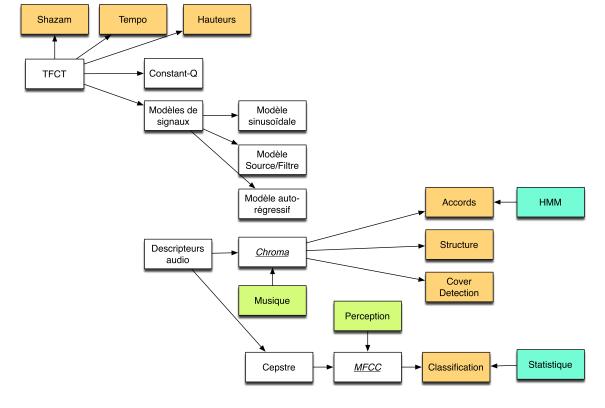
ENSEA

Traitement du signal audio musical, descripteurs et estimation

Geoffroy.Peeters@ircam.fr UMR SMTS IRCAM CNRS UPMC

13/04/2015

1- Examen

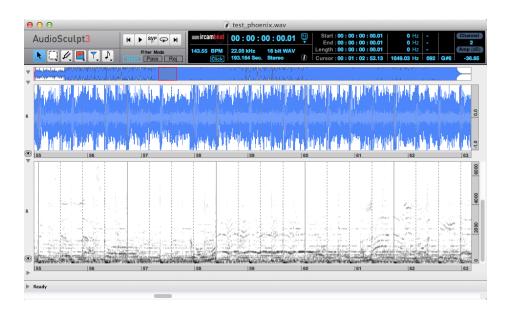

1.1- Option Audio-Parole-Musique 2nd semestre

Examen Option Audio-Parole-Musique 2nd semestre

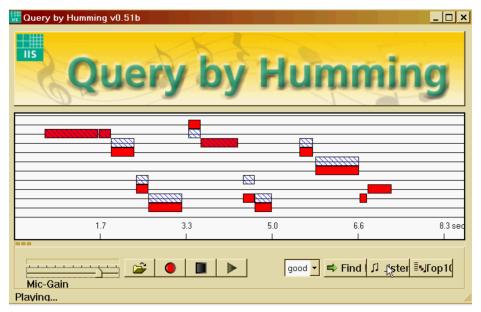
- Quand : lundi 4 mai 2015 8h à 9h30 (1h30)
- Salle: 261
- sans document

Support de cours

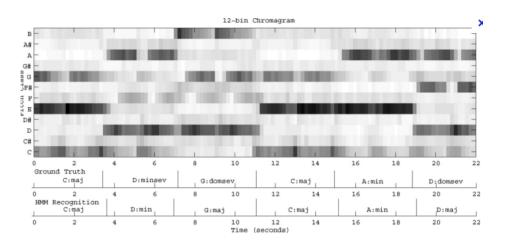
3.1- Applications des techniques d'indexation audio pour la musique



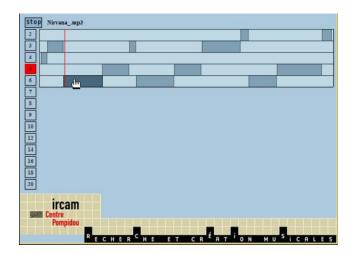
source : Gaël Richard


- Identification audio
 - recherche de doublons, gestion de copyright, attacher des méta données à une instance d'un morceau

- Estimation du tempo, de la position des temps/ premier-temps
 - ► DJing, mainpulation du contenu (add swing ...)

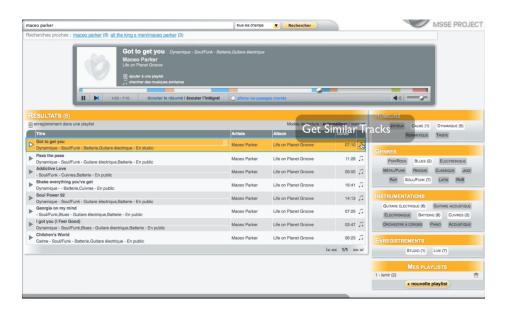


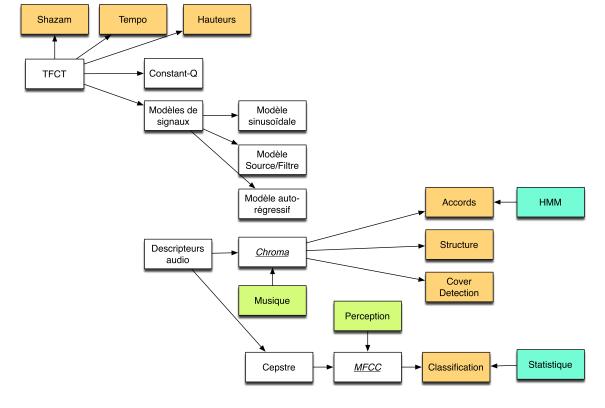
- Nouveaux modes de recherche :
 - par chantonnement/ sifflement



- Estimation des accords
 - obtenir des guitar-tab automatiquement

- Navigation à l'intérieur d'un morceau de musique par couplet/refrain
 - Génération automatique de résumé audio
- Dé-linéarisation d'un flux audio :
 - segmentation de flux radio, télé et étiquetage des parties

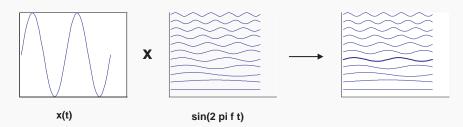



3.1- Applications des techniques d'indexation audio pour la musique

• Détection des cover, reprises ou ... des plagias

Titre		Artiste	Album	D.	Pop.	
Let It Be	~	The Beatles Recovered Band	30 Beatles Top Hits	03:50		
Let It Be	~	The Hit Co., The Tribute Co.	A Tribute to the Beatles: The Lat	03:42		
Let It Be	~	Labrinth	Let It Be	03:05		
Let It Be Me	~	Ray LaMontagne	Gossip in The Grain	04:41		
Let It Be - The Beatles Tribute		Let It Be	Let It Be – The Beatles Tribute	03:49		
Let It Be		Lois	Let It Be – The Voice 2	03:15		
Let It Be		The Yesteryears	A Tribute to #1 Beatles Hits - T	03:48		
Let It Be	~	Aretha Franklin	This Girl's In Love With You	03:33		
Let It Be Sung	~	Jack Johnson, Matt Costa, Zach Gill,	If I Had Eyes	04:09	IIIIIIII	
Let It Be		Vox Angeli	Gloria	03:26	III	
Let It Be	~	Paul McCartney	Good Evening New York City	03:54	IIII	
Hey Jude		Let It Be	Hey Jude	03:55		
Let It Be		Joan Baez	Greatest Hits And Others	03:51	III	

- Recherche d'un contenu audio dans une base de données
 - → autrement que par "artistes", "titres" (Google musical)



4.1- Transformée de Fourier (temps et fréquences continus)

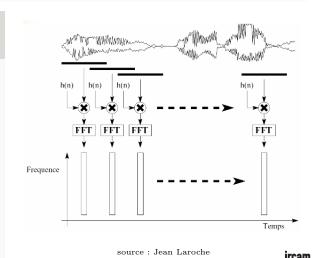
$$X(\omega) = \int_t x(t) \cdot \exp(j \cdot 2\pi f \cdot t) dt$$

- Variables:
 - rightarrow t est le **temps**
 - $\omega = 2\pi f$ les **fréquences continues** exprimées en radian,
 - $\exp(j\omega t) = \cos(2\pi f t) + j \cdot \sin(2\pi f t).$
- Pourquoi la Transformée de Fourier?
 - \rightarrow Difficile d'extraire des observations directement à partir de la forme d'onde x(t)
 - Reproduire la décomposition en fréquences de l'oreille humaine

4.2- Transformée de Fourier (temps et fréquences discrets)

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot \exp\left(j \cdot 2\pi \frac{k}{N} \cdot n\right), \forall k \in [0, N]$$

- Variables:
 - ▶ n le numéro d'**échantillon**
 - k les fréquences discrètes
- Taux d'échantillonnage (sampling rate) : 44100 Hz
 - ► Distance entre deux échantillons : $\frac{1}{44100} = 0.000023s$.
 - Fréquence de Nyquist = taux d'échantillonnage
 - Repliement spectral (roue de voiture dans les films)


4.3- Transformée de Fourier (à Court Terme)

$$X(k,m) = \sum_{n=0}^{N-1} x(n) \cdot h(m-n) \cdot \exp\left(j \cdot 2\pi \frac{k}{N} \cdot (m-n)\right), \ \forall k \in [0,N]$$

 \bullet Application de la TFD à une portion du signal centrée autour de l'échantillon m

Pourquoi la Transformée de Fourier à Court Terme?

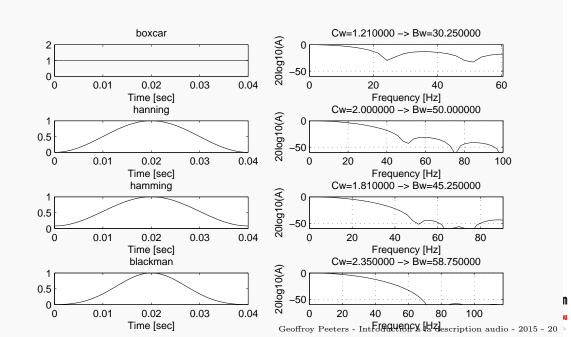
- ► Signal audio = non-stationnaire
 - ses propriétés varient au cours du temps
- Stationnaires "localement" (en temps)
 - sur une durée de \pm 40ms
- ► TFCT = suite d'analyses de Fourier sur des durées de + 40ms
 - = analyse à Court Terme ("trames/frames" en vidéo)

4.3- Transformée de Fourier (à Court Terme)

$$X(k,m) = \sum_{n=0}^{N-1} x(n) \cdot h(m-n) \cdot \exp\left(j \cdot 2\pi \frac{k}{N} \cdot (m-n)\right), \, \forall k \in [0,N]$$

Fenêtre de pondération h(t)

- $x(t) \cdot h(t) \rightleftharpoons X(\omega) * H(\omega)$
 - h(t) est appelé "fenêtre de pondération"
 - h(t) différents **types** de fenêtre
 - h(t) définie sur un horizon fini (longueur temporelle) [0, L].
 - Choix du type et de la longueur détermine les caractéristiques spectrales
 - Largeur de bande fréquentielle (à -6 dB_{20}) : $Bw = \frac{Cw}{L}$
 - Hauteur des lobes secondaires

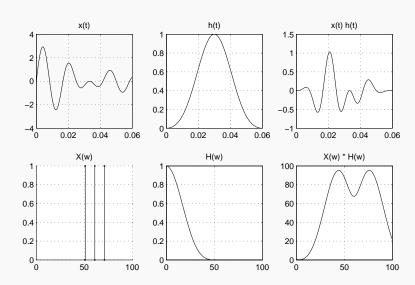

4.3- Transformée de Fourier (à Court Terme)

Choix du **type** de la fonction :

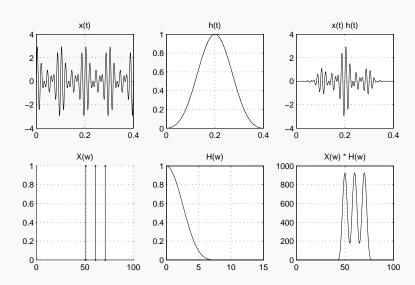
- rectangulaire $h(n) = 1 \rightarrow Bw = 1.81$
- ▶ hanning $h(n) = 0.5(1 \cos(\frac{2\pi n}{N-1})) \to Bw = 2$
- ▶ hamming $h(n) = 0.54 0.46 \cos(\frac{2\pi n}{N-1}) \rightarrow Bw = 1.81$
- ▶ blackman $h(n) = a_0 a_1 \cos(\frac{2\pi n}{N-1}) + a_2 \cos(\frac{2\pi n}{N-1}) \to Bw = 2.35$

4.3- Transformée de Fourier (à Court Terme)

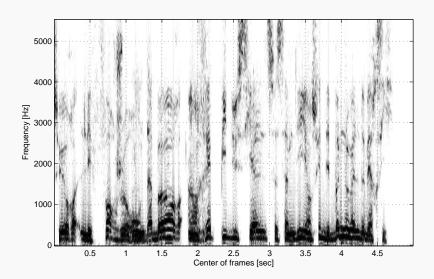
Influence du **type** de la fonction

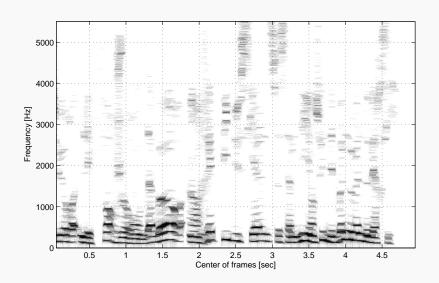


4.3- Transformée de Fourier (à Court Terme)

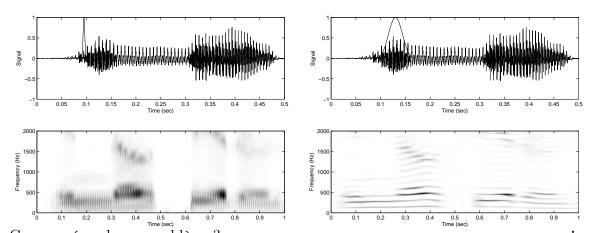

Choix de la longueur temporelle L :

- ▶ Au plus la fenêtre est courte,
 - au plus on observe précisément les temps.
- ▶ Au plus la fenêtre est longue,
 - · au plus on observe précisément les fréquences.

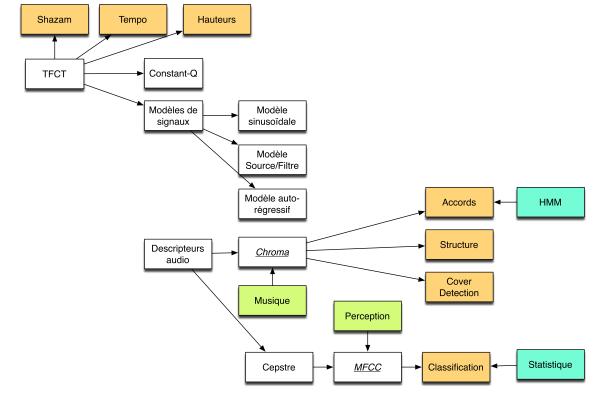

Influence de la **longueur temporelle** L (L = 0.06)


Influence de la **longueur temporelle** L (L = 0.4)

Influence de la **longueur temporelle** L (L = 0.01)


Influence de la **longueur temporelle** L (L = 0.1)

4.3- Transformée de Fourier (à Court Terme)

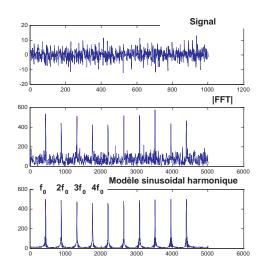

Paradoxe temps/ fréquence

• Pas possible d'avoir simultanément une bonne localisation en temps et en fréquence!

Comme résoudre ce problème?

• Utiliser d'autres tranformées que celle de Fourier Geoffroy Peeters - Introduction à la description audio - 2015 - 26 (

5- Modèles de signaux 5.0-

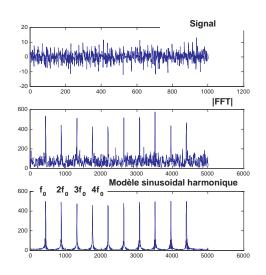

Pourquoi des modèles de signaux?

- On suppose que le signal a été produit par un certain modèle
- Permet de **réduire** le nombre de paramètres observés du signal
 - ▶ la TFCT contient beaucoup trop d'information
- Permet d'obtenir des paramètres plus facilement **interprétables** (indexation) et manipulables (transformation, synthèse)
 - → la TFCT fournit des paramètres non directement exploitables
- Quels modèles?
 - Modèle sinusoidal harmonique
 - Modèle source/ filtre
 - Modèle autorégressif

5- Modèles de signaux 5.1- Modèle sinusoidal harmonique

Modèle sinusoidal harmonique

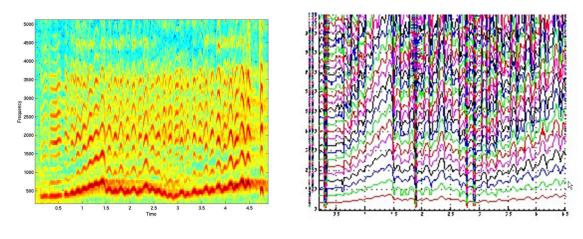
- Hypothèse :
 - le signal x(t) est un signal harmonique
 - Exemple : une note de musique, les parties voisées de la voix
- Modélisation :
 - le signal est représenté comme une somme de sinusoides dont les fréquences sont des multiples entiers de sa hauteur + un résiduel
 - Exemple : instrument de musique jouant un la-3 (A-4), $f_0 = 440$ Hz, modélisé comme la somme de ses harmoniques : $f_0 = 440$ Hz, $2f_0 = 880$ Hz, $3f_0 = 1320$ Hz, ...



5- Modèles de signaux 5.1- Modèle sinusoidal harmonique

Modèle sinusoidal harmonique

$$X(f) = \sum_{h=1}^{H} A_h \sin(2\pi h f_0 + \phi_h) + \epsilon(f)$$
(1)


- $ightharpoonup A_h$: amplitude de l'harmonique h
- hf_0 : fréquence de l'harmonique h
- ϕ_h : phase initiale de l'harmonique h (représente la synchronisation temporelle)
- $\epsilon(f)$: résiduel, ce qui ne peut pas être représenté par le modèle

5- Modèles de signaux 5.1- Modèle sinusoidal harmonique

Les sinusoides harmoniques varient au cours du temps

TFCT

Modèle sinusoidal harmonique

5- Modèles de signaux

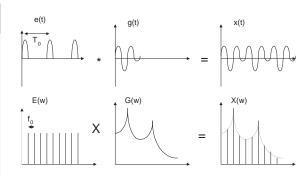
5.1- Modèle sinusoidal harmonique

Utilisation du modèle sinusoidal?

- Synthèse, modification du signal
- Codage
 - paramétrisation du signal comme f_0 + enveloppe spectrale $[A_1,A_2,...,A_H]$
- Extraction de paramètres pour l'indexation

Différentes estimations

- de la fréquence fondamentale
 - Temporel : auto-corrélation, Average Mean Difference Function, Yin, Cepstre
 - Fréquentiel : Filtre en peigne harmonique, Maximum de vraisemblance, ...
- de l'enveloppe spectrale
 - ▶ LPC (Linear Predictive Coding)
 - Cepstre
 - MFCC

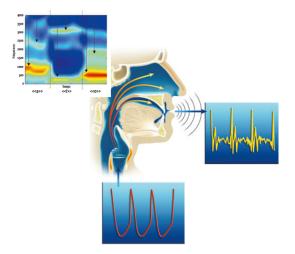


5- Modèles de signaux

5.2- Modèle source/ filtre

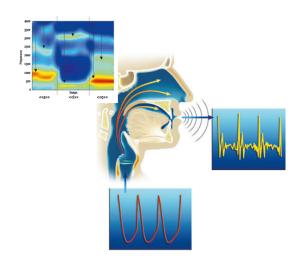
Modèle source/ filtre

- Hypothèse :
 - le signal x(t) est le résultat du passage d'une excitation (un pulse, une série de pulse) dans un filtre (résonnant)
 - Exemples : le signal de parole, certains instruments de musique (trompette)
- Modélisation temporelle :
 - un signal d'excitation e(t) passe (convolution) à travers un filtre g(t):
 - x(t) = e(t) * g(t)
- Modélisation fréquentielle
 - la multiplication de la TF du signal d'excitation (source) par la TF du filtre.
 - $X(\omega) = E(\omega) \cdot G(\omega)$



5- Modèles de signaux 5.2- Modèle source/ filtre

Modélisation du signal de parole :

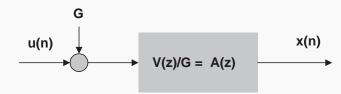

- Le signal de parole (pour sa partie voisée) est créé par
 - les cordes vocales
 - une excitation régulière / périodique
 - le conduit bucco-nasal (bouches/ nez)
 - filtrage résonant/ anti-résonant

5- Modèles de signaux 5.2- Modèle source/ filtre

Modélisation du signal de parole :

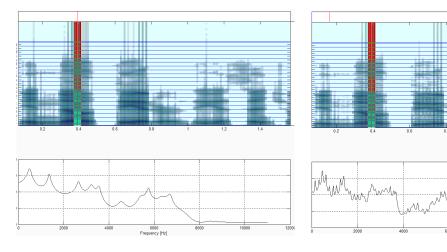
- Ouverture/fermeture périodique des cordes vocales
 - détermine la hauteur
 - Hauteur de 100Hz? pulses d'air sont espacés de $T_0 = 1/f_0 = 1/100 = 10ms$.
 - Appelé signal d'excitation (ou signal source), e(t).
- Conduit bucco-nasal
 - · créer les différentes voyelles pour une hauteur donnée en renforcant (résonance) et retirant (anti-résonances) certains fréquences.
 - Filtre résonant (AR: Auto-Regressif) et anti-résonant (MA: Moving Average): un filtre dit "ARMA".

5- Modèles de signaux 5.3- La prédiction linéaire


Modèle auto-régressif:

• Le signal à l'instant n peut être prédit à partir desinstants précédents

$$x(n) = a_1 x(n-1) + a_2 x(n-2) + a_3 x(n-3) \dots + a_P x(n-P)$$

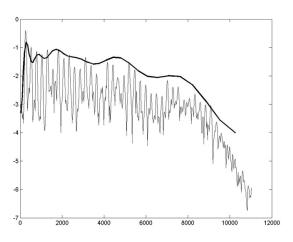

$$= \sum_{n=1}^{P} a_n x(n-p) + G \cdot u(n)$$
(2)

- Equivalent à passer le signal dans un filtre FIR tout-pôle : $V(z) = \frac{G}{1 + \sum_{p=1}^{P} a_p z^{-p}}$
- Objectif de la prédiction linéaire?
 - déterminer le filtre V(z) (donc les résonances ou les formants dans le cas de la voix) à partir du signal x(n) (signal de pression micro)

5- Modèles de signaux 5.3- La prédiction linéaire

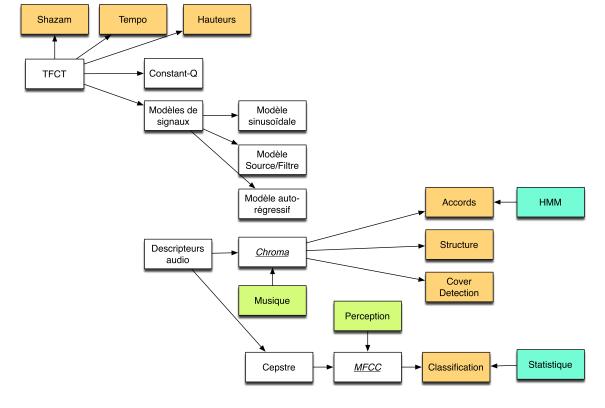
Choix du nombre de pôle ${\cal P}$


$$P = 40$$



5- Modèles de signaux 5.3- La prédiction linéaire

Importance de la fréquence fondamentale et de l'enveloppe spectrale

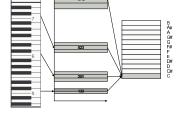


Enveloppe spectrale son de trompette

Enveloppe spectrale son de violon

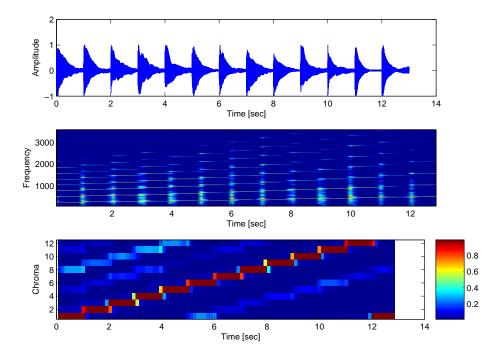
6- Descripteurs audio 6.0-

Descripteurs audio?

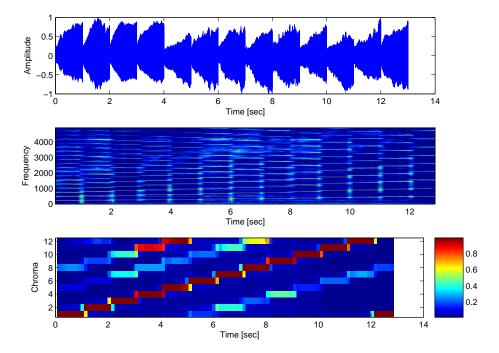

- Valeurs numériques extraites du signal audio dont le but est de représenter une propriété particulière de son contenu
 - Tout est dans la forme d'onde, dans la TFCT mais difficilement lisible et de trop grande dimension
- Forme?
 - Descripteurs scalaire
 - Descripteur vectoriel
- Extraction?
 - Opérateurs mathématique
 - Algorithme d'estimation

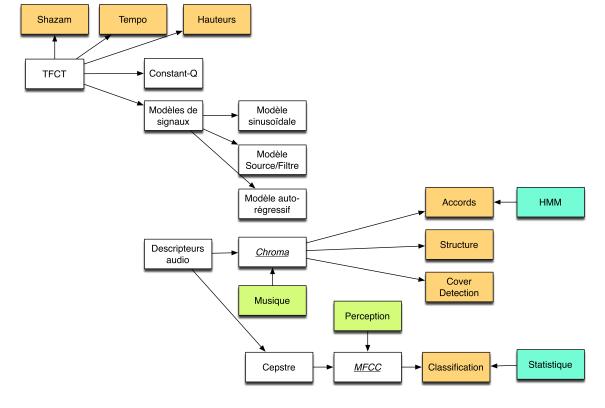
6- Descripteurs audio

6.1- Chroma/ Class de Profil de Class


Chroma=Pitch Class Profile (PCP)

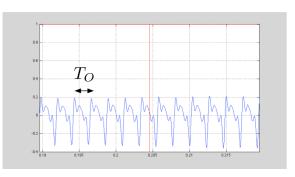
- Représenter le contenu harmonique du spectre à un instant donnée X(k,m) sous forme d'un vecteur C(n,m)
 - · Très utilisé dans les applications
 - reconnaissance de tonalité
 - reconnaissance de suite d'accords
 - ▶ identification de "cover versions"
- Shepard
 - représenter la hauteur comme une structure bi-dimensionelles :
 - ▶ la hauteur tonale (numéro d'octave),
 - le chroma (classe de hauteur)
- Calcul?
 - mapping entre les valeurs de la transformée de Fourier f_k et les 12 classes de hauteurs de demi-tons n
 - ${}^{\backprime}$ utilisation directe des valeurs de la Transformée à

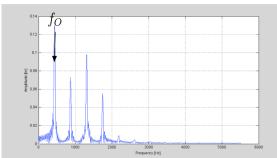



6- Descripteurs audio

6.1- Chroma/ Class de Profil de Class

6- Descripteurs audio 6.1- Chroma/ Class de Profil de Class

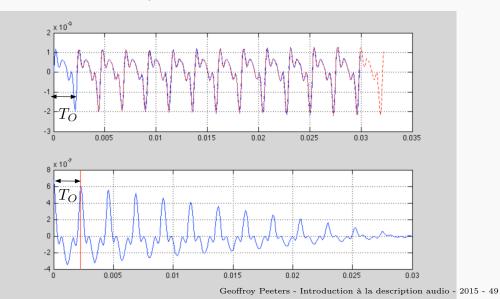




7.1- Estimation de la hauteur d'une note

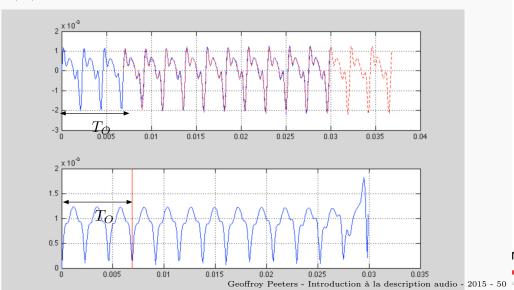
Période fondamentale T_0 ou fréquence fondamentale f_0

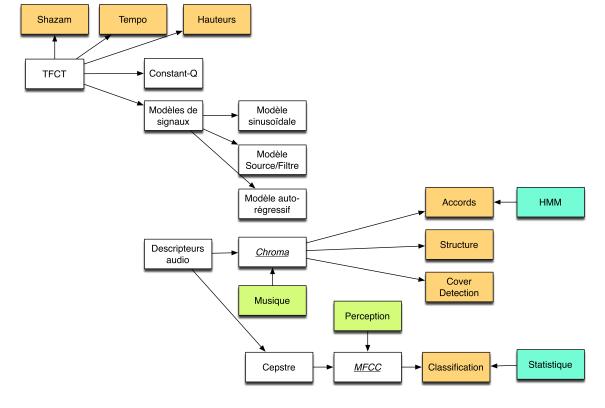
- f_0 : fréquence fondamentale en Hz
 - exemple La3/A4= 440Hz
- $T_0 = \frac{1}{f_0}$: période fondamentale en secondes
 - exemple La3/A4 = 0.0023s.



7.2- Méthodes temporelles

Méthode de l'autocorrélation

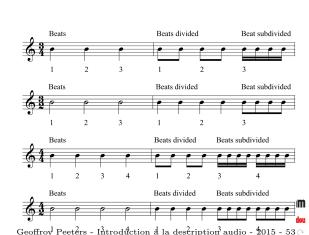

- $r(m) = \frac{1}{N} \sum_{n=0}^{N-1-m} x(n)x(n+m) \text{ si } m \ge 0$
- r(m) est maximum si $m = T_0$



7.2- Méthodes temporelles

Méthode de l'Average Mean Difference Function (AMDF)

- $AMDF(m) = \frac{1}{N-m} \sum_{n=0}^{N-1-m} |x(n) x(n+m)|$
- AMFT(m) = 0 si $m = T_0$



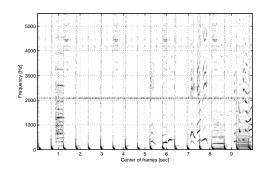
7.3- Estimation du tempo

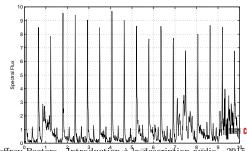
Rhythme?

- Tempo (beat)
 - indiquer sur une partition
 - "vitesse moyenne à laquelle les gens tapent du pied en écoutant la musique"
- Subdivision du rythme
 - mesure
 - entre deux barres, le groupement des noires
 - tactus
 - pénéralement la noire → le tempo
 - ▶ tatum
 - ▶ la vitesse la plus rapide
 - la subdivision de la noire en croches, triple-croches, double-croches

7.3- Estimation du tempo

Estimation du tempo?


• Détecter la périodicité des évènements dans le signal audio

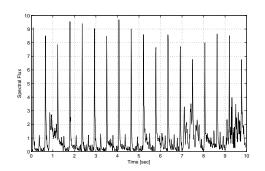

Détection des évènements?

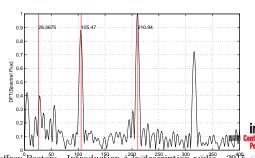
- Début des évènements = onsets
- Méthode 1
 - détecter les maxima locaux de la fonction d'énergie du signal

•
$$ener(m) = \sum_{k} X(k, m)^2$$

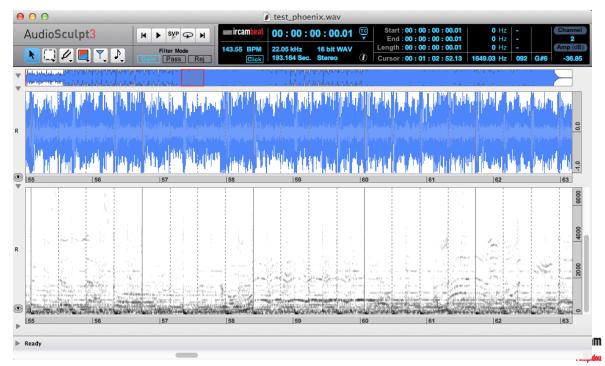
- Méthode2
 - détecter les maxima locaux du flux spectral:
 - flux(m) = $\sum_{k} hwr[X(k,m) - X(k,m-1)]$
 - $hwr(x) = x \quad if \quad x > 1$
 - hwr(x) = 0 otherwise

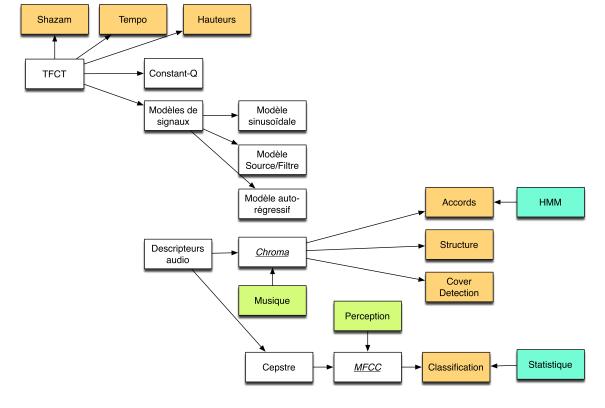
Geoffroy Peeters - Introduction in lacdescription audio - 2015 - 54


7.3- Estimation du tempo

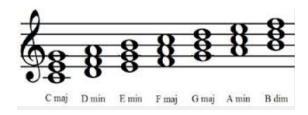

Périodicité des évènements?

- Calcul de la transformée de Fourier (DFT) du flux spectral:
 - FLUX(k) = $\sum_{n=0}^{N-1} flux(n) \cdot exp(j2\pi \frac{k}{N}n), \forall k$
- Calcul de la fonction d'auto-correlélation du flux spectral


Estimation du tempo?


- Détecter le peak (fréquence f_k de la DFT) correspondent au tempo
 - Tempo= $60f_k$ (BPM : Battement par Minute)
 - Peaks correspondant à la mesure, au tactus, au tatum

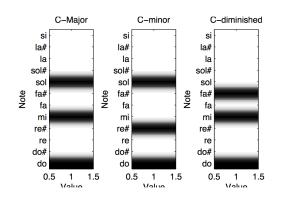
7.3- Estimation du tempo



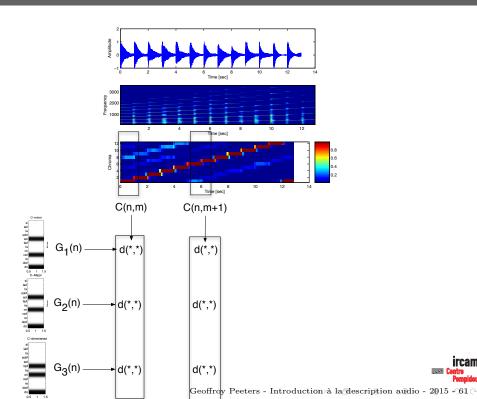
8.1- Estimation d'accords

Les accords?

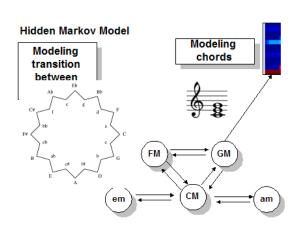
- réduction du contenu harmonique à un instant donné d'un morceau
 - ensemble de notes jouées (quasi) simultanément
- différents types d'accords


Root-note of the chord	Type of the chord
C, C#, D, D# B	Triads: major (CM: c,e,g), minor (Cm: c,
	eb, g), suspended (Csus2: c, d, g / Csus4: c,
	f, g), augmented (Caug: c, e, g#), diminished
	(Cdim: c, eb, gb),
	Tetrads: major 7 (CM7: c, e, g, b), minor 7
	(Cm7: c, eb, g, bb), dominant 7 (C7: c, e, g,
	sib), major 6 (CM6: c, e, g, a), minor 6 (Cm6:
	c, eb, g, a)
	Pentads: major 9 (CM9: c, e g, b, d), domi-
	nant 9 (C9; c, e, g, bb, d)

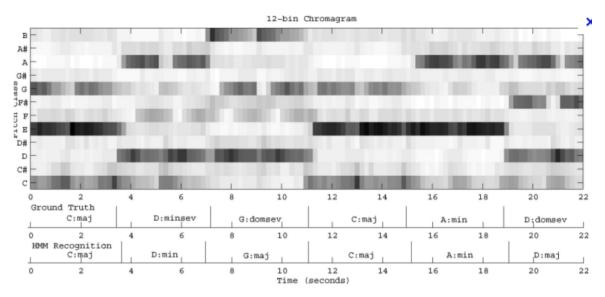
8.1- Estimation d'accords

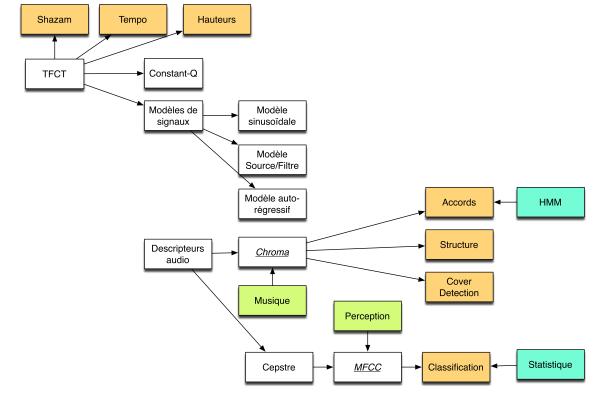

Estimation des accords?

- Représentation des accords dans un ordinateur
 - Création d'un vecteur à 12 dimensions (les 12 notes)
 - valeur 1 si la note est présente dans l'accord
 - ▶ valeur 0 si la note est absente
 - Gabarits $G_a(n)$
 - \bullet a le nom de l'accord
 - ▶ $n \text{ la note } n \in [1, 12]$
 - · Vecteur de Chroma/PCP C(n, m)à l'instant m
- Calcul d'une distance entre gabarit d'accord et vecteur de chroma
- Choix de la distance $d(C(n, m), G_a(n))$
 - distance Euclidéenne
 - distance cosinusoidale


8.1- Estimation d'accords

8.1- Estimation d'accords


Décodage de la suite d'accords


- 1. Les observations :
 - on extrait la séquence de descripteurs audio chroma/PCP
- 2. Les états :
 - ▶ les 24 accords qui sont chachés
- 3. Probabilités initiales :
- 4. Probabilités de transition entre accords :
 - suivent la théorie musicale (cercle des quintes, relatifs majeur-mineur) :
 - GMaj vers CMaj (consonance),
 - ► GMaj vers C#Maj (dissonance)
- 5. Probabilité d'émission des accords :
 - p(S = CMaj|chroma),p(S = DbMaj|chroma), ...

8.1- Estimation d'accords

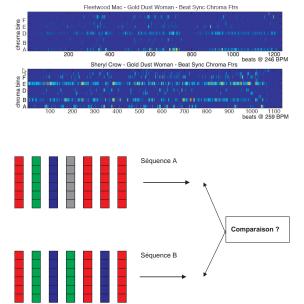
8.2- Détection de cover-version

Cover-version?

- Une reprise
- "Let it be" par The Beatles, Aretha Franklin Joan Baez, ...

Caractéristiques d'une cover-version :

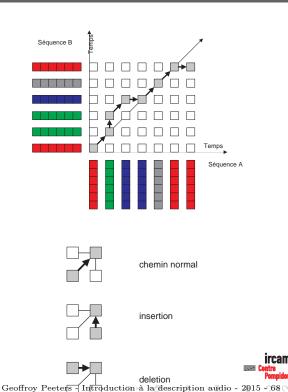
- généralement la même suite harmonique
 - même suite d'accords,
 - même mélodie
- éventuellement transposée

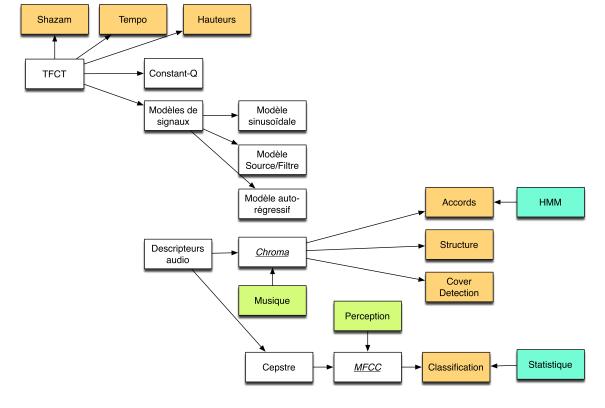

Titre		Artiste	Album	D.	Pop.	
		1				ŀ
Let It Be		The Beatles Recovered Band	30 Beatles Top Hits		IIIIIII	
Let It Be	~	The Hit Co., The Tribute Co.	A Tribute to the Beatles: The Lat	03:42		0
Let It Be	~	Labrinth	Let It Be	03:05		0
Let It Be Me	~	Ray LaMontagne	Gossip in The Grain	04:41		0
Let It Be – The Beatles Tribute		Let It Be	Let It Be - The Beatles Tribute	03:49	IIIII	0
Let It Be		Lois	Let It Be - The Voice 2	03:15	III	
Let It Be		The Yesteryears	A Tribute to #1 Beatles Hits - T	03:48	IIII	(
Let It Be	~	Aretha Franklin	This Girl's In Love With You	03:33	IIII	
Let It Be Sung	~	Jack Johnson, Matt Costa, Zach Gill,	If I Had Eyes	04:09	1	(
Let It Be		Vox Angeli	Gloria	03:26	III	
Let It Be	~	Paul McCartney	Good Evening New York City	03:54	IIII	Ì
Hey Jude		Let It Be	Hey Jude	03:55	III	
Let It Re		Ioan Baez	Greatest Hits And Others	03:51		

8.2- Détection de cover-version

Méthode

- Chaque morceau est représenté par la séquence temporelle de ses chromas/PCP : C(n, m)
 - $\rightarrow n$ est la pitch-class et
 - $\rightarrow m$ est le temps
- Pour une collection de morceaux, on compare les morceaux deux à deux
 - · Calcul du coût pour aligner $C_1(n,m)$ et $C_2(n,m)$
- Si le coût d'alignement est faible, il s'agit vraisemblablement d'une cover ou ... d'un plagia
- Technique utilisée :
 - Alignement Dynamique du Temps



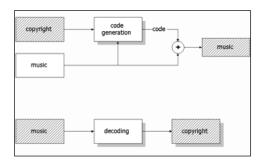


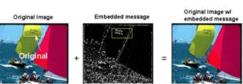
8.2- Détection de cover-version

Alignement de deux séquences temporelles A et B

- Hypothèse:
 - début et fin en correspondances
- Méthode
 - Parcours progressif de tous les points (a,b) de la matrice d'alignement
 - En un point (a,b), recherche du meilleur chemin (de coût local minimal) pour y arriver parmi :
 - $(a-1,b-1) \rightarrow (a,b)$: chemin normal
 - $(a, b-1) \rightarrow (a, b)$: insertion
 - $(a-1,b) \rightarrow (a,b)$: deletion
 - ▶ Coût local =
 - coût du point précédent (cumul)
 - + coût défavorable si ins. ou del.

8.3- Identification audio

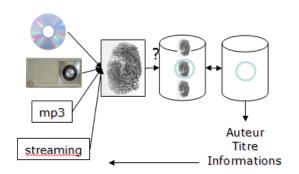

Identification audio?


- Objectif:
 - · Reconnaître un morceau diffusées sur radio, télé, Internet, bar, discothèque, ...
 - Identifier l'enregistrement (ISRC), pas l'oeuvre (ISWC)

8.3- Identification audio

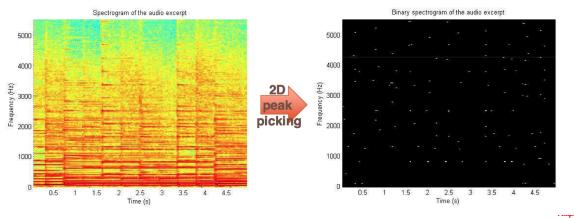
Méthode 1 : Watermarking

- Codage:
 - introduction d'un code identifiant robuste mais inaudible dans le signal sonore
- Décodage :
 - pour un nouveau signal :
 extraction du code (si il est
 présent) et recherche de ce code
 dans une base de données



8.3- Identification audio

Méthode 2 : Fingerprint

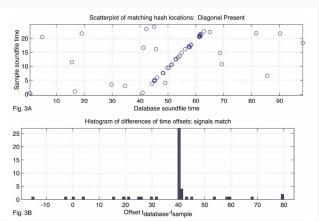

- Shazam, Midomi, Philips, ...
- Codage:
 - prise d'empreinte du signal, stockage dans une base de données
- Décodage :
 - pour un nouveau signal, prise d'empreinte, comparaison avec les empreintes de la base de données
- Challenge:
 - déterminer un ensemble réduit de descripteurs audio extraits du signal sonore permettant d'identifier de manière unique un extrait musical

8.3- Identification audio

Fingerprint : algorithme de Shazam

- Extraction de points saillants dans le plan temps/fréquence
 - onsets de sinusoides, maxima locaux
 - "constellation points"

8.3- Identification audio


Fingerprint : algorithme de Shazam

- Représentation des "constellation points" :
 - chaque point est pris comme un "anchor point" ayant une "target zone"
 - stoquage:
 - fréquences des points f_1, f_2
 - le Δt du temps $t_2 t_1$
 - (le temps de l'anchor t_1)

8.3- Identification audio

Fingerprint : algorithme de Shazam

- Matching:
 - pour chaque points correspondants dans la base de données on mesure le décalage temporel : $time_{db} time_{sample} = constant$
 - * puisque le décalage doit être constant, on calcul l'histogramme des Δ t, il doit présenter un peak

8.3- Identification audio

