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ABSTRACT
In this paper we investigate the problem of singer identification on
acapella recordings of isolated notes. Most of studies on singer
identification describe the content of signals of singing voice with
features related to the timbre (such as MFCC or LPC). These fea-
tures aim to describe the behavior of frequencies at a given in-
stant of time (local features). In this paper, we propose to de-
scribe sung tone with the temporal variations of the fundamental
frequency (and its harmonics) of the note. The periodic and con-
tinuous variations of the frequency trajectories are analyzed on the
whole note and the features obtained reflect expressive and intona-
tive elements of singing such as vibrato, tremolo and portamento.
The experiments, conducted on two distinct data-sets (lyric and
pop-rock singers), prove that the new set of features capture a part
of the singer identity. However, these features are less accurate
than timbre-based features. We propose to increase the recognition
rate of singer identification by combining information conveyed by
local and global description of notes. The proposed method, that
shows good results, can be adapted for classification problem in-
volving a large number of classes, or to combine classifications
with different levels of performance.

1. INTRODUCTION

The goal of classification is to assign unlabeled patterns into a
number of known categories. A system of classification is based
on an appropriate description of the patterns (features) and on a
statistical algorithm (classifier) trained to learn the specificities of
each pattern for the given problem. To evaluate the performance of
a system, a new set of data is given to the classifier and the portion
of patterns assigned to their correct class is given as an indicator
of its global performance. However, each system of classification
has its own limitation. To increase the classification accuracy it is
necessary to introduce and combine complementary information
on the problem (either new representations of the patterns or new
specifications of the classes).

Classification of speech and musical signals has been largely
investigated this last decade and all sort of features (temporal and
spectral) and classifiers have been tested. A special attention has
been given to features related to the timbre. Timbre is a perceptual
attribute of the sounds that seems to be multi-dimensional. How-
ever, research has shown that timbre can be partly transcribed by
the spectral envelope of sounds. In speech processing area, the
source-filter model [1] clearly justify the use of spectral envelope
for speech recognition problem. Researches on instruments recog-
nition have also proved that spectral envelope was a good element
to discriminate musical instruments. The singing voice is a mu-
sical instrument that has much in common with speech. For this

reason, most of works carried out on the topic of singer identifica-
tion have based the description of sung signals on features derived
from the spectral envelope. They have obtained satisfying results
with this approach but to improve the identification performance
it is necessary to extract additional information on the signals of
singing voice.

In this study we suggest to describe signals of singing voice
with intonative and expressive elements characteristic of singing.
We propose a new set of features derived from the analysis of the
trajectory of the fundamental frequency (and its harmonics). In
a previous work [2] we have demonstrate that elements such as
vibrato, tremolo and portamento were efficient to detect the pres-
ence of singing voice within a song. We propose now to evaluate
if these features can be used to discriminate singers between them.
More precisely, we evaluate if intonative features can be combined
with timbre-based features to improve the performance of singer
identification.

The combination of information is not a straightforward prob-
lem. In our case, the patterns to be classified are notes sung acapella.
For each note, we extract timbre-based and intonative features.
Timbre-based features are computed on short frames (local fea-
tures) whereas information on intonation is obtained when con-
sidering the note globally (global features). As a result, the two
descriptions have different sizes and cannot be compacted into a
single feature-set without adding redundancy or deleting important
information. The only solution is then to train two classifiers on
each set of features separately and to combine their decisions after-
wards. Working with only two decisions, simple voting methods
cannot be applied. In addition we know from preliminary experi-
ments, that timbre-based features provide much better results than
intonative features. In general it is ticklish to improve a good per-
formance by combining information less accurate. The proposed
combination method is based on the class set reduction approach.
It starts with the feature set leading to the best performance. The
output of the classifier for this feature set is analyzed to deduce a
restricted set of possible classes. The deduction is done by regard-
ing the membership value (pseudo-posterior probability) for all the
classes. The second set of feature is then used to perform the clas-
sification within the reduced set of classes. The membership val-
ues, for the remaining classes, returned by the two classifiers are
then analyzed to take the final decision.

The paper is organized as follow: In section 2, we present
some related works on singer identification and on combination of
information. We present in section 3 the different elements of our
method: the features, the classifiers and the combination method.
The method is evaluated in section 4 on two data-sets composed
of accapella recording of notes. Finally, section 5 summarizes the
main results of the paper and offer some conducting remarks.

DAFX-1

Proc. of the 14th International Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

DAFx-127



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011

2. RELATED WORKS

2.1. On singer identification

Numerous researches have been carried out on the topic of singer
identification (SID) because the voice is for many listeners the el-
ement that focuses the most their attention. Most of the methods
propose to describe and recognize the content of audio signals with
spectral features such as MFCC ([3], [9], [6]), LPC and their vari-
ants ([4],[5]). The features are given as input to classifier to con-
struct a model per singer present in the data-set. To retrieve the
singer of a query song, the features extracted from this song are
compared to the models obtained in the previous step and the song
is assigned to the class whose model is the most likely. In previous
researches SVM [3], GMM [4] [5] [6] [7] [8] ANN [3] [9] have
been tested for the task of SID. We consider that models obtained
using features extracted from audio mixtures (i.e. voice + instru-
ments) represent the identity of the artist (or music band) instead
of the singer. To get models more representative of the singer it
has been suggested in [9] and [4] to perform the classification us-
ing the segments of the song where the voice is present only (i.e
they discard the purely instrumental portions of the song from the
analysis). These methods still rely on features extracted from au-
dio mixtures and it is therefore not possible to examine how much
the results obtained are corrupted by the presence of instrumental
background. To obtain information directly related to the voice on
mixtures it has been proposed in [7], [8] to deduce a solo-singer
model from a model obtained on purely instrumental parts of the
song and a model obtained on the vocals (voice+instruments) por-
tions. In most of these studies, they do not find any improvement
by treating separately instrumental and vocal parts of the song. We
can suppose that in some cases, the performances of systems based
on spectral features obtained on mixtures directly are strongly af-
fected by the “album" or “produced effect" [10] (all songs from
the same album/producer share overall spectral characteristics). It
has also been suggested to perform the classification on isolated
vocals: in [5] the voice is isolated by reducing the instrumental
accompaniment, in [6] the voice is re-synthesized using the com-
ponents harmonically related to the fundamental frequency of the
sung melody. Some studies ([6] or [11]) have compared results
obtained on acapella recordings with results obtained on voice iso-
lated from mixtures (where the mixtures were created using the
same acapella recordings mixed with other instrumental tracks).
They usually reported that the performances obtained on isolated
vocals is much lower than the performances obtained on acapella
recordings and suggest that the loss is due to the artifacts created
when isolating the voice.

In this study we work in the ideal case of acapella record-
ings and suggest performing identification by combining local and
global descriptions of the voice. So, before presenting the details
of our method (features and combination rules) we review in the
next paragraph some of the basic points of the information combi-
nation theory for classification problem.

2.2. On combination of decisions

Each system of classification (features+classifier) has its own lim-
itation. To improve classification accuracy it has been proposed to
combine complementary information on the same problem. The
best way to obtain complementary information on a problem is
probably to describe the patterns with different approaches. In
some ideal cases the feature-sets given by the different descrip-

tions can be directly combined to form a unique feature-set (early
fusion). In many cases, when the features have different types,
ranges of values, size or different physical meanings, grouping all
the features together can completely degrade the information con-
veyed by the features when considered independently. For this
reason, it has been proposed to combine the decisions of the sys-
tems of classification instead (late fusion). In this case, each clas-
sification system works with its own feature-set. Combination of
decisions can be grouped into two categories according to their
architecture: parallel and sequential.

In parallel combination all systems involved in the combina-
tion have to classify the same data-set into the same known cat-
egories. Then, the final decision is taken by applying predefined
rules on the decisions of all the classifiers. A classifier can re-
turn: a single class, a list of classes ordered in term of preference
or a membership value for each class [12]. From the membership
values we can deduce the ranked list of classes, from the list we
can deduce the most likely class. An overview of methods de-
veloped for each type of outputs is presented in [13]. The more
complete outputs, the more difficult to combine. Theoretically, it
is not feasible to combine membership measurements obtained us-
ing different feature spaces or different type of classifiers because
their respective values may not have different significations as ex-
plained in [14]. However, the methods of transformation presented
in [15] can be applied to normalize the outputs.

The goal of the combination is to reach a higher accuracy than
each of the individual classifications. In practice, when all classifi-
cations have equivalent accuracies, most of the basic combination
rules (as majority voting or sum-rule) can reach this goal as long
as the classification are not too correlated. However, when the
systems to be combined show different levels of performance it
is necessary to introduce knowledge on the relative performances
into the combination rule. An easy way to realize such a combina-
tion is to consider the classifiers outputs as a new features and to
train the combination rule (or a meta-classifier). Methods based on
trained combiners generally show good results, but to avoid a lack
of generalization, a very large amount of training data is necessary.
Indeed, if the combiner is trained on the data-set used to learn the
specificities of classes there is a large risk of over-fitting. To avoid
this, the data set should be divided into three parts. The models
should be learned on the first part and evaluated with the second
part of the data. The results obtained should then be used to train
the combiner. The global performance should be evaluated on the
remaining part.

In sequential combination the classification systems are ap-
plied one after another using the output of the previous classifier
to define a new problem for the next classifier. The final decision
is generally given by the last classification (the decision-making
process can be viewed as a decision tree). From these sequential
methods, we retain:
• The hierarchical methods [16] that can be applied when the data
has a taxonomy,
• the cascade methods [17] where a pattern is processed by a new
classifier until it is classified with a certain degree of confidence
• and the multi-stage methods [18] that attempt to reduce the num-
ber of possible classes at each stage until one class remain possible.
Sequential methods are shown to be specially adapted to solve
problem involving a large number of classes and are particularly
suitable for the recognition of rare event (i.e when the classes of
the data set are not well balanced). With sequential classification,
there is no possible backwards analysis. If the decision taken at
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one step is wrong the full process will be affected.

3. DETAILS OF THE PROPOSED METHOD

We first introduce our local and global features used to describe the
sound samples, then we briefly present the classifiers used next in
the evaluation. Finally, we present the combination rule developed
to combine the different type of features.

3.1. Sound description

Any sound can be considered as a pattern varying along two di-
mensions: the time and the frequency axis (as shown by the com-
mon representation of sound: the spectrogram). To obtain an ac-
curate description of a sound we suggest to describe sounds over
these two dimensions: (1) describe behavior of the frequencies at
a given time (on one frame of few ms) and (2) describe the tempo-
ral variations of one frequency (or one band of frequencies) on a
interval of time (segment of few sec). Features extracted at a given
time of the signal and repeated along the signal will be referred as
local features and features extracted on a longer interval of time
will be referred as global features. Local features have focussed
the most attention in all audio classification problems. The rela-
tive amplitude of frequencies, represented by the overall shape of
the spectrum (the spectral envelope), has been proved to be effi-
cient to describe and discriminate sounds in tasks of speaker and
musical instruments recognition. In this study we work on clas-
sification of sung signals. Singing voice differs from speech in
his musical intention and also in its production. One of the ma-
jor difference is that sung sounds are most of the time voiced and
sustained to allow intelligibility of the lyrics. On these sustained
voiced sound, many characteristics can be obtained by analyzing
the temporal variations of one frequency band on a given interval
of time. These variations, intentional or not, enhance the singing
voice in two points: first, these variations add expression but also
they help the voice to stand out of the instrumental background.
In the next paragraph we present the features used to describe the
spectral envelope on this study. Next, we present the features ex-
tracted on the frequency trajectories.

3.1.1. Timbre: Local description of sound

Information related to the timbre is supposed to be conveyed by the
spectral envelope. This idea comes from the description of speech
sound using the source filter model by Fant [1] . In this model
we suppose that the source is a periodic train of pulses (where the
pitch of the produced sound is given by the distance between the
pulses) modified by a filter: the vocal tract. The goal is to deccor-
relate the filter from the source to obtain an approximation of the
transfer function of the vocal tract. The vocal tract enhances some
frequencies (phenomene of extra resonnance) . The response of
the filter is given by the global shape of the spectrum: the spectral
envelope.

Many methods, with different theoretical backgrounds, have
been developed to estimate and encode the spectral envelope. In
our evaluation, we use three different representations of the spec-
tral envelope: the coefficients derived from the Linear Predictive
Analysis (LPC), the Mel Frequency Cepstral Coefficients (MFCC)
and the Cepstral Coefficients derived from the True Envelope (TECC).

LPC and MFCC have been already used for the task of singer
recognition and for we refer the reader to the works presented in

2.1 for a detailed description of these coefficients. The true enve-
lope, introduced in [19], has been mostly used in the speech pro-
cessing area. As shown in [20], this envelope estimation is more
robust (especially for high pitched signals) than many other en-
velope estimation methods. Like the MFCC, the true envelope is
estimated in the cepstral domain. This domain offers the possibil-
ity to transform the convolution of two signals into the addition of
their spectra. So that, the cepstrum of a speech signal is the addi-
tion of the cepstrum of the vocal tract response and the cepstrum of
the excitation signal. The real cepstrum of a discrete signal x(n)
is defined as the inverse Fourier transform of the log-amplitude
spectrum of x(n). If X(k) designates the kth point of the discrete
Fourier transform (DFT) of x(n) (with K the total number of point
of the DFT), the cepstrum C(m) of x(n) is given by:

C(m) =

K−1X
k=0

log(|X(k)|)e 2iπkm
K (1)

True envelope estimation is based on iterative cepstral smooth-
ing of the log-amplitude spectrum. We denote Ci(k) the cepstral
representation of the envelope at the ith iteration for the bin k of
the DFT (1). The algorithm iteratively updates the smoothed in-
put spectrum Ai(k) using the maximum of the original spectrum
|X(k)| and the current spectral representation.

Ai(k) = max(log(|X(k)|), Ci−1(k)) (2)

The cepstral smoothing is then applied to Ai(k) to obtain Ci(k).
The iterative algorithm stops if for all bin k and a fixed threshold
τ the relation Ai(k) < Ci(k) + τ is satisfied.

At the end of this operation, the true envelope has the same
size than the cepstrum. To concentrate the information conveyed
by this envelop into a smaller number of coefficients, the Discret
Cosine Transform (DCT) is computed on the envelop and the firsts
coefficients are retained. (This method is similar to the method
applied to obtained the MFCC). We named in the following, the
coefficients obtained TECC.

The goal of any envelope estimation is to retain from the sig-
nal the contribution of the filter by discarding information of the
pitch. For high pitched signals this estimation can be problematic
since the envelope can start following the peaks related to the pitch
instead of the global shape. In general, if the order of the model
is low (small number of coefficients) this problem is avoided but
a too low order is not be sufficient to preserve the global shape.
Finding the optimal order is not straightforward. Experimentally
we chose: 25 TECC, 20 MFCC and 15 LPC to model the envelope
on pseudo-stationary sung signals.

3.1.2. Intonation: Global description of a note

As explained above, the singing voice differs from the speech in
its musical intention and its production. Most of the sung sounds
are voiced and sustained. Because of the mode of production of
voice two kinds of variations appear on sustained tones:

Vibrato refers to a periodic modulation of frequency. It is a
natural effect of singing voice that can be voluntary enhanced by
the singer but exists naturally due to the mechanism of the singing
production. When a sung tone is emitted with a vibrato, a range
of frequencies (centered on the note frequency) is browsed by the
vocal tract. Because of its shape, the vocal tract enhances the reso-
nance of some frequencies. So that, depending on the morphology
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of the singer, a frequency modulation is accompanied with a mod-
ulation of amplitude. The latter is referred as tremolo in music.
In addition, when two distinct (and distant) notes are sung in the
same breath, the singers pass from one to another by a continu-
ous variation of the frequency. If the interval between the notes
is small (smaller than a 3rd) the smooth transition is referred to
as legato. When the gap is higher, the transition is named porta-
mento. Portamento is a singing specific term, when string instru-
ments glides continuously from one pitch to another the transition
is named glissando.

To obtained information related to periodic and continuous
(resp. vibrato and portamento) of a given note, we propose to pa-
rameterize the fundamental frequency of a note with the following
model:

f(t) = f̄ · (df (t) + x(t)) + ε(t) (3)
Where f̄ is the mean of f(t) representing the perceived pitch, x(t)
is a periodic modulation of frequency representing the vibrato, and
df (t) is a continuous variation of the pitch representing the porta-
mento.

The parameters can be computed as follow:
• First, f̄ is given by the mean of f(t). In order to get equiv-

alent values for two partials with frequencies harmonically
related (fp(t) = k.fq(t), k ∈ Q), the other parameters of
(3) are computed on a normalized version of the frequency
trajectory: f(t)/f̄ .

• The quantity f(t)/f̄ is low-pass filtered with a cutoff fre-
quency fc = 4Hz. The result of the filtering process is a
curve representing the relative frequency variation df (t)
parameterized with a third-order polynom Pdf .

• The periodic component x(t) is obtained by subtracting
the relative frequency deviation df (t) from the relative fre-
quency: x(t) = f(t)/f̄ − df(t).

The vibrato term x(n) can be written as a periodic modula-
tion characterized by an amplitude (or extent) E, a frequency of
modulation (or rate) r and a phase at the origin φ0:

x(t) = E · cos(2πrt+ φ0) (4)

The vibrato parameters (only E and r are of interest) are es-
timated using classical methods for sinusoidal parameters estima-
tion.

As mentioned earlier, in singing the presence of vibrato im-
plies the presence of an amplitude modulation (tremolo) and we
suppose the relation between the two modulation singer-specific.
The AM’s parameters (amplitude and rate) are estimated using
equations (3) and (4) applied on the function of amplitude a(t).

a(t) = ā.(da(t) + x(t)) + ε(t) (5)

In this case, the term ā is related to the global loudness (or
the dynamic {p,mf, f, . . . }). The low variation da(t) transcribes a
possible variation of dynamic (crescendo for example). The sinu-
soidal part x(t) represents the amplitude modulation itself.

In practice, the sinusoidal components (partials) are tracked
along the studied sound and the analysis is performed on each par-
tial.

3.1.3. Duality of descriptions

We can resume the features obtained on one note, using these two
complementary descriptions as presented in Table 1.

Feature
type

Local (see sec.3.1.1) Global (sec.3.1.2)

Nature of
the descrip-
tion:

Local variations
(High frequencies)

Overall structural in-
formation (Low fre-
quencies)

Analyze
performed
on:

p stationary portions
of the signal (frames)

the whole note

Size of the
description:

1 feature matrix
per note X =
[~x1, . . . , ~xp] where
~xi (with n coeff )
is the feature vector
obtained on frame i

1 feature vector per
trajectory of fre-
quency analyzed: ~x,
either the fundamen-
tal f0 or p’ partials
analyzed

Dimension n× pframe p′partiels × n′
Table 1: Global and local features extracted on a sung tone

3.2. Learning the specificities of classes

It exists numerous statistical algorithms for pattern recognition.
We present in table 2 three classes of algorithm that differ in their
approach. All of them perform supervised classification. Next, in
the evaluation, we used one algorithm (the one given in example)
from each class.

Type Generative Discriminative Instance-based

General
Idea
Principle Build one

model per
class

Learn the
boundaries
between the
classes

Compare items

Example Gaussian Mix-
ture Model

Support Vector
Machine

k-Nearest
Neighbors

GMM SVM kNN
Classify
new
pattern

Likelihood for
each class

Affinity to the
margins

Distance to the
closest neigh-
bors

Output Posterior prob-
ability

Distance Distance

Table 2: Different approaches to classify patterns

As shown on the last row of table 2 the outputs of classifiers
can have different type and range in different intervals. We can
consider, without lost of generality, that all the outputs have values
in the interval [0, 1] and represent a (pseudo) posterior probability
that an item belong to one class. The transformation of classifier
outputs into pseudo-posterior probability can be done using the
softmax method proposed in [21].

Using the features and the classifier presented above we sug-
gest to identify singer by the two types of information. In the next
section we detail the method use for the combination.
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3.3. Combination method

The proposed approach is a multi-stage classification method that
reduces at each step the set of possible classes until a reduced set
of classes remains possible. Then the membership measurements
of all classifiers for each remaining class are analyzed to take a
final decision.

The approach proposed here is especially adapted to:
•Combine classifications with different levels of performance.
• Solve problems involving a large number of class with no hi-

erarchical organization of the data.
• Combine a low number of representations (when a cascade

classification can not be processed until only a single class remain
possible)

We first introduce the notation and then present the framework
and discuss the choice of the parameters of the method that will
later be applied to combine local and global features.

3.3.1. Notations

• Each pattern z (in our case one note) is assigned to one of
the N possible classes: Ω = {ω1 . . . ωN} .

• Each pattern can be described using different set of features,
the set of available descriptions Di is denoted by D =
{D1 . . . DL} .

• The set of classifiers is denoted by C = {C1 . . . CM} .

• A system of classification is composed of one description
and one classifier: S(k) =

“
D(k), C(k)

”
where D(k) ∈

D and C(k) ∈ C .

• In our problem, the first part of the combination is done
using a sequential scheme. For a given pattern z, at each
step of the classification, the number of possible classes
is reduced. So that, each system works with a specific
Ω(k)(z). If S(k)(z) is performed before S(k+1)(z), thus
Ω(k+1)(z) ⊂ Ω(k)(z) ⊂ Ω(0) = Ω.

• For a given classification task, all systems of classification
are trained using the same data set. Since the pattern rep-
resentation D(k) of this data-set changes for each k, the
training set associated with S(k) is denoted by T (k). Fi-
nally, we denote by T (k)

↓ (z) the training-set reduced to
patterns with labels in Ω(k)(z).

• In the rest of this section we work with classifiers return-
ing a membership measurement for each class of the prob-
lem. The output of such a classifier is denoted C(k)(z) =

M (k)(z) =
h
m

(k)
1 (z), . . . ,m

(k)
N (z)

i
• Working on the combination of classifier outputs we store

the decision of the K classifiers for the N given classes in
a decision profile matrix (of size N ×K) denoted by M

3.3.2. General framework

The idea behind our method is the following: The probability to
retrieve the correct class of an unknown pattern increases when the
number of possible classes of a given classifier decreases. So that,
a classification system with a relative low accuracy can enhances
the performance of a system with higher accuracy if the problem

given to the weaker system is simplified by the more accurate sys-
tem. By “simplified problem” we mean a problem with a smaller
number of classes.

The general framework can be summarized as follow:
The algorithm starts with a set of N class Ω(0) = Ω, two de-
scriptions of the same data set T (1) and T (2) and two classifiers
C(1) and C(2). For each pattern z, system S(1) returns a measure-
ment vector M (1)(z). The N (1) most likely classes are retained
to form a new class-set Ω(1) ⊂ Ω(0). The training-set used by
the second system S(2) is reduced to patterns with classes in Ω(1).
The training-set derived from T (2) is denoted T (2)

↓ . Then, the sec-

ond classification system S(2) trained on T (2)
↓ is applied to the

unknown pattern z. The process can be iterated as long as:

• The last classifier does not return a single class.

• Another system (either a new description of a new classi-
fier) is still available.

If the method is iterated until only one class remain possible
(N (K) = 1) then the method works as a decision tree. If the
process is stopped when N (K) > 1 classes remain possible, then
the rule for parallel combination can be applied on the output of
the classifiers for theN (K) remaining classes. In opposition, if the
class-set is not reduced at each step (N (K) = N), then the method
is equivalent to a classical parallel scheme of combination.

The method is illustrated in Figure 1.

T(1) :
training-set  

Ts(1)

z

T(2)

Ts(2)

z

System 1
S(1) = (D(1) ,C(1))
D(1) = [Ts(1), T(1)]

C(1)

T(2)
↓

C(2)

Ω0={ω1,...,ωN}

Ω(1) ⊂ Ω(0) 

Ω1

Ω(2) ⊂ Ω(1) 

System 2
S(2) = (D(2) ,C(2))
D(2) = [Ts(2), T(2)]

T(K)

Ts(K)

z

T(K)
↓

C(K)

Ω(K-1)

System K
S(K) = (D(K) ,C(K))
D(K) = [Ts(K), T(K)]

...

M1 = [m11, ..., m1
N] M2 = [m21,..., m2

M] MK = [mK1,..., mK
L] M=[MK;...;MK] 

ω

Figure 1: Scheme of the proposed method to combine K systems

We know discuss the choice of the different parameters of the
method.

3.3.3. Choice of parameters

Choice of Ω(k): The number can be simply defined by a re-
lation of type: N (k) = N(k−1)

c(k)
where c(k) are defined before-

hand. Dynamic rules, as Bayesian information criterion or elbow
method, applied on the measurements m(k)

n , can be used to define
the number of class selected at each step.

Choice of feature space and classifier: There is no restriction
on the choice of the descriptions D(k) and the classifiers S(k).
Thus for i 6= j, the combination system can be set up with D(i) =
Dj or Ci = Cj . From our experiments the proposed method is
still accurate if Si = Sj .

Combination rule: At the end of the sequential stage N (K)

classes remain possible. TheK vectors of measurementsM (k)(z)

are reduced to values of classes in Ω(K) before being combined
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into a decision profile matrix M . We suggest to first normalize
each column of M on the N (K) remaining classes, and then to
apply a sum-rule for the reasons explained in [14].

Sequential organization of the S(k): If knowledge on the
performances of the K systems is available, we recommend to put
the best systems at the top of the iterative process. If all systems
have equivalent performances, or if the relative performances can-
not be estimated, the systems that require the lowest number of
computation should be place at the end of the process to reduce
the cost.

4. EVALUATION OF THE PROPOSED METHOD ON A
TASK OF SINGER IDENTIFICATION

We evaluate the proposed method on two distinct sets of data. Both
sets are made of isolated notes and we report for each configuration
tested the percentage of note assigned to their correct singer. The
task is referred to as “closed-set identification” problem (i.e each
note belong to one and only one singer of the set).

4.1. Data-set

The two sets are chosen for their complementarities.
The first data set, LYR, is composed of recordings made by 17

lyric female singers in laboratory conditions. The full description
of this set is given in [22]. For each singer, the same set of tones
is available (3 pitches: A5, D5, G4 sung with 3 levels of intensity:
p, mf, f and each couple [pitch, intensity] is repeated 3 times). On
this set, the task is referred as “closed-set, note-dependent identi-
fication” (as text dependent identification).

The second data set, POP, has been created by segmenting
the vocal track of “pop-rock” songs into sustained notes. For each
singer, we work with notes extracted from 3 songs. The task there
is referred to as “close-set, note-independent” identification be-
cause each singer has a set of notes related to its tessitura. In this
set, male and female singers are present.

The two data-sets can be summarized as shown in table 3.

Data-set Name LYR POP
Type of voice Lyric female

singers
Rock-Pop singers

Nb of singer 17 (females: F ) 18 (8 Males / 10 F)
Nb of sample per
singer

27 notes per
singer

3 songs per singer
segmented into ≈
50 notes each

Nb of sample per
set

27 × 17 = 459
notes

2492 notes

Recordings Laboratory con-
dition

Personal recording
system

Nature Isolated notes Notes extracted
from songs (in
context)

Task Note-dependent Note-independent
Table 3: Description of the two data-sets used for the evaluation

4.1.1. Composition of training and testing set

The evaluation is done using supervised machine learning method.
Both data-sets are divided into three folds: the training phase is
done on the data of 2 folds and the validation is conducted on the

remaining data. Evaluation is done using a 3 folds cross-validation
obtained by rotating folds, and for each experiments we report the
average accuracy of the 3 experiences.

On LYR,the set of sample available for one singer can be sum-
marized as shown in table 4. To cover the variability of one singer

LYR p mf f
A5 1 2 3 1 2 3 1 2 3
D5 1 2 3 1 2 3 1 2 3
G4 1 2 3 1 2 3 1 2 3

Table 4: Data available for one singer in LYR

and build more general models, we put into one fold data with all
available pitches and intensities. To avoid having too similar data
in the training and testing data-set all repetitions of the same note
(pitch, intensity) are putted into the same fold. We illustrate in
table 4 the repartition of the samples from singer into the 3 folds
(where each color represent one fold).

On the POP data-set, each singer uses its own system of record-
ings and sometimes this system changes from one song to another.
To ensure that the identification is performed on the singer identity
and not on the song (album effect) we chose to put in one fold all
notes extracted from one song. Thus, for each fold evaluation, the
singer identity is learned using the notes obtained on two songs and
the model obtained is tested on the notes of the remaining song.

4.2. Application of the proposed method

We now evaluate how the singer of a given note is retrieved when
using local and global features independently and how the identi-
fication is enhanced when local and global features are combined
with the method presented in 3.

The combination method is applied for K=2 systems of clas-
sification where the first system is based on local features and the
second one on global features. We thus have:
• Systems: S(1) =

“
D(1), C(1)

”
and S(2) =

“
D(2), C(2)

”
• Descriptions: D = {D1, . . . , D4} with Di for i = 1 . . . 3 are
representations of the data based on local features:
(D1 ← TECC, D2 ←MFCC and D3 ← LPC ) and
D4 is based on global features ( D4 ← INTO ). Thus we have

D(1) = Di with i = {1, 2, 3} and D(2) = D4

. Experimentally we use 25 TECC, 20 MFCC, and 15 LPC.
•Classifiers: The available set of classifier is denoted by C where
C = {C1, C2, C3} = {SVM,GMM,SVM}. All possible
configurations are tested for the combination:

∀j , C(j) = Ci with i = 1, 2, 3

• Class-set reduction rule: The number of classes remaining at
the end of the first stage is defined dynamically. The membership
values are normalized such that their sum is equal to one. The
classes that explain 80% of the posterior probabilities are retained
to form the new subset of classes of size N (1).
• Combination rule: Once the membership measurements for the
N (1) remaining classes have been normalized and concatenated to
form a decision profile matrix, we apply a “sum-rule” to take the
final decision for the reasons explained in [14].
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Feature I TECC MFCC LPC
Feature IIC1              C2 SVM 84.97 kNN 83.22 GMM 77.56 SVM 73.42 kNN 72.55 GMM 65.36 SVM 80.61 kNN 77.78 GMM 69.06

SVM   (40.74) 85.84 82.79 81.92 79.09 78.43 75.16 86.06 81.05 77.34

Into GMM  (39.22) 85.19 83.01 81.05 79.3 78.65 75.38 83.66 80.83 78.21

Harmo kNN   (43.57) 87.15 86.93 82.14 78.65 76.91 76.03 85.19 85.19 78.43

SVM   (42.48) 88.24 87.58 84.31 78.88 80.39 77.34 85.84 83.66 80.17

Into GMM  (42.70) 86.49 85.84 84.75 79.3 79.96 76.03 85.4 83.44 79.96

InharmokNN   (39.22) 86.06 86.27 83.66 76.69 75.82 77.56 84.1 83.01 79.52

Feature I TECC MFCC LPC
Feature II SVM (84.97) kNN (83.22) GMM (77.56) SVM (73.42) kNN (72.55) GMM (65.36) SVM (80.61) kNN (77.78) GMM (69.06)

SVM (42.48) 89.11 87.8 84.97 79.3 78.21 76.69 86.93 84.97 79.3

Into GMM (42.70) 86.93 86.27 84.97 79.52 80.39 76.69 86.93 83.88 79.74

kNN (39.22) 87.58 87.8 81.7 78.21 77.12 73.86 84.97 83.88 74.29

LYR

Feature I TECC MFCC LPC
Feature II SVM (73.57) kNN (69.02) GMM (69.60) SVM (64.66) kNN (59.26) GMM (56.21) SVM (69.10) kNN (63.81) GMM (56.17)

SVM (50.12) 78.97 72.92 74.07 0.71 0.68 0.56 74.85 69.60 66.05
Into GMM (46.91) 70.72 68.29 72.80 0.65 0.61 0.60 69.92 66.74 61.23

kNN (43.25) 73.92 69.80 71.99 0.67 0.64 0.62 70.41 65.97 64.37

POP

Table 5: Results of combination method for singer lyric singer identification (LYR)

Feature I TECC MFCC LPC
Feature IIC1              C2 SVM 84.97 kNN 83.22 GMM 77.56 SVM 73.42 kNN 72.55 GMM 65.36 SVM 80.61 kNN 77.78 GMM 69.06

SVM   (40.74) 85.84 82.79 81.92 79.09 78.43 75.16 86.06 81.05 77.34

Into GMM  (39.22) 85.19 83.01 81.05 79.3 78.65 75.38 83.66 80.83 78.21

Harmo kNN   (43.57) 87.15 86.93 82.14 78.65 76.91 76.03 85.19 85.19 78.43

SVM   (42.48) 88.24 87.58 84.31 78.88 80.39 77.34 85.84 83.66 80.17

Into GMM  (42.70) 86.49 85.84 84.75 79.3 79.96 76.03 85.4 83.44 79.96

InharmokNN   (39.22) 86.06 86.27 83.66 76.69 75.82 77.56 84.1 83.01 79.52

Feature I TECC MFCC LPC
Feature II SVM (84.97) kNN (83.22) GMM (77.56) SVM (73.42) kNN (72.55) GMM (65.36) SVM (80.61) kNN (77.78) GMM (69.06)

SVM (42.48) 89.11 87.8 84.97 79.3 78.21 76.69 86.93 84.97 79.3

Into GMM (42.70) 86.93 86.27 84.97 79.52 80.39 76.69 86.93 83.88 79.74

kNN (39.22) 87.58 87.8 81.7 78.21 77.12 73.86 84.97 83.88 74.29

LYR

Feature I TECC MFCC LPC
Feature II SVM (73.57) kNN (69.02) GMM (69.60) SVM (64.66) kNN (59.26) GMM (56.21) SVM (69.10) kNN (63.81) GMM (56.17)

SVM (50.12) 78.97 72.92 74.07 71.37 67.94 56.05 74.85 69.60 66.05
Into GMM (46.91) 70.72 68.29 72.80 64.97 61.00 60.03 69.92 66.74 61.23

kNN (43.25) 73.92 69.80 71.99 67.01 63.70 61.81 70.41 65.97 64.37

POP
Table 6: Results of combination method for singer pop-rock singer identification (POP)

4.3. Results

We present in table 5 the results obtained in the LYR data-set and
in table 6 the results obtained on POP data-set.

For both tables, the different configurations of S(1) are pre-
sented in the first row and the configurations of S(2) in the first
column. The number into bracket placed beside the name of each
classifier indicates the accuracy of the system when a single clas-
sification is applied. Finally, the accuracies of the combined clas-
sifications are reported at the intersection of the two systems used.

The task evaluated here is challenging since only a short seg-
ment (a note of few seconds length) is used to recognize the singer.
We comment first results with a single type of feature and then
comment the results obtained with the combination.

4.3.1. Results on single classification

Single classification with timbre-based features
From the results obtained with TECC, MFCC and LPC (first row
of each table) we can deduce that timbre-based features are rather
appropriate to describe voice on acapella recordings. However, we
remark that results obtained on LYR are much better than results
obtained with POP. In LYR, all samples have been recorded in
the same ideal conditions (same mic, room) so that we can ensure
that the spectral envelopes of these sounds are clearly conveying
information on the vocal tract of singers. Probably the results on
POP are affected by the “album-effect". We have also evaluated
the performance of classification on POP when the singer models
are learned on 2 thirds of each song and the validation is done on
the remaining data. With a 3 folds cross-validation the average
accuracy obtained is equal to 96%.

For all experiments, the TECC outperform the MFCC and
LPC. In both cases, the best result is obtained when working with
TECC and SVM. SVM seems to perform better than other classi-
fiers. Even if it is not possible to ensure that each system has been
optimized (transformation of the feature space, choice of the clas-
sifier parameters, etc.) we see from all these experiments that it is
not possible to retrieve the singer with these features even when
the task is done on acapella recordings.

Single classification with intonation-based features
Intonative features have not been yet used to singer or instrument
recognition. These features can somehow find an equivalent in the
prosodic features used in speaker identification. On both data-sets
the classifications obtained with INTO features show a relatively
good accuracy. We remind that a random classification would

have an accuracy ≈ 5% when working with 17 or 18 singers.
The better results obtained on POP can be easily explained. All
singers in LYR have a pretty similar technique, and all their vi-
bratos look and sound pretty similar. We do not have any infor-
mation on the technique of the singers in POP but by comparing
the spectrograms (and the partials) of POP singers we can see that
the variety in vibrato technique is much larger. The vibrato of
lyric singers generally has a large extent and it very regular but
the vibrato is definitely present in pop-rock type of voices. From
this experiments, we can conclude that expressive elements such
as vibrato, tremolo and portamento are singer-specific. Contrary
to timbre-based features, intonative features should not affected
by the “album-effect". Theoretically, the correlation between the
amplitude and the frequency modulation should remain constant
across the different songs of the singer. According to the analysis
done on vibrato rate we can also ensure that the rate of singers’ vi-
brato does not vary much between different songs of a singer (even
if the songs have different tempo or mood).

The capacity to discriminate the classes of each feature com-
posing INTO have been studied using the IRMSFP algorithm pro-
posed in [16]. On the two data-sets the vibrato rate, the tremolo
rate and the vibrato extent are the most discriminative features.
In POP, the coefficients of the polynomial, representing the porta-
mento, are also of importance. This is mainly due to the fact that
the notes composing POP have been extracted from full song,and
in many cases the segment analyzed contain note transition.

4.3.2. Results of the combination

In most of cases, combining local and global features with the
proposed approach increases the identification accuracy. In av-
erage (over all experiments per data-set), a gain of 6.23% and
4.48% is obtained on LYR and POP respectively. In practice,
the higher the accuracy of one system is, the more difficult will
be to improve the performance by combining a system with a
lower accuracy. The gap between the different systems perfor-
mance is greatly reduced with the double classification. For ex-
ample, if we consider the results on LYR obtained with a sin-
gle classification based on LPC (S(1), D(1) = LPC), the vari-
ance of the results obtained with any classifiers is equal to 15
(∀Ci, σ(Acc(S(1))) = 15). When the classifications based on
LPC are combined with INTO features, the variance of the results
is reduced to 3.44 ∀S(2), σ(Acc(S(1) ∩ S(2))) = 3.44.

This method of combination has been developed because no
one of the traditional methods provides an amelioration of the per-
formance already obtained with timbre-based features.
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5. CONCLUSION

In this paper we have proposed a new method to identify singer
using isolated notes. In the proposed method, the notes to be clas-
sified are described using local and global features representing
respectively the spectral envelope and some expressive attributes
specific to singing. Local descriptors such as MFCC and LPC have
been previously used for this kind of experiment but we suggest to
transcribe the spectral envelope with a new set of coefficients de-
rived from the true envelope. This new set of coefficients (TECC)
show better performances than coefficients traditionally used to
transcribe timbre, at least for this task. In general, especially in
very clean signals of singing, they perform good classification. In
the case studied especially when the classes are learned with SVM.
In addition, the set of global features (INTO), previously used to
detect the presence of voice within songs, have been proved to be
useful to characterize singer identity. They do not obtained results
as good as results of timbre-based features but they have the real
advantage of being completely orthogonal to the latter. In prac-
tice, it is not straightforward to find improve a good classification
by introducing information yielding to a poorer classification per-
formance. We have proposed a methods based on the idea that a
system of classification with a relative low accuracy can be em-
ployed to enhance the classification returned by a stronger system
if the problem given to the weaker system is simplified by the best
of the two systems. In other words, for a given note, the best sys-
tem is asked to deduce a subset of possible classes (as small as
possible and which still contains the true class) then the second
system is asked to perform the classification on the reduced set of
classes. Finally, the membership measurements of the reduced set
of classes returned by the two classifiers are analyzed to take the
final decision. This combination method appear to be efficient for
this task since the results obtained by this combination are always
better than the results obtained using a single classification.
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