ENSEA 3ème SyM Traitement du signal audio musical: Transformation et séparation du son

Geoffroy.Peeters@ircam.fr
UMR SMTS IRCAM CNRS UPMC

- 1. Théorie: Traitement du signal fréquentiel
- 1.1 Transformée de Fourier (temps et fréquences continus)
- 1.2 Transformée de Fourier (temps et fréquences discrets)
- 1.3 Transformée de Fourier (à Court Terme) : TFCT
- 1.4 Transformée à Q-Constant (CQT)
- 1.5 Deux interprétations de la TFCT
- 1.6 Reconstruction du signal par addition/ recouvrement (TFTC inverse)

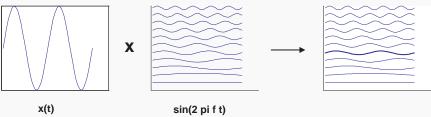
- 1.7 Application : filtrage constant au cours du temps
- 1.8 Application : débruitage par soustraction spectrale
- 1.9 Application : dilatation/ contraction du temps par vocodeur de phase
- 2. Séparation de sources
- 2.1 Séparation Harmonique Percussive (HPS)
- 2.2 Décomposition en matrice non-négatives (NMF)

1.1- Transformée de Fourier (temps et fréquences continus)

Transformée de Fourier (temps et fréquences continus)

$$X(\omega) = \int_{t=-\inf}^{+\inf} x(t)e^{-j\omega t}dt \quad X(f) = \int_{t=-\inf}^{+\inf} \exp(-j2\pi ft)dt \tag{1}$$

- Variables :
 - ▶ t est le temps
 - $\omega = 2\pi f$ les **fréquences continues** exprimées en radian,
 - $\Rightarrow \exp(j2\pi ft) = \cos(2\pi ft) + j \cdot \sin(2\pi ft).$
- Pourquoi la Transformée de Fourier?
 - ightharpoonup Difficile d'extraire des observations directement à partir de la forme d'onde x(t)
 - Reproduire la décomposition en fréquences de l'oreille humaine



1.1- Transformée de Fourier (temps et fréquences continus)

Propriété de la Transformée de Fourier (temps et fréquences continus)

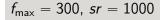
•		` '
Propriétés	x(t)	X(f)
Similitude	x(at)	$\frac{1}{ a }X(\frac{f}{ a })$
Linéarité	ax(t) + by(t)	aX(f) + bY(f)
Translation	$x(t-t_0)$	$X(f) \exp(-j2\pi f t_0)$
Modulation	$x(t) \exp(j2\pi f_0 t)$	X(f-f0)
Convolution	$x(t) \circledast y(t)$	X(f)Y(f)
Produit	x(t)y(t)	$X(f) \circledast Y(f)$
Parité	réelle paire	réelle paire
	réelle impaire	imaginaire paire
	imaginaire paire	imaginaire paire
	imaginaire impaire	réelle impaire
	complexe paire	complexe paire
	complexe impaire	complexe impaire
	réelle	$X(f) = X^{\star}(-f)$
		$\Re(X(f))$ est paire
		$\Im(X(f))$ est impaire
	$x^{\star}(t)$	$X^{\star}(f)$

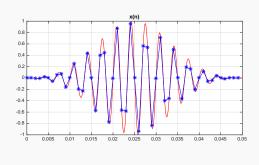
1.2- Transformée de Fourier (temps et fréquences discrets)

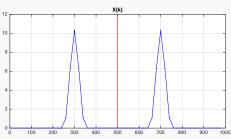
$$X(k) = \sum_{m=0}^{N-1} x(m)e^{-j2\pi \frac{k}{N}m} \quad \forall k \in [0, N]$$

- Variables :
 - ▶ n le numéro d'échantillon
 - k les fréquences discrètes
- Fréquence d'échantillonnage (sampling rate) sr
 - sr définit à quelle fréquence le signal temporel va être échantillonné
 - Exemple :
 - ► Compact Disc sr = 44100 Hz
 - La distance temporelle entre deux échantillons (le pas d'échantillonnage) est de $\Delta t = \frac{1}{44100} = 0.000023 \text{ s.}$
- sr doit être > à deux fois la f_{max} présente dans le signal
 - Sinon : repliement spectral
 - exemple : captation d'une roue d'une voiture accélérant dans les films
 - Fréquence de Nyquist : $f_{Nyquist} = \frac{sr}{2} > f_{max}$

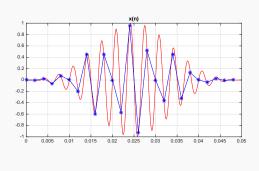
1.2- Transformée de Fourier (temps et fréquences discrets)

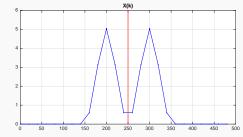






 $f_{\rm max} = 300$, sr = 500





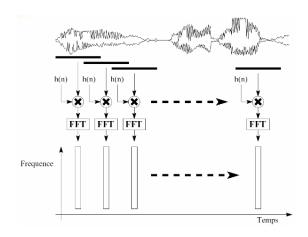
1.3- Transformée de Fourier (à Court Terme) : TFCT

$$X(k,n) = \sum_{m=0}^{N-1} x(m)w(n-m)e^{-j2\pi \frac{k}{N}m} \quad \forall k \in [0,N]$$

• Application de la TFD à une portion du signal centrée autour de l'échantillon n

Pourquoi la TFCT?

- ► Signal audio = non-stationnaire
 - ses propriétés varient au cours du temps
- Stationnaires "localement" (en temps)
 - sur une durée de + 40ms
- ► TFCT = suite d'analyses de Fourier sur des durées de + 40ms
 - = analyse à Court Terme ("trames/frames" en vidéo)



source : Jean Laroche

1.3- Transformée de Fourier (à Court Terme) : TFCT

$$X(k,n) = \sum_{m=0}^{N-1} x(m)w(n-m)e^{-j2\pi \frac{k}{N}m} \quad \forall k \in [0,N]$$

Fenêtre de pondération w(t)

- $x(t) \cdot w(t) \rightleftharpoons X(f) \circledast W(f)$
 - ▶ w(t) est appelé "fenêtre de pondération"
 - w(t) différents types de fenêtre
 - w(t) définie sur un horizon fini (**longueur temporelle**) [0, L].
 - Choix du type et de la longueur détermine les caractéristiques spectrales
 - ► Largeur de bande fréquentielle (à -6 dB_{20}) : $Bw = \frac{Cw}{I}$
 - Hauteur des lobes secondaires

1.3- Transformée de Fourier (à Court Terme) : TFCT

Choix du type de la fonction :

- rectangulaire
 - w(n) = 1
 - ▶ Bw = 1.21
- hanning

$$w(n) = 0.5(1 - \cos(\frac{2\pi n}{N-1}))$$

$$Bw = 2$$

hamming

$$w(n) = 0.54 - 0.46 \cos(\frac{2\pi n}{N-1})$$

$$Bw = 1.81$$

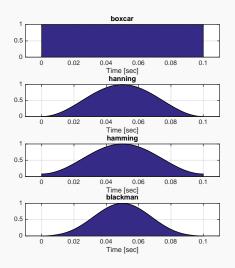
blackman

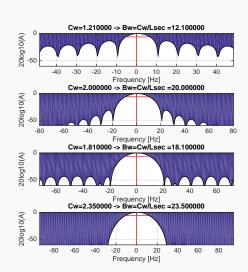
$$w(n) = a_0 - a_1 \cos(\frac{2\pi n}{N-1}) + a_2 \cos(\frac{2\pi n}{N-1})$$

►
$$Bw = 2.35$$

1- Théorie : Traitement du signal fréquentiel 1.3- Transformée de Fourier (à Court Terme) : TFCT

Influence du type de la fonction





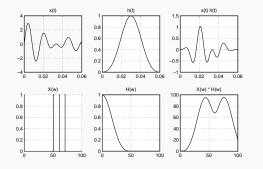
1.3- Transformée de Fourier (à Court Terme) : TFCT

Choix de la longueur temporelle L :

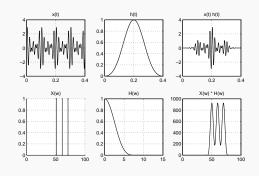
- Au plus la fenêtre est courte,
 - au plus on observe précisément les temps.
- Au plus la fenêtre est longue,
 - au plus on observe précisément les fréquences.

1.3- Transformée de Fourier (à Court Terme) : TFCT

Influence de la **longueur temporelle** L (L = 0.06s.)

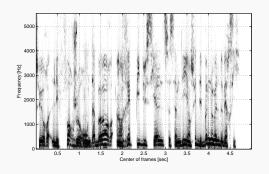


Influence de la **longueur temporelle** L (L = 0.4s.)

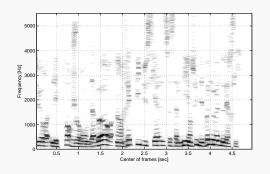


1.3- Transformée de Fourier (à Court Terme) : TFCT

Influence de la **longueur temporelle** L (L = 0.01s.)



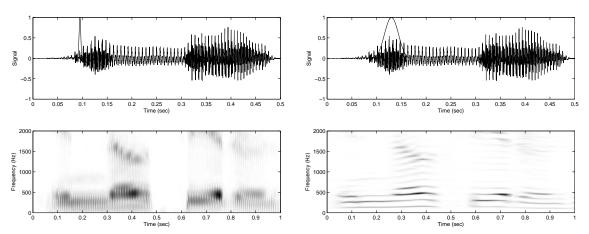
Influence de la **longueur temporelle** L (L = 0.1s.)



1.3- Transformée de Fourier (à Court Terme) : TFCT

Paradoxe temps/ fréquence

Pas possible d'avoir simultanément une bonne localisation en temps et en fréquence!



- Comme résoudre ce problème?
 - Utiliser d'autres tranformées que celle de Fourier

1.4- Transformée à Q-Constant (CQT)

Transformée à Q-Constant (CQT)

- La DFT
 - ▶ Définition : La précision fréquentielle : $\Delta f = \frac{sr}{N}$
 - ▶ c'est le pas d'échantillonnage du spectre
 - ▶ elle dépend de la taille de la DFT : N
 - → on peut l'augmenter en augmentant N
 - ▶ Définition : La résolution fréquentielle : $Bw = \frac{Cw}{L}$
 - c'est le pouvoir de séparation entre deux fréquences présentes simultanément dans le spectre, le pouvoir de résoudre spectralement
 - Attention :
 - ightharpoonup même si on augmente N (zero-padding) en gardant L constant on n'améliore pas la résolution!
- Dans la DFT, la précision et la résolution fréquentielle sont constantes à travers les fréquences

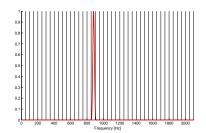
1.4- Transformée à Q-Constant (CQT)

Transformée à Q-Constant (CQT)

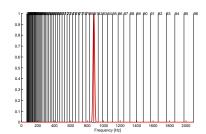
- En audio musical
 - les fréquences sont logarithimiquement espacées
 - pour passer des fréquences aux hauteurs de notes :

$$m_k = 12 \cdot log_2 \frac{f_k}{440} + 69$$

- pour passer des hauteurs de notes aux fréquences : $f = 440 \cdot 2^{\frac{m-69}{12}}$
- les hauteurs de notes sont plus rapprochées en basses fréquences, plus espacées en hautes fréquences
- La résolution fréquentielle de la DFT
 - n'est pas suffisante pour résoudre les hauteurs de notes adjacentes en basses fréquences,
 - est trop importante en hautes fréquences



Espacement linéaire de la DFT



1.4- Transformée à Q-Constant (CQT)

Transformée à Q-Constant

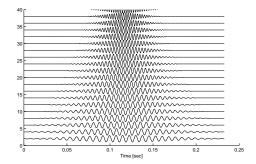
[J. Brown and M. Puckette. An efficient algorithm for the calculation of a constant q transform. JASA, 1992.]

- Solution?
 - Changer la résolution fréquentielle en fonction des fréquences considérées
- Comment?
 - En changeant la longueur temporelle de la fenêtre pour chaque fréquence considérée
 - Le facteur $Q = \frac{f_k}{f_{k+1} f_k}$ doit rester constant en fréquence

$$Q = \frac{f_k}{Bw} = \frac{f_k}{Cw/L} = \frac{f_k \cdot L}{Cw}$$
 (2)

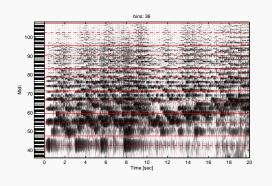
• on choisit un L pour chaque fréquence f_k

$$L_k = \frac{Q \cdot Cw}{f_k}$$

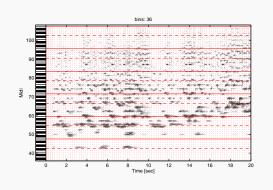


1.4- Transformée à Q-Constant (CQT)

Exemples (en utilisant la DFT)



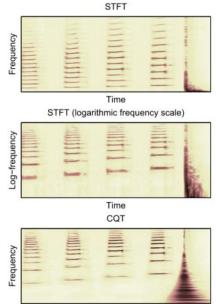
Exemples (en utilisant la CQT)



1.4- Transformée à Q-Constant (CQT)

Transformée à Q-Constant (CQT)

- Sur une transformée à Q constant :
 - Une différence de pitch correspond à une translation sur l'axe des fréquences



- 1- Théorie : Traitement du signal fréquentiel
 - 1.5- Deux interprétations de la TFCT

1.5- Deux interprétations de la TFCT

Deux interprétations de la TFCT

- Interprétation passe-bas :
 - → on regarde l'évolution du signal à une fréquence f₀ donnée

$$X(f, n) = \sum_{m = -\inf}^{+\inf} x(m)w(n - m)e^{-j2\pi fm}$$

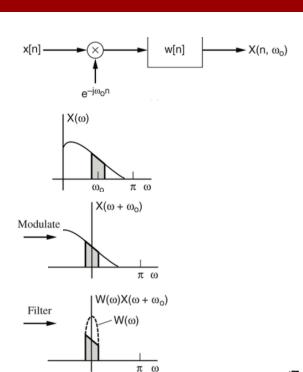
$$X(f_0, n) = \sum_{m = -\inf}^{+\inf} \left[x(m)e^{-j2\pi f_0 m} \right] w(n - m)$$

$$= \sum_{m = -\inf}^{+\inf} x_0(m)w(n - m)$$

$$= x_0(n) \circledast w(n)$$

(3)

- avec $x_0(m) = x(m)e^{-j2\pi fm}$ le signal modulé
- il s'agit d'une convolution de $x_0(m)$ par le filtre passe-bas $w_0(m)$



source: Patrick J. Wolfe, 2009

Geoffroy Peeters - peeters@ircam.fr - 2015 - 23

1.5- Deux interprétations de la TFCT

Deux interprétations de la TFCT

- Interprétation passe-bande :
 - on regarde l'évolution du signal à une fréquence f₀ donnée

$$X(f, n) = \sum_{m = -\inf}^{+\inf} x(m)w(n - m)e^{-j2\pi fm}$$

$$X(f_0, n) = \sum_{m = -\inf}^{+\inf} x(m)w_0(n - m)e^{-j2\pi f_0 n}$$

$$= e^{-j2\pi f_0 n} \sum_{m = -\inf}^{+\inf} x(m)w_0(n - m)$$

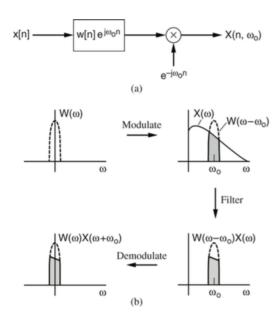
$$= e^{-j2\pi f_0 n} \cdot [x(m) \circledast w_0(n)]$$

(4)

• avec $w_0(m) = w(n-m)e^{j2\pi f_0(n-m)}$ la

fenêtre démodulée

• il s'agit d'une convolution de h(m) par le filtre passe-bande $h_0(m)$



source : Patrick J. Wolfe. 2009

- 1- Théorie : Traitement du signal fréquentiel
 - 1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

On peut reconstruire le signal audio à partir des informations de la TFCT

• Méthode d'addition/recouvrement (OverLap-Add, OLA)

$$X(k,n) = \sum_{m} x(m)w(n-m)e^{-j2\pi\frac{k}{N}m}$$

$$\frac{1}{N} \sum_{k=0}^{N-1} X(k,n)e^{+j2\pi\frac{k}{N}m} = x(m)w(n-m)$$
si n=m
$$\frac{1}{Nw(0)} \frac{1}{N} \sum_{k=0}^{N-1} X(k,n)e^{+j2\pi\frac{k}{N}m} = x(n)$$
(5)

1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

On peut reconstruire le signal audio à partir des informations de la TFCT

- Si on note n = RI
 - ▶ r le numéro de la trame d'analyse
 - ▶ I le pas d'avancement

$$y(m, rl) = \frac{1}{N} \sum_{k=0}^{N-1} X(k, rl) e^{+j2\pi \frac{k}{N}m}$$

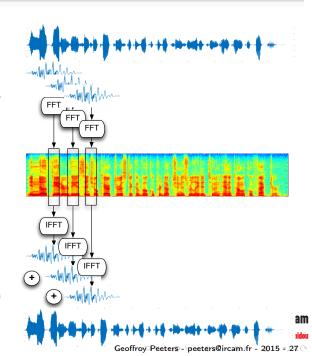
$$= x(m)w(rl - m)$$

$$y(m) = \sum_{r} y(m, rl)$$

$$= \sum_{r} x(m)w(rl - m)$$

$$= x(m) \sum_{r} w(rl - m)$$

$$x(n) = \frac{\sum_{r} y(m, rl)}{\sum_{r} w(rl - n)}$$
(6)



1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

On peut reconstruire le signal audio à partir des informations de la TFCT

- Si on note n = RI
 - r le numéro de la trame d'analyse
 - I le pas d'avancement

$$y(m, rl) = \frac{1}{N} \sum_{k=0}^{N-1} X(k, rl) e^{+j2\pi \frac{k}{N}m}$$

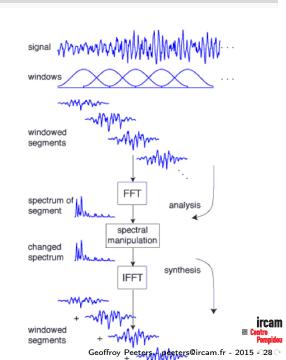
$$= x(m)w(rl - m)$$

$$y(m) = \sum_{r} y(m, rl)$$

$$= \sum_{r} x(m)w(rl - m)$$

$$= x(m) \sum_{r} w(rl - m)$$

$$x(n) = \frac{\sum_{r} y(m, rl)}{\sum_{r} w(rl - n)}$$
(7)



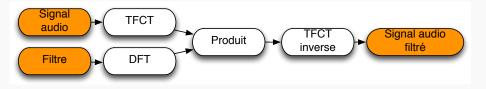
- 1- Théorie : Traitement du signal fréquentiel
 - 1.7- Application : filtrage constant au cours du temps

1.7- Application: filtrage constant au cours du temps

Application: filtrage constant au cours du temps

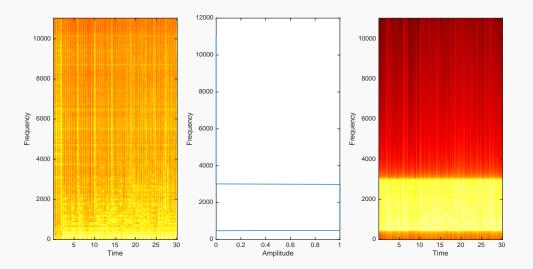
Filtrage dans le domaine fréquentiel= très économique en coût de calcul

- $x(t) \circledast h(t) \rightleftarrows X(\omega)H(\omega)$
- utilisation de l'algorithme FFT



1.7- Application : filtrage constant au cours du temps

Application : filtrage constant au cours du temps



- 1- Théorie : Traitement du signal fréquentiel
 - 1.8- Application : débruitage par soustraction spectrale

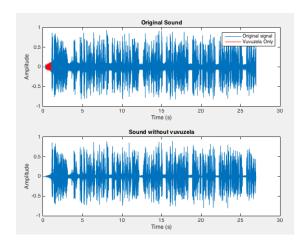
1.8- Application : débruitage par soustraction spectrale

Application : débruitage par soustraction spectrale

- soit x(t) = s(t) + n(t)
 - \rightarrow s(t) est un signal de parole
 - $\rightarrow n(t)$ est un bruit additif
 - on peut écrire le modèle : $X(e^{j\omega}) = S(e^{j\omega}) + N(e^{j\omega})$

Méthode

- On cherche un filtre fréquentiel $H(e^{j\omega})$ permettant de retirer le bruit additif
- Amplitude de ce filtre
 - = valeur moyenne de $|N(e^{j\omega})|^2$ calculée sur un segment ne contenant pas de parole
- Phase
 - ho = la phase de X : $\theta_x(\omega)$



1.8- Application : débruitage par soustraction spectrale

Application : débruitage par soustraction spectrale

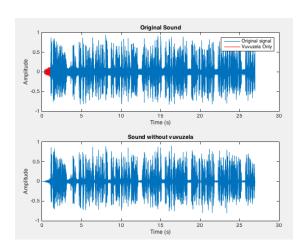
Soustraction :

$$\hat{S}(e^{j\omega}) = [|X(e^{j\omega})| - \mu(e^{j\omega})] e^{j\theta_x}$$

$$= H(e^{j\omega})X(e^{j\omega})$$
(8)

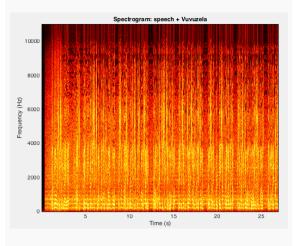
- avec $H(e^{j\omega}) = 1 \frac{\mu(e^{j\omega})}{|X(e^{j\omega})|}$
- avec $\mu(e^{j\omega}) = E\{|N(e^{j\omega})|\}$
- Amélioration :
 - Pour éviter des problèmes lorsque $|X(e^{j\omega})| < \mu(e^{j\omega})$ (quand le spectre d'amplitude est < au spectre moyen du bruit)
 - rectification demi-onde (half-wave rectification) :

$$H_R(e^{j\omega}) = \frac{H(e^{j\omega)} + |H(e^{j\omega})|}{2}$$

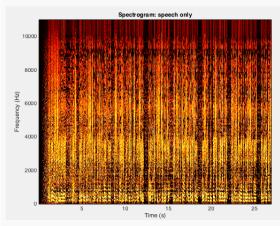


1.8- Application : débruitage par soustraction spectrale

Spectrogramme speech+noise



Spectrogramme speech



- 1- Théorie : Traitement du signal fréquentiel
 - 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

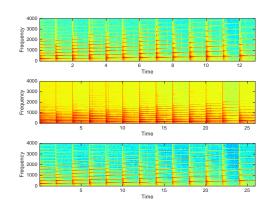
1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Technique de DJ pour changer le tempo

- ralentir la vitesse de lecture (du vynil, ce la bande magnétique)
- $x(at) \rightleftharpoons \frac{1}{a}X\left(\frac{f}{|a|}\right)$
- si *a* < 1
 - on ralentit le temps
 - mais on contracte aussi les fréquences (on abaisse les hauteurs)
- sia > 1
 - ▶ on accélère le temps
 - mais on étend aussi les fréquences (on augmente les hauteurs)

Objectif

 changer le temps et les hauteurs de manière indépendante



[haut] : signal original, [milieu] a < 1 par ré-échantillonnage, [bas] : a < 1 par vocodeur de phase

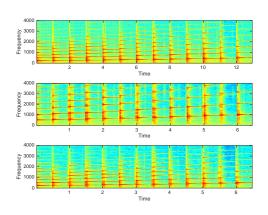
1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Technique de DJ pour changer le tempo

- ralentir la vitesse de lecture (du vynil, ce la bande magnétique)
- $x(at) \rightleftharpoons \frac{1}{a}X\left(\frac{f}{|a|}\right)$
- si *a* < 1
 - on ralentit le temps
 - mais on contracte aussi les fréquences (on abaisse les hauteurs)
- si a > 1
 - ▶ on accélère le temps
 - mais on étend aussi les fréquences (on augmente les hauteurs)

Objectif

 changer le temps et les hauteurs de manière indépendante



[haut] : signal original, [milieu] a>1 par ré-échantillonnage, [bas] : a>1 par vocodeur de phase

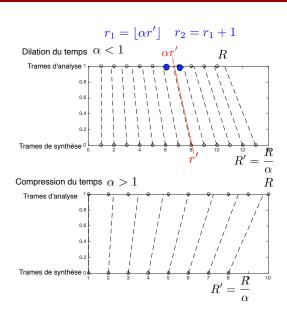
1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Le vocodeur de phase

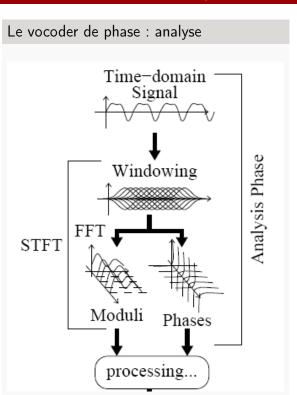
- Méthode :
 - pour raccourcir/ rallonger le signal, on va changer le nombre de trames utilisées pour la resynthèse par TFCT inverse
- Soit R: le nombre de trames d'analyse de la TFCT
- Soit $R' = \alpha R$: le nombre de trames de synthèse (utilisées pour la resynthèse par TFCT inverse)
 - si α < 1, on dilate le temps du signal (on le ralentit)
 - si $\alpha > 1$, on compresse le temps du signal (on l'accélère)
- Le contenu d'une trame de synthèse $r' \in \left[1, R' = \frac{R}{\alpha}\right]$ est obtenu en recherchant les trames d'analyse r correspondantes les plus proches

$$r_1 = \lfloor \alpha r' \rfloor e$$

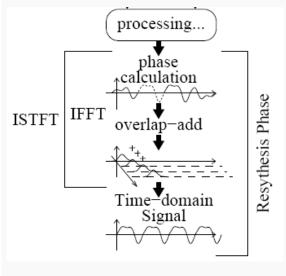
$$r_2 = \lceil \alpha r' \rceil$$



1.9- Application : dilatation/ contraction du temps par vocodeur de phase



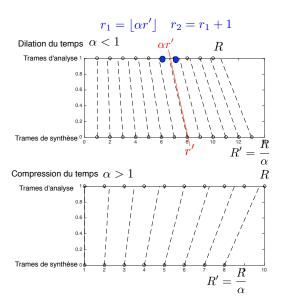
Le vocoder de phase : synthèse



1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Le vocodeur de phase : spectre d'amplitude

- Le spectre d'amplitude à la trame r', est obtenu par interpole linéaire des spectres d'amplitude en r_1 et $r_2 = r_1 + 1$:
 - $A(k, r') = (1 \Delta)A(k, r_1) + \Delta A(k, r_2)$
 - avec $\Delta = \alpha r' r_1$
- Le spectre de phase?
 - ▶ c'est peu plus compliqué!!!



1.9- Application : dilatation/ contraction du temps par vocodeur de phase

La phase et la fréquence instantanée

- Considérons un signal formé d'une sinusoide pure à la fréquence $f_0: x(t) = \sin(\phi(t)) = \sin(2\pi f_0 t)$
 - entre les instants t_1 et t_2 , sa phase a "tournée" de $\phi(t_1)$ à $\phi(t_2)$
 - puisqu'il s'agit d'une sinusoide pure, elle a tournée de $\phi(t_2) = \phi(t_1) + 2\pi f_0(t_2 t_1)$
 - on peut donc estimer la fréquence f₀ à partir de la différence de phase

•
$$f_0 = \frac{\phi(t_2) - \phi(t_1)}{2\pi(t_2 - t_1)}$$

- Problème : la phase est uniquement définie dans l'intervalle $[-\pi,\pi]$
 - donc en pratique le $\hat{\phi}(t_2)$ qu'on observe n'est pas tel

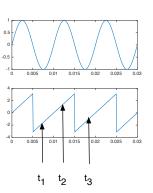
$$\phi(t_2) = \phi(t_1) + 2\pi f_0(t_2 - t_1)$$

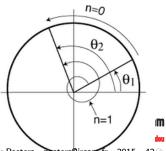
mais est

$$\hat{\phi}(t_2) + n2\pi = \phi(t_1) + 2\pi f_0(t_2 - t_1)$$
, avec n indéterminé

▶ pour déterminer f₀ il faut donc déterminer n

$$f_0 = \frac{\phi(t_2) + n2\pi - \phi(t_1)}{2\pi(t_2 - t_1)}$$





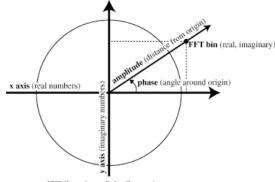
1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Phase dans le Transformée de Fourier à Court Term (TFCT)

 Pour chaque trame n et fréquence k la TFTC est un nombre complexe

$$X(k,n) = \sum_{m} x(m)w(n-m)e^{-j2\pi\frac{k}{N}m}$$

- Il peut se décomposer en amplitude (module) et phase :
 - $X(k,n) = A(k,n)e^{j\phi(k,n)}$

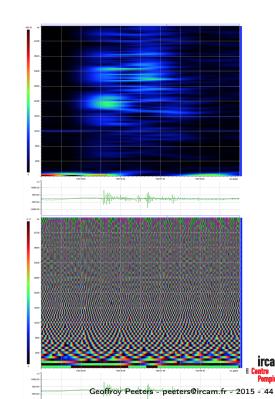


FFT Cartesian to Polar Conversion

1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Phase dans le Transformée de Fourier à Court Term (TFCT)

- On a donc une valeur d'amplitude et de phase pour chaque (k, n)
- Spectrogramme
 - \rightarrow d'amplitude A(k, n)
 - de phase $\phi(k, n)$
- La phase indique la position de la cosinusoide,
- La variation temporelle de phase indique la fréquence instantanée
 - Proof of the order of the orde



1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Le vocodeur de phase : spectre de phase

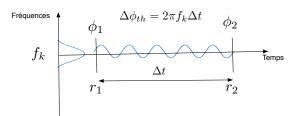
- A la trame r' le spectre de phase dans le filtre k de la TFCT est obtenu en propageant la phase à partir de la fréquence contenu dans ce filtre
- 1) Solution simplifiée :
 - on suppose que le filtre k contient une sinusoide à la fréquence f_k
 - ▶ si on note

- puisque le pas de synthèse est égale au pas d'analyse : $r' (r' 1) = r_2 r_1$
- on utilise la prédiction théorique de la phase : $\Delta\phi_{th}$

$$\phi(\mathbf{k}, \mathbf{r}') = \phi(\mathbf{k}, \mathbf{r}' - 1) + \Delta \phi_{th}$$

$$\phi(k,r') = \phi(k,r'-1) + 2\pi f_k \Delta t$$

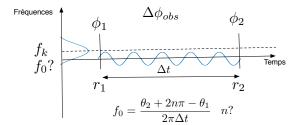
avec comme phase **initiale** :
$$\phi(k, r' = 1) = \phi(k, r = 1)$$



1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Le vocodeur de phase : spectre de phase

- 2) Solution correcte :
 - En pratique il se peut qu'on observe à travers le filtre k une sinusoide à une fréquence proche mais différente de f_k
 - ceci est du à largeur du lobe principale, aux lobes secondaires
 - Il faut estimer cette fréquence f₀ que l'on observe à travers le filtre f_k pour ensuite appliquer la propagation de phase



1.9- Application: dilatation/contraction du temps par vocodeur de phase

Le vocodeur de phase : spectre de phase

- Estimer cette f_0 ?
 - En utilisant la fréquence instantanée :

$$f_0(n) = \frac{\phi_2 + 2\pi n - \phi_1}{2\pi \Delta t}$$

- Comme déterminer n?
 - en cherchant *n* tel que $f_0 \simeq f_k$

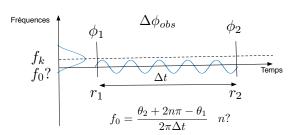
n tel que
$$\min_{n} |f_0 - f_k|$$

$$\min_{n} |\frac{\phi_2 + 2n\pi - \phi_1}{2\pi\Delta t} - f_k|$$

$$\min_{n} |\phi_2 + 2n\pi - \phi_1 - 2\pi\Delta t f_k|$$

$$\min_{n} |\phi_2 + 2n\pi - \phi_1 - \Delta \phi_{th}|$$
(9)

- ce qui revient à
 - trouver la détermination principale (la valeur dans l'intervalle $[-\pi, \pi]$) de $|\phi_2 - \phi_1 - \Delta \phi_{th}|_{[-\pi,\pi]}$
 - ▶ il s'agit de la différence de phase
 - non-expliquée par le modèle théorique $\Delta \phi_{th}$



1.9- Application : dilatation/ contraction du temps par vocodeur de phase

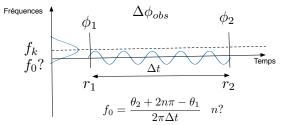
Le vocodeur de phase : spectre de phase

- 2) Solution correcte:
 - Finalement la phase est incrémentée de

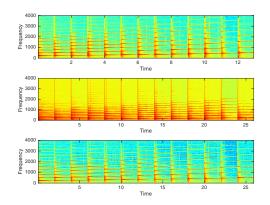
$$\phi(k, r') = \phi(k, r' - 1) + 2\pi f_0 \Delta t$$

= $\phi(k, r' - 1) + [\phi_2 - \phi_1 - \Delta \phi_{th}]_{[-\pi, \pi]}$
(10)

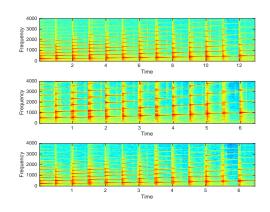
• avec comme phase **initiale** : $\phi(k, r' = 1) = \phi(k, r = 1)$



1.9- Application : dilatation/ contraction du temps par vocodeur de phase



[haut] : signal original, [milieu] a<1 par ré-échantillonnage, [bas] : a<1 par vocodeur de phase



[haut] : signal original, [milieu] a>1 par ré-échantillonnage, [bas] : a>1 par vocodeur de phase

1.9- Application : dilatation/ contraction du temps par vocodeur de phase

Changement de hauteur

• Ré-échantillonnage du signal pour correction de la longueur par phase-vocoder

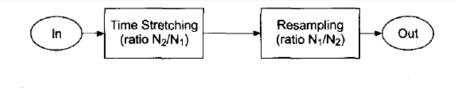


Figure 8.24 Resampling of a time stretching algorithm.

- 2- Séparation de sources
 - 2.1- Séparation Harmonique Percussive (HPS)

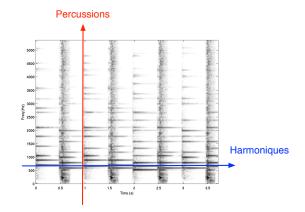
2.1- Séparation Harmonique Percussive (HPS)

Séparation de la partie percussive et harmonique d'un morceau de musique

 On considère la TFCT comme l'addition des composantes harmoniques et percussives

$$Y(f,n) = H(f,n) + P(f,n)$$

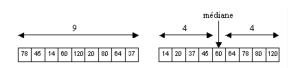
- Morphologie en temps/fréquence des instruments de musique
 - percussions : lignes verticales
 - harmoniques : lignes horizontales

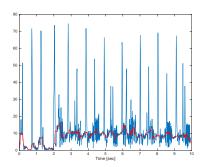


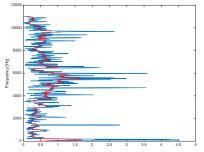
2.1- Séparation Harmonique Percussive (HPS)

Séparation de la partie percussive et harmonique d'un morceau de musique

- Création d'un spectrogramme harmonique H(f, n):
 - pour chaque f on applique un filtrage médian à travers les n de X(f, n)
- Création d'un spectrogramme percussif P(f, n):
 - ▶ pour chaque n on applique un filtrage médian à travers les f de X(f, n)
- Filtrage médian?
 - remplace chaque entrée par la valeur médiane de son voisinage
- Valeur médiane
 - ▶ tel que 50% des valeurs en-dessous et 50% au-dessus







2.1- Séparation Harmonique Percussive (HPS)

Séparation de la partie percussive et harmonique d'un morceau de musique

• Création d'un masque harmonique

$$M_{H}(f,n) = \begin{cases} & \text{1 si } H(f,n) > P(f,n) \\ & \text{0 sinon} \end{cases}$$
(11)

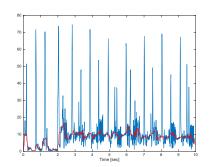
• Création d'un masque percussif

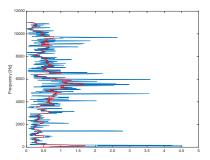
$$M_{P}(f,n) = \begin{cases} & 1 \text{ si } P(f,n) > H(f,n) \\ & 0 \text{ sinon} \end{cases}$$
(12)

Re-création de la TFCT

$$H(f,n) = X(f,n) \cdot M_H(f,n)$$

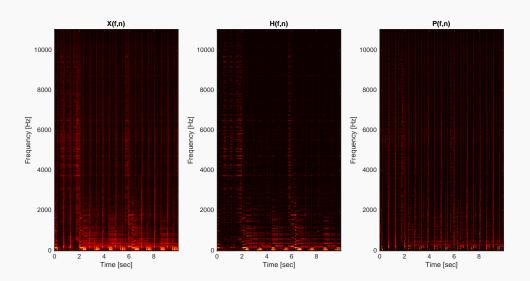
$$P(f,n) = X(f,n) \cdot M_P(f,n)$$
(13)





2.1- Séparation Harmonique Percussive (HPS)

Séparation de la partie percussive et harmonique d'un morceau de musique

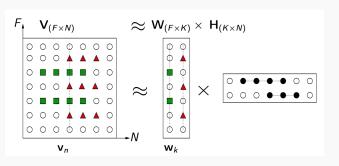


- 2- Séparation de sources
 - 2.2- Décomposition en matrice non-négatives (NMF)

2.2- Décomposition en matrice non-négatives (NMF)

Introduction

[D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 1999.]

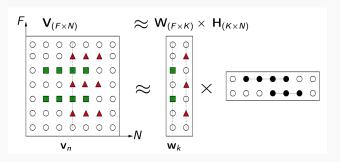


source : Cédric Févotte

- $V_{(F,N)} \simeq W_{(F,K)}H_{(K,N)}$
 - $V_{(F,N)}$: matrice de données, observée (spectrogramme d'énergie), définie positive : $V_{fn}\geqslant 0$
 - $W_{(F,K)}$: matrice de bases, dictionnaires, définie positive : $W_{fk} \ge 0$
 - $H_{(K,N)}$: matrice d'activation, définie positive : $H_{fn} \ge 0$
 - K : le nombre de bases du dictionnaire

2.2- Décomposition en matrice non-négatives (NMF)

Introduction



source : Cédric Févotte

- ullet Chaque trame n est reconstituée comme l'activation H d'un certain nombre de bases H
 - $V_{(1:F,n)} \simeq \sum_{k=1}^{K} W_{(1:F,k)} H_{(k,n)}$
- Le signal d'une source k est reconstitué comme

$$V_{(1:F,1:N)}^k = W_{(1:F,k)}H_{(k,1:N)}$$

2.2- Décomposition en matrice non-négatives (NMF)

Estimation des paramètres de la NMF

- $V_{(F,N)} \simeq W_{(F,K)}H_{(K,N)}$
- Minimisation de
 - $\rightarrow \min_{W,H \ge 0} D(V|WH)$
 - $\rightarrow \min_{\theta} C(\theta) \stackrel{\text{def}}{=} D(\underline{V}|\underline{WH}) \text{ avec } \theta = \{W, H\}$
- *D/d* est une divergence séparable

$$D(\underline{V}|\hat{V}) = \sum_{f=1}^{F} \sum_{n=1}^{N} d(v_{fn}|\hat{v}_{fn})$$

- Choix de *D*/*d* :
 - Distance Fuclidenne :

$$d_{EUC}(x,y) = (x-y)^2$$

Divergence de Kullback-Leibler :

Divergense d'Itakura-Saito :

$$d_{IS}(x,y) = \frac{x}{y} - \log \frac{x}{y} - 1$$

 $d_{KL}(x,y) = x \log \frac{x}{y} - x + y$

(16) **n**

(14)

(15)

2.2- Décomposition en matrice non-négatives (NMF)

Dérivation du critère pour la distance Euclidenne

Non Negative Matrix Factorization

$$V_{(f,n)} \simeq W_{(f,k)(k,n)} \tag{17}$$

- Erreur de reconstruction : e = V WH
- Minimisation de la SSE (Sum of Squared Error) ou de la norme de Frobenius de $SSE = ||V WH||_F^2$
- Norme de Frobenius : $||A||_F = \sqrt{\sum_i \sum_j a_{ij}^2}$

2.2- Décomposition en matrice non-négatives (NMF)

Dérivation du critère pour la distance Euclidenne

$$SSE = ||V - WH||_F^2$$

$$SSE = (V - WH)^T (V - WH)$$

$$= (V^T - H^T W^T)(V - WH)$$

$$= V^T V - V^T WH - H^T W^T V + H^T W^T WH$$

$$= V^T V - 2V^T WH + H^T W^T WH$$

$$\frac{\partial sse}{\partial H} = -2W^T V + 2W^T WH$$

$$= 2W^T (WH - V)$$

$$\frac{\partial sse}{\partial W} = -2VH^T + 2WHH^T$$

$$= -2(V - WH)H^T$$
(18)

Propriétés utilisées (Matrix CookBook)

$$\bullet \ \frac{\partial a^T x}{\partial x} = a$$

•
$$\frac{\partial a^T X b}{\partial X} = a b^T$$

•
$$\frac{\partial x^T B x}{\partial x} = (B + B^T) x$$

$$\bullet \frac{\partial b^T X^T X c}{\partial X} = X(bc^T + cb^T)$$

2.2- Décomposition en matrice non-négatives (NMF)

Algorithme de descente de gradient

- Descente de gradient?
 - déplacement dans la direction opposée au gradient, de manière à faire décroître la fonction
- Le gradiant :

$$\vdash \ \frac{\partial sse}{\partial H} = \underbrace{2W^TWH}_{\nabla_+} - \underbrace{2W^TV}_{\nabla_-}$$

Mise à jour de H

$$H \leftarrow H + \eta \cdot \left[-\text{gradient}\right]$$

$$H \leftarrow H + \eta \cdot \left[\underbrace{W^{T}V}_{\nabla_{-}} - \underbrace{W^{T}WH}_{\nabla_{+}}\right]$$
(19)

Algorithme de descente de gradient

• si on choisit
$$\eta = \frac{H}{W^T W H}$$

$$H \leftarrow H + \frac{H}{W^{T}WH}(W^{T}V - W^{T}WH)$$

$$H \leftarrow H + \frac{HW^{T}V}{W^{T}WH} - H$$

$$H \leftarrow H \cdot \frac{\overline{W^{T}V}}{\overline{W^{T}WH}}$$

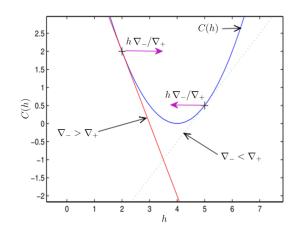
(20)

2.2- Décomposition en matrice non-négatives (NMF)

Mise à jour multiplicative

- permet de garantir que les valeurs restent positives!!!
- Séparation du gradient en contribution positive et négative

$$\nabla_h C(h) = \nabla_+ - \nabla_- \tag{21}$$



2.2- Décomposition en matrice non-négatives (NMF)

Algorithme complet de NMF dans le cas Euclidéen : $V \simeq W H_{(f,n)} \simeq W H_{(f,k)(k,n)}$

- Calcul de la TFCT : V(f, n) = |X(n, f)'|
- Choix du nombre de bases K du dictionnaire W
- Initialisation de W et H : valeurs aléatoires positives
- Itérations
 - Mise à jour des bases W étant donné les activations H

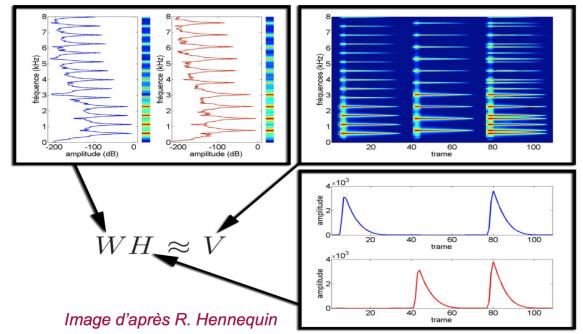
$$W \leftarrow W \cdot \frac{VH^T}{WHH^T} \tag{22}$$

Mise à jour des activations H étant donné les bases W

$$H \leftarrow H \cdot \frac{W^{T}V}{W^{T}WH} \tag{23}$$

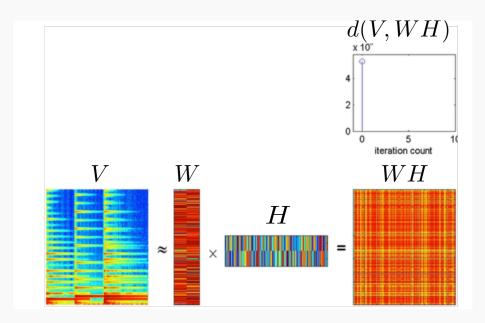
- Prise en compte de l'invariance d'échelle
 - normalisations des colonnes de H
 - ► OU
 - normalisation des lignes de W
- Arrêt lorsque la SSE cesse de décroitre

2.2- Décomposition en matrice non-négatives (NMF)



2.2- Décomposition en matrice non-négatives (NMF)

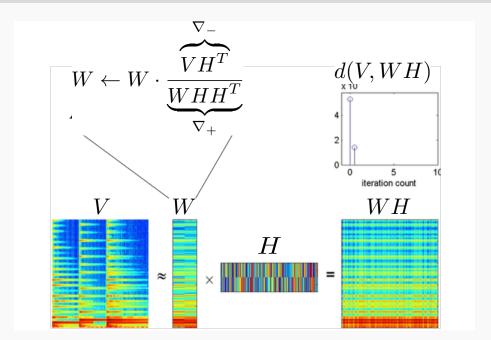
Initialisation



source : Tuomas Virtanen

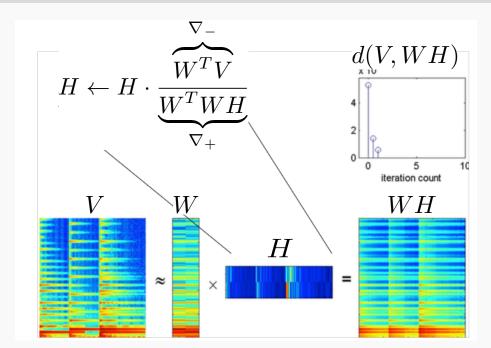
2.2- Décomposition en matrice non-négatives (NMF)

Iteration 1 : Mise à jour de W



2.2- Décomposition en matrice non-négatives (NMF)

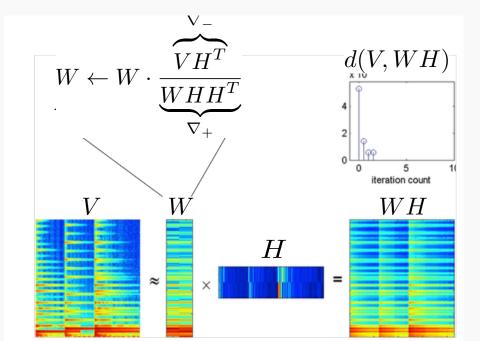
Iteration 1 : Mise à jour de H



source : Tuomas Virtanen

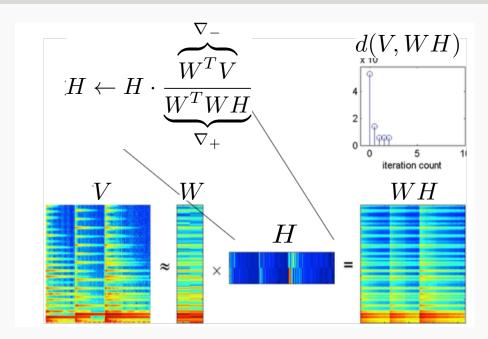
2.2- Décomposition en matrice non-négatives (NMF)

Iteration 2 : Mise à jour de W



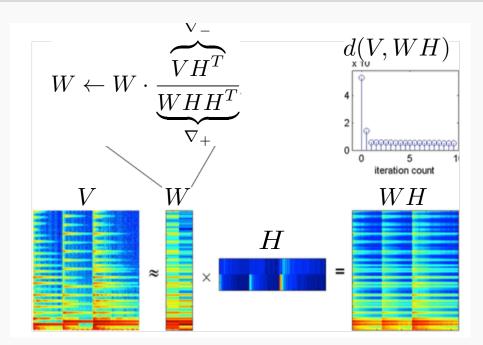
2.2- Décomposition en matrice non-négatives (NMF)

Iteration 2 : Mise à jour de H



2.2- Décomposition en matrice non-négatives (NMF)

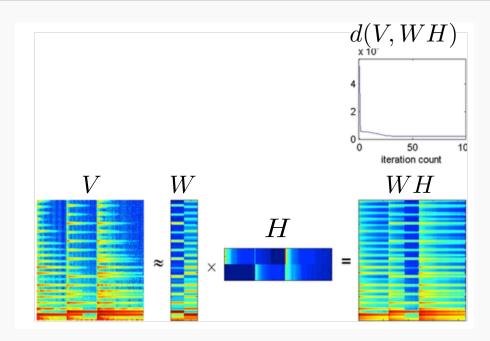
Iteration 10 : Mise à jour de W



source: Tuomas Virtanen

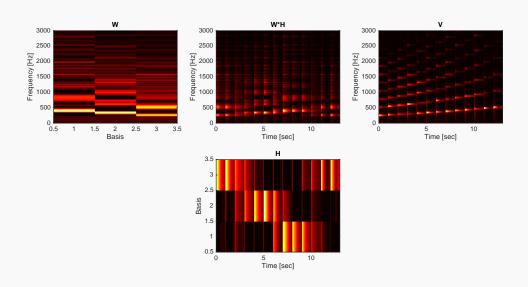
2.2- Décomposition en matrice non-négatives (NMF)

Iteration 100



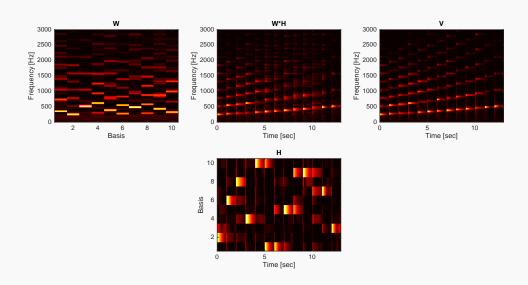
2.2- Décomposition en matrice non-négatives (NMF)

Choix du nombre de bases K = 3 (trop faible)



2.2- Décomposition en matrice non-négatives (NMF)

Choix du nombre de bases K10 (correcte)



2.2- Décomposition en matrice non-négatives (NMF)

Choix du nombre de bases K = 20 (trop grand)

