MUBU & FRIENDS - ASSEMBLING TOOLS FOR CONTENT BASED
REAL-TIME INTERACTIVE AUDIO PROCESSING IN MAX/MSP

Norbert Schnell, Axel Robel, Diemo Schwarz, Geoffroy Peeters, Riccardo Borghesi

IRCAM - Centre Pompidou
Paris, France

ABSTRACT

This article reports on developments conducted in the fra-
mework of the SampleOrchestrator project. We assembled
for this project a set of tools allowing for the interactive
real-time synthesis of automatically analysed and annota-
ted audio files. Rather than a specific technique we present
a set of components that support a variety of different inter-
active real-time audio processing approaches such as beat-
shuffling, sound morphing, and audio musaicing.

We particularly insist on the design of the central ele-
ment of these developments, an optimised data structure for
the consistent storage of audio samples, descriptions, and
annotations closely linked to the SDIF file standard.

1. INTRODUCTION

The tools provided by past and current research in music in-
formation retrieval provide manifold descriptions that per-
mit the transformation of recorded sounds into interactive
processes based on signal models, sound and music percep-
tion, musical representation, as well as further abstract me-
chanical and mathematical models. A variety of interesting
approaches to interactive real-time processing are based on
the transformation of certain aspects of a sound (e.g. its pitch
or rhythm), while preserving others.

The SampleOrchestrator projectﬂ has allowed for the
convergence of several music information retrieval and au-
dio processing techniques into a set of complementary tools
summarizing research carried out over the past ten years.
While our work has been focused on experimentation with
the use of audio descriptors and annotations for the inter-
active transformation and hybridization of recorded sounds,
other parts of the project aimed at the development of novel
techniques and tools for automatic orchestration as well as
for the organization of large data bases of sounds.

Once given the availability of an adequate set of audio
processing tools, the necessity to consistently represent au-
dio data with audio descriptions and annotations within real-
time processing environments such as Max/MSP appeared
as a critical issue and led us to the development of the Mu-
Bu data structure.

Ihttp://www.ircam.fr/306.html?&L=1

2. THE MUBU MULTI-BUFFER

The MuBu data structure has been designed as a generic con-
tainer for sampled sounds as well as any data that can be ex-
tracted from or associated to sampled sounds such as audio
descriptors, segmentation markers, tags, music scores, and
motion tracking data. MuBu is a multi-track container re-
presenting multiple temporally aligned (synchronized) ho-
mogeneous data streams similar to data streams represented
by the SDIF standard [2]] associating each element to a pre-
cise instant of time.

The implementation of MuBu overcomes restrictions of
similar existing data structures provided in Max/MSP such
as the buffer” and SDIF-buffer [9] modules as well as the
data structures provided by the Jitter and FTM [3] libraries.
Special attention has been paid to the optimization of shared
RAM based storage and access in the context of concurrent
multi-threaded real-time processing. All access to the data is
thread-safe while the methods used in real-time signal pro-
cessing methods have been implemented in lock free way.

A particular challenge for the design of MuBu has been
the idea to provide a generic container that can represent and
give access to any kind of data, but that also allows for the
implementation of specific access and processing methods
for tracks of particular data types. For example, an additive
synthesis module connected to a MuBu container should be
able to automatically find and connect to a track of partials
or to a track of a fundamental frequency and another track of
harmonic amplitudes. The synthesis module can be automa-
tically configured depending on the additive representation
loaded into one or multiple tracks of the container.

So far, MuBu implements import methods for audio fi-
les of various formats, SDIF files, MIDI standard files, and
generic XML files.

We have developed a Max/MSP module integrating the
MuBu library and implementing a set of messages to mana-
ge and access the data. In addition to the audio processing
tools described below, we defined a set of Max/MSP mo-
dules referring to the MuBu module and accessing its data
copying to and from Max/MSP data structures.

http://www.ircam.fr/306.html?&L=1

2.1. Implementation Details

Each track of MuBu is implemented as a contiguous memo-
ry array containing the data over time and allowing for vec-
torised access. Similar to the SDIF standard, numerical data
is represented as a sequence of two-dimensional matrices of
floating-point values (often reduced to vectors and scalars).
The time axis of a MuBu track can be represented either by
a time-tag for each element or by a constant sampling rate
defined for the whole track. Thus, uniformly sampled data
streams of multiple rates and non-uniformly sampled data
streams can be represented aligned to each other. In addi-
tion to a reference time-tag, a track can optionally define a
start and end time for each of its elements giving the pos-
sibility to associate data not just to an instant but also to a
period of time.

A track can define a name tag for each column of the
contained data matrices or vectors that may refer to the type
or semantic of the data in a particular column. The rows
of the matrix are simply indexed and typically represent
one or multiple instances of the structure defined by the
columns. As an example, vectors of different descriptors
stored in a track would be represented as elements of one
row with column names referring to the different descrip-
tors such as loundness, pitch and brilliance. Similarly, a MI-
DI note would be represented as a single row with columns
corresponding to pitch, velocity and channel with the opti-
on of representing chords as multiple lines of notes within
in the same element of the track. Following the same lo-
gic, spectral coefficients would be represented as a single
column (e.g. named MFCC or MEL).

Since the matrix data is stored in a contiguous memory
space, the capacity of a track in terms of the maximum num-
ber of elements as well as the matrix size for each track ele-
ment has to be defined in advance whenever possible. This
choice has been taken with respect to previous experiences
with similar approaches showing that the vast majority of
the envisaged applications can easily cope with this restric-
tion while the implementation of the data structure and the
access to the data can be enormously simplified and easily
optimised in this way.

If in a particular data stream the elements of a track can
have a variable number of rows (e.g. chords of notes or har-
monics), the maximum number of rows must be defined and
an additional vector is created within the track giving the
actual number of rows for each element of the stream. For
non-numerical data or for handling predefined data structu-
res that can not be expressed with two-dimensional matri-
ces, a track can define an additional optional vector of user
data handles for each element requiring customised access
methods.

A MuBu track can have a type tag such as AudioSamp-
les, Harmonics or MidiNotes. This type tag can be used by
an application or a particular set of software modules to co-

herently identify and process the stored data. We have star-
ted to provide a few predefined type tags and specified an
API for user defined types. The type tag of the track also
specifies the data type for the user data handles if used.

For the association of meta-data to a track, each track
includes a name/value table. This table also allows to com-
pletely represent the most important file formats with one
or multiple MuBu tracks and to enable the regeneration of
identical or modified files from the stored data.

2.2. Display and Graphical Interaction

In parallel to the SampleOrchestrator project we have wor-
ked on a portable library for the display and editing of data
streams such as those represented by MuBu. The library has
been implemented based on the Juce frameworkﬂ and provi-
des a set of graphical displays and editors that remain inde-
pendent from any data structure by providing interfaces for
the access to the data. The first integration of these editors
has been implemented for the FTM library in Max/MSP.

\ N
"

r/7> _

my | v

Pitch-Midi \ Periodicity {(Loudness (Envelope (Markers {Audio

——— —— |

Figure 1. The IMTR Editor graphical component displaying
multiple superposed data streams

In summary, the current version of the IMTR editor li-
brary provides the following features already fitting the needs
of a graphical interface for MuBu:

e Editable graphical interfaces for time-tagged scalars
(e.g. bpfs), arrays of sampled values (e.g. waveforms)

e Non-editable displays for sonogram and trace (e.g.
harmonics with pitch and amplitude developing over
time) representations

e Various display styles for each interface (e.g. bpf, steps
or peaks for time-tagged values)

e Superposition or juxtapositon of horizontally aligned
displays with controllable opacity

e Scrolling, zooming, selection and cursor tools

Zhttp://www.rawmaterialsoftware.com/juce/

http://www.rawmaterialsoftware.com/juce/

3. MUBU’S FRIENDS

Figure [2] shows the overall architecture of the components
assembled around the MuBu data structure that are briefly
described in the following sub-sections.

micro sampler

unit selection
KdTree

described and
annotated sound

container
MuBu

extractors,
segmentation
IRCAM descriptors/beat

phase vocoder
SuperVp

Figure 2. Overview of the assembled tools

3.1. Audio Analysis Tools

In the prototype applications that have guided our develop-
ments, the IrcamDescriptors and IrcamBeat command-line
tools are used to perform off-line analysis of audio files writ-
ten into SDIF files and loaded into MuBu. In addition, we
have used the AudioSculpt application[1] to perform seg-
mentation based on SuperVP also exported to SDIF files.

IrcamDescriptors has been partly developed within the
SampleOrchestrator project based on the previously deve-
loped software and Matlab libraries. It basically implements
the audio descriptors described in [5].

The IrcamBeat 6] command-line tool as well as AudioS-
culpt have been used to generate automatic segmentation
for concatenative synthesis. While IrcamBeat performs an
overall tempo analysis of rhythmic musical material to ge-
nerate markers fitting a metric grid, the SuperVP engine of
AudioSculpt generates markers at transitions based on spec-
tral transitions without any further musical model. The two
techniques are complementary and useful for different audio
materials and concrete applications.

For the efficient implementation of a variety of intere-
sting interactive real-time synthesis paradigms explored in
the framework of the SampleOrchestrator project using si-
milarity and distance measures, our collection of tools in-
tegrates the KdTree library [8]. The K-Nearest Neighbors
(KNN) algorithm implemented by the library optimises the
selection of segments or frames in a pre-analysed source

audio stream based on the distance between numeric des-
criptor values. The KdTree library has been developed for
the project and integrated with the other tools into a set of
Max/MSP modules.

3.2. SuperVP Real-Time Modules

The SuperVP extended phase vocoder [7]] has existed for so-
me time as a command-line tool and as the audio processing
engine behind AudioSculpt before being released as real-
time modules that also have been integrated into Max/MSP
as audio processing modules{ﬂ In the framework of the Sam-
pleOrchestrator project, these modules have been extended
and currently integrate the following set of features:

e Time-stretching/compression and scrubbing with op-
tional transient and waveform preservation

e Pitch transposition with optional transient, waveform
and spectral envelope preservation

e Spectral envelope transformation (frequency and am-
plitude scaling)

e Remixing of spectral transient, sinusoidal and noise
components

e Generalised cross-synthesis

e Source-filter cross-synthesis

In addition to the excellent sound transformation qua-
lity of the phase vocoder practically free of artefacts, the
connection of SuperVP with MuBu provides the possibili-
ty of applying sound transformations as a function of pre-
viously extracted audio descriptors and segmentation. This
permits to impose within certain limits an arbitrary evoluti-
on of temporality, monophonic pitch, loudness and spectral
envelope to a given sound and create sounds by hybridisati-
on of feature extracted from two or multiple sounds. In our
prototype applications, we have used SuperVP to transform
and hybridise strictly monophonic sounds recorded from so-
lo instruments and voices.

3.3. ZsaZsa

The ZsaZsa library implementing a granular synthesis and
concatenative synthesis engine has been developed as a se-
cond synthesis engine connected to MuBu complementary
to Supeerﬂ The design of ZsaZsa is based on the experi-
ences with Gabor [4] in FTM & C(ﬂ a set of audio analy-
sis and synthesis modules for Max/MSP allowing for highly
modular programming of overlap-add audio processing. The
ZsaZsa library even if integrated into Max/MSP as monoli-
thic signal processing module, internally maintains a mo-
dular design separating the copying of the grains from the
source sound, windowing, resampling and reinsertion of the

3The SuperVP Max/MSP modules are released in the IRCAM Forum.
http://forumnet.ircam.fr/708.html?L=1

4We like to present ZsaZsa as SuperVP’s little sister.

Shttp://ftm.ircam.fr/

http://forumnet.ircam.fr/708.html?L=1
http://ftm.ircam.fr/

grains into one or multiple output streams very similar to
the design of typical Gabor applications. Other than Gabor,
ZsaZsa is limited to asynchronous and synchronous granular
synthesis and concatenative synthesis. The ZsaZsa library
implements a completely generic engine that distinguishes
these three synthesis modes only by the disposition and suc-
cession of synthesised segments (i.e. grains) and the chosen
control parameters.

The ZsaZsa synthesis engine has a slightly extended set
of granular synthesis parameters and implements different
segmentation schemes corresponding to the markers and seg-
ments provided by the MuBu container. Without segmenta-
tion, a grain is defined by an arbitrary onset time and durati-
on in the source audio stream. When defining a segmentati-
on (e.g. by referring to a MuBu track with time-tags and/or
segments), a grain can be determined by one two or three
markers, and a set of parameters illustrated in figure 3]

Especially for synthesis using segmentation, the player
can be extended by a custom callback function. The callback
function is implemented by the synthesis module integrating
the ZsaZsa engine and is called each time when a new seg-
ment has to be synthesised taking into account the current
Period/Tempo or TempoFactor. A callback function custo-
mised for a particular application determines the next seg-
ment to be synthesised represented by an index in the mar-
ker arrays. For example, a callback function could simply
count forwards or backwards looping through the segments,
randomly shuffle segments, or calculate the next segment re-
garding a set of rules, a statistical model and/or similarities
calculated from a set of audio descriptors associated to the
segments.

nnnnnnnnnnnnnnnnn

tack release attack release

eeeeeeeeeeeeeeeeee
,,,,,,,,,,,,,,,,

Figure 3. ZsaZsa windows defined by one, two or three
markers and in the case of pitch synchronous synthesis.

In a first version, the ZsaZsa library has been integrated
into three different Max/MSP modules, one performing gra-
nular synthesis (synchronous if a track of waveform markers
is available in the referred MuBu), one performing descrip-
tor based granular synthesis, and one for concatenative syn-
thesis using a segmentation track.

4. CONCLUSIONS AND FUTURE WORK

We have assembled a complementary set of state-of-the-art
audio processing tools integrated with Max/MSP that in-
clude a flexible data container enabling the experimentation
with novel audio processing paradigms based on automatic
analysis and annotation of recorded sounds.

Our current efforts are dedicated to the integration of
further processing tools and paradigms, while keeping the
developed framework simple and modular and trying to find
an optimal balance between generic and easy-to-use.

5. ACKNOWLEDGEMENTS

The SampleOrchestrator coordinated by Hugues Vinet at
IRCAM has been funded by the French National Research
Agency. We especially would like to acknowledge our col-
leagues that have collaborated on different versions of the
described developments: David Fenech, Carmine Emanuele
Cella, Nicolas Sursock and Juan-Jose Burred.

Many thanks also to the team from Universal Sound
Bank and especially Remy, Olivier and Alain, who have be-
en (and still are) great partners in this project and with whom
we hopefully continue soon on a new adventure.

6. REFERENCES

[1] N. Bogaards, “Analysis-Assisted Sound Processing
with Audiosculpt,” in DAFx, Septembre 2005.

[2] J. J. Burred, C. E. Cella, G. Peeters, A. Robel, and
D. Schwarz, “Using the SDIF Sound Description Inter-
change Format for Audio Features,” in ISMIR, 2008.

[3] N. Schnell et al., “FTM — Complex data structures for
Max,” in ICMC, Septembre 2005.

[4]

, “Gabor, Multi-Representation Real-Time Analy-
sis/Synthesis,” in DAFx, Septembre 2005.

[5] G. Peeters, “A large set of audio features for sound des-
cription (similarity and classification) in the CUIDADO
project,” IRCAM, Tech. Rep., 2004.

[6]

, “Template-based estimation of time-varying tem-
po,” EURASIP, 2006.

[7] A. Roebel, “A new approach to transient processing in
the phase vocoder,” in DAFx, Septembre 2003.

[8] D. Schwarz, N. Schnell, and S. Gulluni, “Scalabilty
in Content-Based Navigation of Sound Databases,” in
ICMC, August 2009.

[9] M. Wright, R. Dudas, S. Khoury, R. Wang, and D. Zi-
carelli, “Supporting the Sound Description Interchange
Format in the Max/MSP Environment,” in ICMC, Octo-
ber 1999.

	1 Introduction
	2 The MuBu Multi-Buffer
	2.1 Implementation Details
	2.2 Display and Graphical Interaction

	3 MuBu's Friends
	3.1 Audio Analysis Tools
	3.2 SuperVP Real-Time Modules
	3.3 ZsaZsa

	4 Conclusions and Future Work
	5 Acknowledgements
	6 References

