing correlates the results of adjacent frames,
and prunes the accidental detections of erroneous items. As shown
in the figure, it consists in finding pairs of elements in the matrix
for which the time differences correspond in the analysis stream and
the audio item detected (as in the green example). This procedure
discards a huge amount of elements, and when applied to sequences
of several correlated examples, only keeps the correct item index.

3. PERCEPTUALLY-SCALED CODE

Grouping of frequency in Bark-bands: Compared to the base-line
code as indicated in Eq. 1, a first modification consists in grouping
the frequencies k of | X (k,m)|in b € [1, B = 24] Bark-bands [11].
Conversion of the frequencies in Hz to the Bark scale is given by
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Fig. 1. TIllustration of the post-processing scheme based on the
matching of time differences between the stream and the item.

Grouping is performed by summing the energy of | X (k,m)|? for

f& € b. The resulting signal for band b is denoted by Z (b, m).

Sone-scale: We denote by s(n) a pure audio signal and by ¢(n) the
impulse response corresponding to a transmission channel (equal-
ization performed in radio or TV, loudspeaker or microphone char-
acteristics, ...). Our recorded signal can then be expressed as z(n) =
s(n) * t(n), or X (k) = S(k)T(k) in the frequency domain. The
influence of the transmission channel can be avoided by expressing
X (k) in log-scale: log(X (k)) = log(S(k)) + log(T'(k)). Since
T'(k) is considered constant over time, it will be located into the DC
component of our second STFT. We therefore apply the log-scale
to Z(b, m) before computing the second STFT. In practice, a sone-
scale is used rather than a log-scale:

1 it Z(b,m) <1
Z(b,m)—40
10 if 1<Z(b,m)<40 (4

Zsone(b,m) = 20 2.642
(M) it Z(b,m) > 40

40

4. CODE SYNCHRONIZATION

A study on the code robustness in the subsection 5.1 below will show
that, among a collection of common audio degradations, the sole
shifting of the frame positions between the stream signal and the au-
dio excerpts is a major cause of distortions on the fingerprint codes.
Figure 2 shows an example of comparison between an original frame
(in solid green) and a slightly shifted frame (in dotted blue).

Comparison |,

NTime-shift

Fig. 2. TIllustration of the time-shift audio degradation, observed
when comparing frames with slightly different offsets.

In order to reduce the effect of time-shifts, we propose a basic
scheme of synchronization through the detection of reliable time-
stamps. These timestamps are used to define the starting position
of the frames (i.e. the p variable in Eq. 2) in the signal before the
fingerprint computation. This implies that for each timestamp de-
tected, the STFT frames are synchronized with it. The rest of the



code computation in unchanged. In order to cope with the possi-
ble signal distortions, we rely on the onset positions, assumed to be
robust under additional noise.

The onset detection phase follows here the algorithm proposed
in [12] and [13], which has shown very good results in the latest
MIREX contests. This algorithm aims at detecting transient peaks
through the evolution of the center of gravity of the time domain en-
ergy (tcg) in a short sliding window. The estimation of .4 is based
on the phase derivative, which proves to be more efficient, computa-
tionally speaking, than the direct estimation from the signal.

fW 7784’6(‘:"5) A(w, t)*dw
S Alw, t)2dw ’

where W stands for the sliding window, A(w, t) and ¢(w, t) for the
spectral energy and the phase of the frequency w at instant ¢. It is
stated that a transient is likely to occur when t.4 decreases under a
given threshold C., i.e. when the center of gravity reaches the center
of the window, from its right part. Please refer to the original article
[13] for more precision on the onset detection algorithm.

The threshold C. is empirically tuned during the training phase,
to control the expected mean rate of onsets detected. However, the
use of a threshold does not guarantee a regular rate of onset detec-
tions, nor does it guarantee the detection of any onset for a given
track. This issue will be addressed in the future.
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5. EVALUATION

5.1. Study on the code robustness

In order to achieve the proper identification of audio items in a sig-
nal, the fingerprint code must be robust against common distortions
on the signal, while remaining discriminant between the different
items’ codes. To assess the reliability of our code, we reproduce
here the experimental protocol proposed by Haitsma and Kalker [1].

This experiment consists in applying a series of controlled dis-
tortions on clean audio samples, and computing the distance between
the fingerprint codes extracted from the clean and the distorted sam-
ples. While the authors originally focus on 4 audio tracks under
copyright, we extend here this study to a collection of 500 tracks>
extracted from the public dataset Magnatagatune [14].

The set of distortions used here is a subset of [1] :

e MP3 encoding/decoding at a low bitrate (8 Kbps),

o GSM encoding/decoding at full rate,

e Amplitude compression, with ratios 8.94:1 if |[A| > —28.6 dB;
1.73:1if —46.4 dB < |A] < —28.6 dB; 1:1.61 if |A| < —46.4 dB,
e Equalization with a 10-band equalizer,

o Noise addition using uniform white noise,

o Time shifting with a delay varying between 0.02 s and 0.5 s,

e Broadcast, simulating a distorted real broadcast emission by cas-
cading equalization, dynamic compression and MP3 encoding.

The mean distances (along with the standard deviation, std) be-
tween distorted and original codes are indicated in Table 1. In order
to give an upper bound, we indicate in the last row the distance with
codes computed from random audio samples outside the dataset.

While this experiment indicates that the code is quite robust
against basic distortions, such as additional white noise or equal-
ization, the audio encoding schemes (GSM and MP3) induce more
noise, as does our simulation of a broadcast emission. However,
time shifting is clearly an important source of distortion, even with

2The exact list of audio items used for this experiment can be found at
http://www.mathieuramona.com/Main/Mag500.

Degradation | mean | std
Noise addition | 0.28 1.47
Compression 099 | 0.85
Equalization 1.23 | 1.63
GSM 1.53 | 142
MP3 8 Kbps 252 | 221
Broadcast 3.67 | 3.64
Shift 0.05 s 0.72 | 0.88
Shift 0.1's 1.85 | 1.52
Shift 0.25 s 428 | 2.58
Shift 0.5 s 7.38 | 3.82
Random 20.66 | 9.02

Table 1. Mean and standard deviation of the code distances under
different audio degradations.

a slight shift delay of 0.1 s (i.e. only 5% of the window size used to
compute the code). Our measures actually show that the evolution of
the mean distance between the codes is roughly proportional to the
shift delay when the latter is between 0 and the hop size (H=0.5 s).

In the case of a live analysis of broadcast audio streams, this
latter observation is a major bottleneck to the performance. Indeed,
since the item occurrences are obviously not synchronized with the
training items, the periodic pattern of frames with a hop size of H
induces an expected mean shift of H/4 between the frame of an
occurrence and the closest frame in the database.

5.2. Corpus for the evaluation

The evaluations are performed on a part of the train set of the Quaero
project. This set consists of a collection of 10 whole days (i.e. 240
hours) of broadcast radio stream encoded in WMA at a very low
bitrate (about 10 kbps), and is provided by the media monitoring
company Yacast, as a partner of the Quaero project. The reference
items are excerpts of 30 s of the same quality. The corpus contains
around 2000 occurrences in the streams, searched among a database
of 1000 training items.

The corpus has been carefully re-annotated, by locating very
precisely the start and end times of each item signal in the occur-
rences in the streams (with a precision of about 0.01 s). This allows
us to provide a reliable evaluation of the correspondence between
the onsets found in the items and in the streams.

5.3. Assessing the onset selection scheme

For each onset detection in the stream, we determine the minimum
delay between its timestamp (minus the start time of the occurrence
in the stream) and the one of the onset detected on the correspond-
ing audio item. Figure 3 shows the distribution of these minimum
delays over the whole set of onsets detected in the stream. The em-
pirical distribution estimated from the system with regular frames is
shown in blue. In dotted black is represented the corresponding ex-
pected distribution, that is uniform between 0 and half the hop size
(% = 0.25 s), assuming that the occurrences are randomly drawn in
the streams. The gain of using the onset detection scheme is quite
clear from observing the distribution in red. Indeed, a large pro-
portion of the stream frames are clearly closer to the nearest track
frame than with regular frames. Since the delay between two adja-
cent frames is not upper bounded anymore, a counterpart is observed
in the presence of non-zero probabilities for delays above g How-
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Fig. 3. Distributions of the time delay between each stream code and
the nearest code in the corresponding item.

ever Tab. 2, that indicates the empirical mean minimal delay on all
the frames, shows that the onset detection remains advantageous,
when compared to a regular frame basis.

0.104
0.124

Onset detection
Regular frames

Table 2. Empirical mean of the minimum delays between corre-
sponding codes in the database and the stream.

5.4. Comparison against state-of-the-art

This second evaluation compares the performance of the baseline
system with and without the Bark and Sone-scale improvements in-
troduced here, along with the onset detection proposed later on. A
comparison with two state-of-the-art methods is also proposed, re-
lying on a re-implementation of the Philips system [1] and of the
Shazam system [2], based on the code provided by Dan Ellis [15].
The Philips evaluation includes both a version without and with the
improvement involving least reliable bit tests, over 5 bits (detailed
in [1]). The score metric, based on the evaluation protocol of the
Quaero campaign, is simply the difference of the correct identifica-
tion rate and the false alarm rate. We also consider here the missed
detection rate (equal to 1 minus the correct rate). Results are shown
in Tab. 3. While it is not possible to comment on our implementation
of the Shazam system, since most of the parameters are not specified
by the author, the results nevertheless clearly show the relevance of
our fingerprint code definition, when compared to the state-of-the-
art, especially the Philips system, which is thoroughly detailed in
their publication. Moreover, results show that the improvements de-
tailed here increase the performance of our original baseline system.

6. CONCLUSION AND FUTURE WORKS

We have proposed here an original fingerprint code for audio identi-
fication, based on a more robust scheme than the major state-of-the-
art methods, along with two improvements. The first one is based
on perceptual scales of frequency and amplitude, and the second
aims at improving the synchronization between the compared codes,
through onset detection. The IRCAM system yields excellent re-
sults that clearly outperform our implementation of the system from
Philips and Shazam.

Future works will be dedicated to the improvement of the onset
detection scheme, in order to tighten the minimal delay distribution

System False Missed | Global
Alarm | Detection | Score
IRCAM Baseline 0.4 54 94.2
IRCAM Bark & Sone 0.1 4.3 95.6
IRCAM Onsets 0.0 3.8 96.2
Philips 0.0 12.1 87.9
Philips 5 bits 0.0 10.1 89.9
Shazam 10.3 11.3 78.4

Table 3. Comparative results on the Quaero corpus. The global score
is the difference of the correctly identified and false alarm rates.

further more, will guaranteeing a more regular temporal distribution
of detected onsets. We hope to emphasize more clearly the advan-
tage of the onset detection step by providing comparative results on
a much larger test set. Another major perspective for our system is
to address the problem of track occurrences with altered time-scales.
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