# ENSEA 3ème SyM Traitement du signal audio musical: Transformation et séparation du son

Geoffroy.Peeters@ircam.fr
UMR SMTS IRCAM CNRS UPMC

- 1. Théorie: Traitement du signal fréquentiel
- 1.1 Transformée de Fourier (temps et fréquences continus)
- 1.2 Transformée de Fourier (temps et fréquences discrets)
- 1.3 Transformée de Fourier (à Court Terme) : TFCT
- 1.4 Transformée à Q-Constant (CQT)
- 1.5 Deux interprétations de la TFCT
- 1.6 Reconstruction du signal par addition/ recouvrement (TFTC inverse)

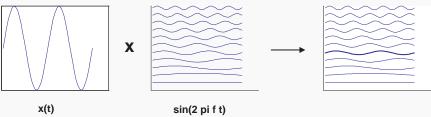
- 1.7 Application : filtrage constant au cours du temps
- 1.8 Application : débruitage par soustraction spectrale
- 1.9 Application : dilatation/ contraction du temps par vocodeur de phase
- 2. Séparation de sources
- 2.1 Séparation Harmonique Percussive (HPS)
- 2.2 Décomposition en matrice non-négatives (NMF)

### 1.1- Transformée de Fourier (temps et fréquences continus)

### Transformée de Fourier (temps et fréquences continus)

$$X(\omega) = \int_{t=-\inf}^{+\inf} x(t)e^{-j\omega t}dt \quad X(f) = \int_{t=-\inf}^{+\inf} \exp(-j2\pi ft)dt \tag{1}$$

- Variables :
  - ▶ t est le temps
  - $\omega = 2\pi f$  les **fréquences continues** exprimées en radian,
  - $\Rightarrow \exp(j2\pi ft) = \cos(2\pi ft) + j \cdot \sin(2\pi ft).$
- Pourquoi la Transformée de Fourier?
  - ightharpoonup Difficile d'extraire des observations directement à partir de la forme d'onde x(t)
  - Reproduire la décomposition en fréquences de l'oreille humaine



### 1.1- Transformée de Fourier (temps et fréquences continus)

### Propriété de la Transformée de Fourier (temps et fréquences continus)

| •           |                          | ` '                             |
|-------------|--------------------------|---------------------------------|
| Propriétés  | x(t)                     | X(f)                            |
| Similitude  | x(at)                    | $\frac{1}{ a }X(\frac{f}{ a })$ |
| Linéarité   | ax(t) + by(t)            | aX(f) + bY(f)                   |
| Translation | $x(t-t_0)$               | $X(f) \exp(-j2\pi f t_0)$       |
| Modulation  | $x(t) \exp(j2\pi f_0 t)$ | X(f-f0)                         |
| Convolution | $x(t) \circledast y(t)$  | X(f)Y(f)                        |
| Produit     | x(t)y(t)                 | $X(f) \circledast Y(f)$         |
| Parité      | réelle paire             | réelle paire                    |
|             | réelle impaire           | imaginaire paire                |
|             | imaginaire paire         | imaginaire paire                |
|             | imaginaire impaire       | réelle impaire                  |
|             | complexe paire           | complexe paire                  |
|             | complexe impaire         | complexe impaire                |
|             | réelle                   | $X(f) = X^{\star}(-f)$          |
|             |                          | $\Re(X(f))$ est paire           |
|             |                          | $\Im(X(f))$ est impaire         |
|             | $x^{\star}(t)$           | $X^{\star}(f)$                  |

### 1.2- Transformée de Fourier (temps et fréquences discrets)

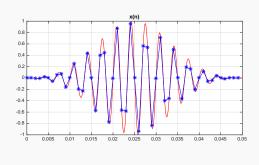
$$X(k) = \sum_{m=0}^{N-1} x(m)e^{-j2\pi \frac{k}{N}m} \quad \forall k \in [0, N]$$

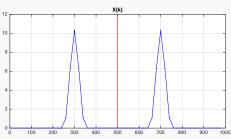
- Variables :
  - ▶ n le numéro d'échantillon
  - k les fréquences discrètes
- Fréquence d'échantillonnage (sampling rate) sr
  - sr définit à quelle fréquence le signal temporel va être échantillonné
  - Exemple :
    - ► Compact Disc sr = 44100 Hz
    - La distance temporelle entre deux échantillons (le pas d'échantillonnage) est de  $\Delta t = \frac{1}{44100} = 0.000023 \text{ s.}$
- sr doit être > à deux fois la  $f_{\text{max}}$  présente dans le signal
  - Sinon : repliement spectral
    - exemple : captation d'une roue d'une voiture accélérant dans les films
  - Fréquence de Nyquist :  $f_{Nyquist} = \frac{sr}{2} > f_{max}$



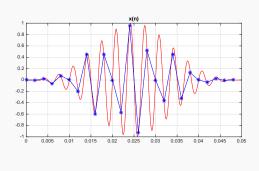
### 1.2- Transformée de Fourier (temps et fréquences discrets)

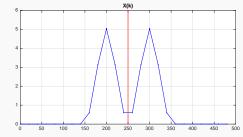






 $f_{\rm max} = 300$ , sr = 500







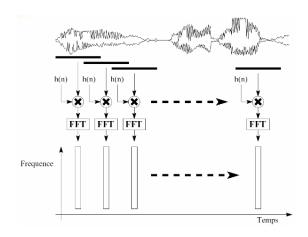
### 1.3- Transformée de Fourier (à Court Terme) : TFCT

$$X(k,n) = \sum_{m=0}^{N-1} x(m)w(n-m)e^{-j2\pi \frac{k}{N}m} \quad \forall k \in [0,N]$$

• Application de la TFD à une portion du signal centrée autour de l'échantillon n

#### Pourquoi la TFCT?

- ► Signal audio = non-stationnaire
  - ses propriétés varient au cours du temps
- Stationnaires "localement" (en temps)
  - sur une durée de + 40ms
- ► TFCT = suite d'analyses de Fourier sur des durées de + 40ms
  - = analyse à Court Terme ("trames/frames" en vidéo)



source : Jean Laroche

### 1.3- Transformée de Fourier (à Court Terme) : TFCT

$$X(k,n) = \sum_{m=0}^{N-1} x(m)w(n-m)e^{-j2\pi \frac{k}{N}m} \quad \forall k \in [0,N]$$

#### Fenêtre de pondération w(t)

- $x(t) \cdot w(t) \rightleftharpoons X(f) \circledast W(f)$ 
  - ▶ w(t) est appelé "fenêtre de pondération"
  - w(t) différents types de fenêtre
  - w(t) définie sur un horizon fini (**longueur temporelle**) [0, L].
  - Choix du type et de la longueur détermine les caractéristiques spectrales
    - ► Largeur de bande fréquentielle (à -6 $dB_{20}$ ) :  $Bw = \frac{Cw}{I}$
    - Hauteur des lobes secondaires

### 1.3- Transformée de Fourier (à Court Terme) : TFCT

### Choix du type de la fonction :

- rectangulaire
  - w(n) = 1
  - ▶ Bw = 1.21
- hanning

$$w(n) = 0.5(1 - \cos(\frac{2\pi n}{N-1}))$$

$$Bw = 2$$

hamming

$$w(n) = 0.54 - 0.46 \cos(\frac{2\pi n}{N-1})$$

$$Bw = 1.81$$

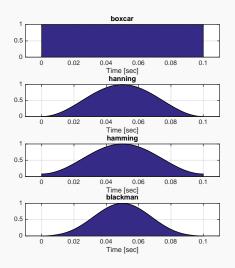
blackman

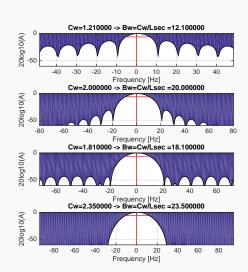
$$w(n) = a_0 - a_1 \cos(\frac{2\pi n}{N-1}) + a_2 \cos(\frac{2\pi n}{N-1})$$

► 
$$Bw = 2.35$$

### 1- Théorie : Traitement du signal fréquentiel 1.3- Transformée de Fourier (à Court Terme) : TFCT

#### Influence du type de la fonction





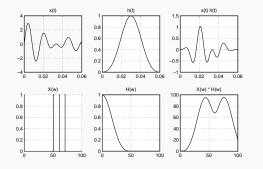
### 1.3- Transformée de Fourier (à Court Terme) : TFCT

### Choix de la longueur temporelle L :

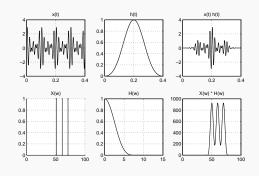
- Au plus la fenêtre est courte,
  - au plus on observe précisément les temps.
- Au plus la fenêtre est longue,
  - au plus on observe précisément les fréquences.

### 1.3- Transformée de Fourier (à Court Terme) : TFCT

# Influence de la **longueur temporelle** L (L = 0.06s.)

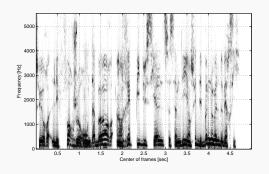


# Influence de la **longueur temporelle** L (L = 0.4s.)

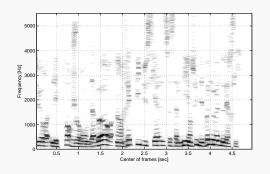


## 1.3- Transformée de Fourier (à Court Terme) : TFCT

Influence de la **longueur temporelle** L (L = 0.01s.)



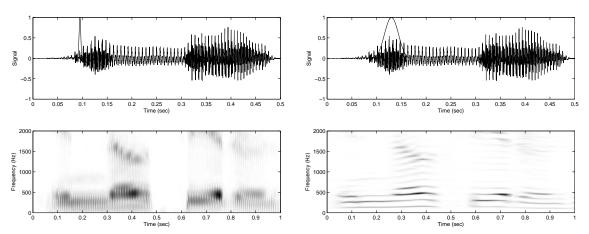
Influence de la **longueur temporelle** L (L = 0.1s.)



## 1.3- Transformée de Fourier (à Court Terme) : TFCT

### Paradoxe temps/ fréquence

Pas possible d'avoir simultanément une bonne localisation en temps et en fréquence!



- Comme résoudre ce problème?
  - Utiliser d'autres tranformées que celle de Fourier



1.4- Transformée à Q-Constant (CQT)

### Transformée à Q-Constant (CQT)

- La DFT
  - ▶ Définition : La précision fréquentielle :  $\Delta f = \frac{sr}{N}$ 
    - ▶ c'est le pas d'échantillonnage du spectre
    - ▶ elle dépend de la taille de la DFT : N
    - → on peut l'augmenter en augmentant N
  - ▶ Définition : La résolution fréquentielle :  $Bw = \frac{Cw}{L}$ 
    - c'est le pouvoir de séparation entre deux fréquences présentes simultanément dans le spectre, le pouvoir de résoudre spectralement
  - Attention :
    - ightharpoonup même si on augmente N (zero-padding) en gardant L constant on n'améliore pas la résolution!
- Dans la DFT, la précision et la résolution fréquentielle sont constantes à travers les fréquences

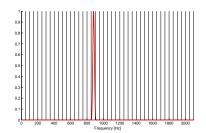
### 1.4- Transformée à Q-Constant (CQT)

### Transformée à Q-Constant (CQT)

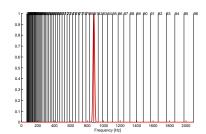
- En audio musical
  - les fréquences sont logarithimiquement espacées
    - pour passer des fréquences aux hauteurs de notes :

$$m_k = 12 \cdot log_2 \frac{f_k}{440} + 69$$

- pour passer des hauteurs de notes aux fréquences :  $f = 440 \cdot 2^{\frac{m-69}{12}}$
- les hauteurs de notes sont plus rapprochées en basses fréquences, plus espacées en hautes fréquences
- La résolution fréquentielle de la DFT
  - n'est pas suffisante pour résoudre les hauteurs de notes adjacentes en basses fréquences,
  - est trop importante en hautes fréquences



Espacement linéaire de la DFT



### 1.4- Transformée à Q-Constant (CQT)

#### Transformée à Q-Constant

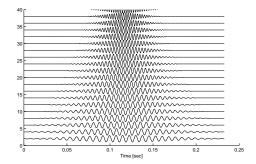
[J. Brown and M. Puckette. An efficient algorithm for the calculation of a constant q transform. JASA, 1992.]

- Solution?
  - Changer la résolution fréquentielle en fonction des fréquences considérées
- Comment?
  - En changeant la longueur temporelle de la fenêtre pour chaque fréquence considérée
  - Le facteur  $Q = \frac{f_k}{f_{k+1} f_k}$  doit rester constant en fréquence

$$Q = \frac{f_k}{Bw} = \frac{f_k}{Cw/L} = \frac{f_k \cdot L}{Cw}$$
 (2)

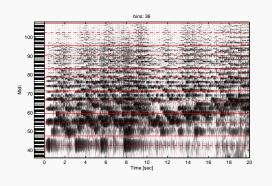
• on choisit un L pour chaque fréquence  $f_k$ 

$$L_k = \frac{Q \cdot Cw}{f_k}$$

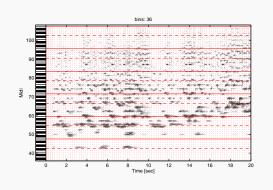


1.4- Transformée à Q-Constant (CQT)

### Exemples (en utilisant la DFT)



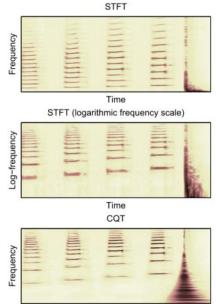
### Exemples (en utilisant la CQT)



### 1.4- Transformée à Q-Constant (CQT)

### Transformée à Q-Constant (CQT)

- Sur une transformée à Q constant :
  - Une différence de pitch correspond à une translation sur l'axe des fréquences



- 1- Théorie : Traitement du signal fréquentiel
  - 1.5- Deux interprétations de la TFCT

#### 1.5- Deux interprétations de la TFCT

#### Deux interprétations de la TFCT

- Interprétation passe-bas :
  - → on regarde l'évolution du signal à une fréquence f<sub>0</sub> donnée

$$X(f, n) = \sum_{m = -\inf}^{+\inf} x(m)w(n - m)e^{-j2\pi fm}$$

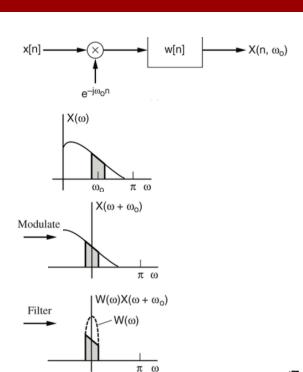
$$X(f_0, n) = \sum_{m = -\inf}^{+\inf} \left[ x(m)e^{-j2\pi f_0 m} \right] w(n - m)$$

$$= \sum_{m = -\inf}^{+\inf} x_0(m)w(n - m)$$

$$= x_0(n) \circledast w(n)$$

(3)

- avec  $x_0(m) = x(m)e^{-j2\pi fm}$  le signal modulé
- il s'agit d'une convolution de  $x_0(m)$  par le filtre passe-bas  $w_0(m)$



source: Patrick J. Wolfe, 2009

Geoffroy Peeters - peeters@ircam.fr - 2015 - 23

#### 1.5- Deux interprétations de la TFCT

#### Deux interprétations de la TFCT

- Interprétation passe-bande :
  - on regarde l'évolution du signal à une fréquence f<sub>0</sub> donnée

$$X(f, n) = \sum_{m = -\inf}^{+\inf} x(m)w(n - m)e^{-j2\pi fm}$$

$$X(f_0, n) = \sum_{m = -\inf}^{+\inf} x(m)w_0(n - m)e^{-j2\pi f_0 n}$$

$$= e^{-j2\pi f_0 n} \sum_{m = -\inf}^{+\inf} x(m)w_0(n - m)$$

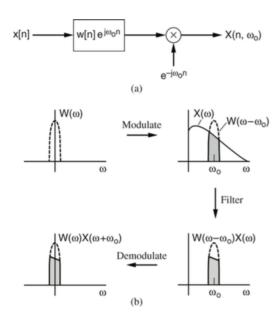
$$= e^{-j2\pi f_0 n} \cdot [x(m) \circledast w_0(n)]$$

(4)

• avec  $w_0(m) = w(n-m)e^{j2\pi f_0(n-m)}$  la

fenêtre démodulée

• il s'agit d'une convolution de h(m) par le filtre passe-bande  $h_0(m)$ 



source : Patrick J. Wolfe. 2009



- 1- Théorie : Traitement du signal fréquentiel
  - 1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

#### On peut reconstruire le signal audio à partir des informations de la TFCT

• Méthode d'addition/recouvrement (OverLap-Add, OLA)

$$X(k,n) = \sum_{m} x(m)w(n-m)e^{-j2\pi\frac{k}{N}m}$$

$$\frac{1}{N} \sum_{k=0}^{N-1} X(k,n)e^{+j2\pi\frac{k}{N}m} = x(m)w(n-m)$$
si n=m 
$$\frac{1}{Nw(0)} \frac{1}{N} \sum_{k=0}^{N-1} X(k,n)e^{+j2\pi\frac{k}{N}m} = x(n)$$
(5)

### 1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

#### On peut reconstruire le signal audio à partir des informations de la TFCT

- Si on note n = RI
  - ▶ r le numéro de la trame d'analyse
  - ▶ I le pas d'avancement

$$y(m, rl) = \frac{1}{N} \sum_{k=0}^{N-1} X(k, rl) e^{+j2\pi \frac{k}{N}m}$$

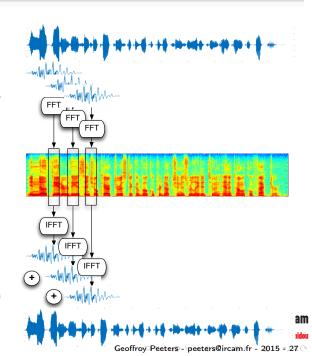
$$= x(m)w(rl - m)$$

$$y(m) = \sum_{r} y(m, rl)$$

$$= \sum_{r} x(m)w(rl - m)$$

$$= x(m) \sum_{r} w(rl - m)$$

$$x(n) = \frac{\sum_{r} y(m, rl)}{\sum_{r} w(rl - n)}$$
(6)



### 1.6- Reconstruction du signal par addition/ recouvrement (TFTC inverse)

#### On peut reconstruire le signal audio à partir des informations de la TFCT

- Si on note n = RI
  - r le numéro de la trame d'analyse
  - I le pas d'avancement

$$y(m, rl) = \frac{1}{N} \sum_{k=0}^{N-1} X(k, rl) e^{+j2\pi \frac{k}{N}m}$$

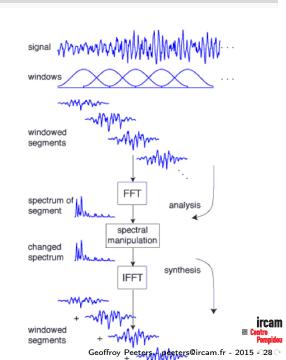
$$= x(m)w(rl - m)$$

$$y(m) = \sum_{r} y(m, rl)$$

$$= \sum_{r} x(m)w(rl - m)$$

$$= x(m) \sum_{r} w(rl - m)$$

$$x(n) = \frac{\sum_{r} y(m, rl)}{\sum_{r} w(rl - n)}$$
(7)



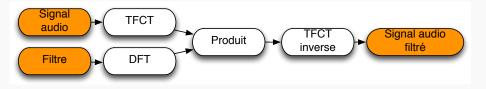
- 1- Théorie : Traitement du signal fréquentiel
  - 1.7- Application : filtrage constant au cours du temps

### 1.7- Application: filtrage constant au cours du temps

### Application: filtrage constant au cours du temps

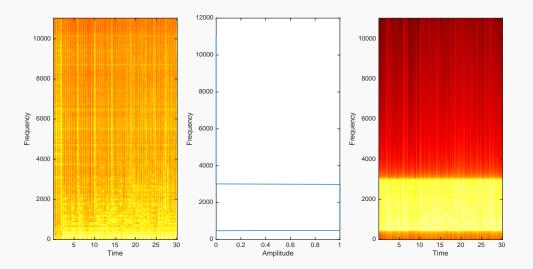
Filtrage dans le domaine fréquentiel= très économique en coût de calcul

- $x(t) \circledast h(t) \rightleftarrows X(\omega)H(\omega)$
- utilisation de l'algorithme FFT



### 1.7- Application : filtrage constant au cours du temps

### Application : filtrage constant au cours du temps



- 1- Théorie : Traitement du signal fréquentiel
  - 1.8- Application : débruitage par soustraction spectrale

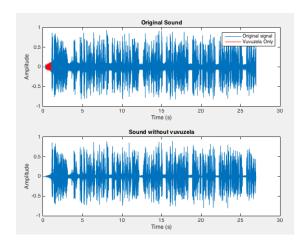
### 1.8- Application : débruitage par soustraction spectrale

# Application : débruitage par soustraction spectrale

- soit x(t) = s(t) + n(t)
  - $\rightarrow$  s(t) est un signal de parole
  - $\rightarrow n(t)$  est un bruit additif
  - on peut écrire le modèle :  $X(e^{j\omega}) = S(e^{j\omega}) + N(e^{j\omega})$

#### Méthode

- On cherche un filtre fréquentiel  $H(e^{j\omega})$  permettant de retirer le bruit additif
- Amplitude de ce filtre
  - = valeur moyenne de  $|N(e^{j\omega})|^2$  calculée sur un segment ne contenant pas de parole
- Phase
  - ho = la phase de X :  $\theta_x(\omega)$



### 1.8- Application : débruitage par soustraction spectrale

# Application : débruitage par soustraction spectrale

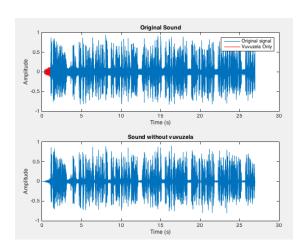
Soustraction :

$$\hat{S}(e^{j\omega}) = [|X(e^{j\omega})| - \mu(e^{j\omega})] e^{j\theta_x}$$

$$= H(e^{j\omega})X(e^{j\omega})$$
(8)

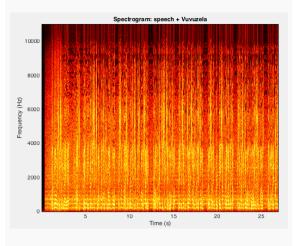
- avec  $H(e^{j\omega}) = 1 \frac{\mu(e^{j\omega})}{|X(e^{j\omega})|}$
- avec  $\mu(e^{j\omega}) = E\{|N(e^{j\omega})|\}$
- Amélioration :
  - Pour éviter des problèmes lorsque  $|X(e^{j\omega})| < \mu(e^{j\omega})$  (quand le spectre d'amplitude est < au spectre moyen du bruit)
  - rectification demi-onde (half-wave rectification) :

$$H_R(e^{j\omega}) = \frac{H(e^{j\omega)} + |H(e^{j\omega})|}{2}$$

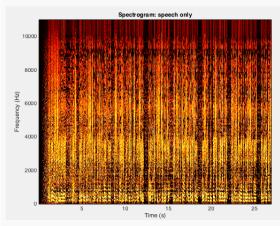


1.8- Application : débruitage par soustraction spectrale

### Spectrogramme speech+noise



### Spectrogramme speech



- 1- Théorie : Traitement du signal fréquentiel
  - 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

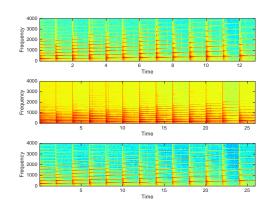
#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### Technique de DJ pour changer le tempo

- ralentir la vitesse de lecture (du vynil, ce la bande magnétique)
- $x(at) \rightleftharpoons \frac{1}{a}X\left(\frac{f}{|a|}\right)$
- si *a* < 1
  - on ralentit le temps
  - mais on contracte aussi les fréquences (on abaisse les hauteurs)
- sia > 1
  - ▶ on accélère le temps
  - mais on étend aussi les fréquences (on augmente les hauteurs)

## Objectif

 changer le temps et les hauteurs de manière indépendante



[haut] : signal original, [milieu] a < 1 par ré-échantillonnage, [bas] : a < 1 par vocodeur de phase



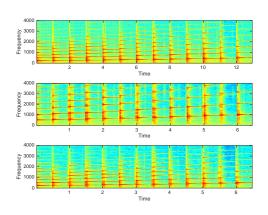
#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### Technique de DJ pour changer le tempo

- ralentir la vitesse de lecture (du vynil, ce la bande magnétique)
- $x(at) \rightleftharpoons \frac{1}{a}X\left(\frac{f}{|a|}\right)$
- si *a* < 1
  - on ralentit le temps
  - mais on contracte aussi les fréquences (on abaisse les hauteurs)
- si a > 1
  - ▶ on accélère le temps
  - mais on étend aussi les fréquences (on augmente les hauteurs)

## Objectif

 changer le temps et les hauteurs de manière indépendante



[haut] : signal original, [milieu] a>1 par ré-échantillonnage, [bas] : a>1 par vocodeur de phase

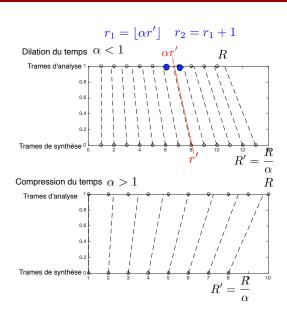
#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### Le vocodeur de phase

- Méthode :
  - pour raccourcir/ rallonger le signal, on va changer le nombre de trames utilisées pour la resynthèse par TFCT inverse
- Soit R: le nombre de trames d'analyse de la TFCT
- Soit  $R' = \alpha R$ : le nombre de trames de synthèse (utilisées pour la resynthèse par TFCT inverse)
  - si  $\alpha$  < 1, on dilate le temps du signal (on le ralentit)
  - si  $\alpha > 1$ , on compresse le temps du signal (on l'accélère)
- Le contenu d'une trame de synthèse  $r' \in \left[1, R' = \frac{R}{\alpha}\right]$  est obtenu en recherchant les trames d'analyse r correspondantes les plus proches

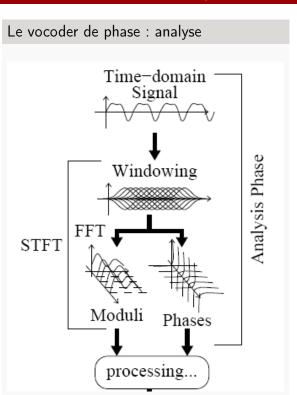
$$r_1 = \lfloor \alpha r' \rfloor e$$

$$r_2 = \lceil \alpha r' \rceil$$

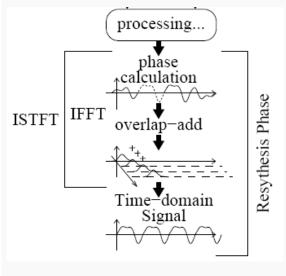




#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase



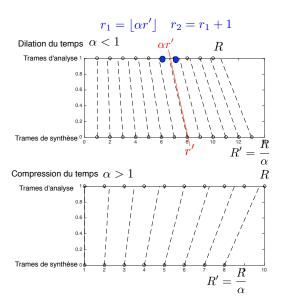
Le vocoder de phase : synthèse



#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

## Le vocodeur de phase : spectre d'amplitude

- Le spectre d'amplitude à la trame r', est obtenu par interpole linéaire des spectres d'amplitude en  $r_1$  et  $r_2 = r_1 + 1$ :
  - $A(k, r') = (1 \Delta)A(k, r_1) + \Delta A(k, r_2)$
  - avec  $\Delta = \alpha r' r_1$
- Le spectre de phase?
  - ▶ c'est peu plus compliqué!!!





#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### La phase et la fréquence instantanée

- Considérons un signal formé d'une sinusoide pure à la fréquence  $f_0: x(t) = \sin(\phi(t)) = \sin(2\pi f_0 t)$ 
  - entre les instants  $t_1$  et  $t_2$ , sa phase a "tournée" de  $\phi(t_1)$  à  $\phi(t_2)$
  - puisqu'il s'agit d'une sinusoide pure, elle a tournée de  $\phi(t_2) = \phi(t_1) + 2\pi f_0(t_2 t_1)$
  - on peut donc estimer la fréquence f₀ à partir de la différence de phase

• 
$$f_0 = \frac{\phi(t_2) - \phi(t_1)}{2\pi(t_2 - t_1)}$$

- Problème : la phase est uniquement définie dans l'intervalle  $[-\pi,\pi]$ 
  - donc en pratique le  $\hat{\phi}(t_2)$  qu'on observe n'est pas tel

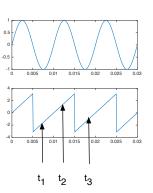
$$\phi(t_2) = \phi(t_1) + 2\pi f_0(t_2 - t_1)$$

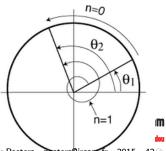
mais est

$$\hat{\phi}(t_2) + n2\pi = \phi(t_1) + 2\pi f_0(t_2 - t_1)$$
, avec  $n$  indéterminé

▶ pour déterminer f<sub>0</sub> il faut donc déterminer n

$$f_0 = \frac{\phi(t_2) + n2\pi - \phi(t_1)}{2\pi(t_2 - t_1)}$$





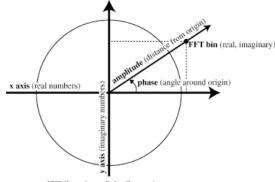
#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

## Phase dans le Transformée de Fourier à Court Term (TFCT)

 Pour chaque trame n et fréquence k la TFTC est un nombre complexe

$$X(k,n) = \sum_{m} x(m)w(n-m)e^{-j2\pi\frac{k}{N}m}$$

- Il peut se décomposer en amplitude (module) et phase :
  - $X(k,n) = A(k,n)e^{j\phi(k,n)}$

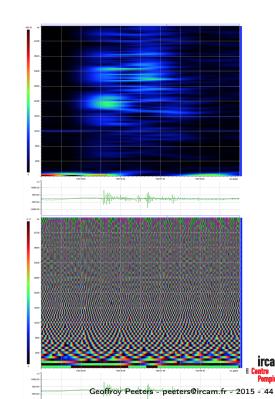


FFT Cartesian to Polar Conversion

#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

## Phase dans le Transformée de Fourier à Court Term (TFCT)

- On a donc une valeur d'amplitude et de phase pour chaque (k, n)
- Spectrogramme
  - $\rightarrow$  d'amplitude A(k, n)
  - de phase  $\phi(k, n)$
- La phase indique la position de la cosinusoide,
- La variation temporelle de phase indique la fréquence instantanée
  - Proof of the order of the orde



#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### Le vocodeur de phase : spectre de phase

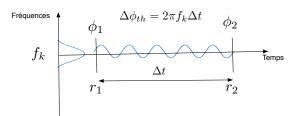
- A la trame r' le spectre de phase dans le filtre k de la TFCT est obtenu en propageant la phase à partir de la fréquence contenu dans ce filtre
- 1) Solution simplifiée :
  - on suppose que le filtre k contient une sinusoide à la fréquence  $f_k$
  - ▶ si on note

- puisque le pas de synthèse est égale au pas d'analyse :  $r' (r' 1) = r_2 r_1$
- on utilise la prédiction théorique de la phase :  $\Delta\phi_{th}$

$$\phi(\mathbf{k}, \mathbf{r}') = \phi(\mathbf{k}, \mathbf{r}' - 1) + \Delta \phi_{th}$$

$$\phi(k,r') = \phi(k,r'-1) + 2\pi f_k \Delta t$$

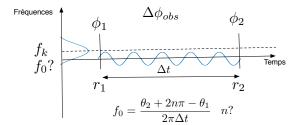
avec comme phase **initiale** : 
$$\phi(k, r' = 1) = \phi(k, r = 1)$$



#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### Le vocodeur de phase : spectre de phase

- 2) Solution correcte :
  - En pratique il se peut qu'on observe à travers le filtre k une sinusoide à une fréquence proche mais différente de f<sub>k</sub>
    - ceci est du à largeur du lobe principale, aux lobes secondaires
  - Il faut estimer cette fréquence f<sub>0</sub> que l'on observe à travers le filtre f<sub>k</sub> pour ensuite appliquer la propagation de phase



#### 1.9- Application: dilatation/contraction du temps par vocodeur de phase

#### Le vocodeur de phase : spectre de phase

- Estimer cette  $f_0$ ?
  - En utilisant la fréquence instantanée :

$$f_0(n) = \frac{\phi_2 + 2\pi n - \phi_1}{2\pi \Delta t}$$

- Comme déterminer n?
  - en cherchant *n* tel que  $f_0 \simeq f_k$

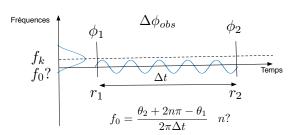
n tel que 
$$\min_{n} |f_0 - f_k|$$

$$\min_{n} |\frac{\phi_2 + 2n\pi - \phi_1}{2\pi\Delta t} - f_k|$$

$$\min_{n} |\phi_2 + 2n\pi - \phi_1 - 2\pi\Delta t f_k|$$

$$\min_{n} |\phi_2 + 2n\pi - \phi_1 - \Delta \phi_{th}|$$
(9)

- ce qui revient à
  - trouver la détermination principale (la valeur dans l'intervalle  $[-\pi, \pi]$ ) de  $|\phi_2 - \phi_1 - \Delta \phi_{th}|_{[-\pi,\pi]}$
  - ▶ il s'agit de la différence de phase
  - non-expliquée par le modèle théorique  $\Delta \phi_{th}$





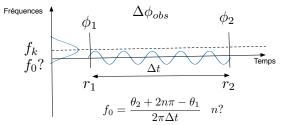
#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### Le vocodeur de phase : spectre de phase

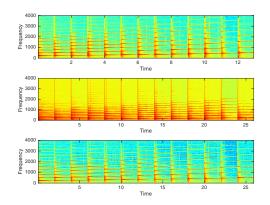
- 2) Solution correcte:
  - Finalement la phase est incrémentée de

$$\phi(k, r') = \phi(k, r' - 1) + 2\pi f_0 \Delta t$$
  
=  $\phi(k, r' - 1) + [\phi_2 - \phi_1 - \Delta \phi_{th}]_{[-\pi, \pi]}$   
(10)

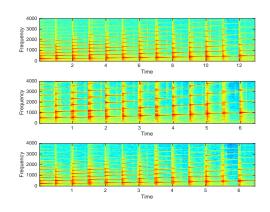
• avec comme phase **initiale** :  $\phi(k, r' = 1) = \phi(k, r = 1)$ 



#### 1.9- Application : dilatation/ contraction du temps par vocodeur de phase



[haut] : signal original, [milieu] a<1 par ré-échantillonnage, [bas] : a<1 par vocodeur de phase



[haut] : signal original, [milieu] a>1 par ré-échantillonnage, [bas] : a>1 par vocodeur de phase



1.9- Application : dilatation/ contraction du temps par vocodeur de phase

#### Changement de hauteur

• Ré-échantillonnage du signal pour correction de la longueur par phase-vocoder

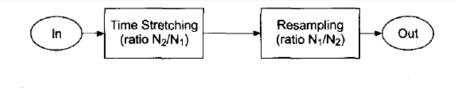


Figure 8.24 Resampling of a time stretching algorithm.

- 2- Séparation de sources
  - 2.1- Séparation Harmonique Percussive (HPS)

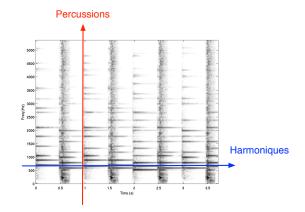
#### 2.1- Séparation Harmonique Percussive (HPS)

## Séparation de la partie percussive et harmonique d'un morceau de musique

 On considère la TFCT comme l'addition des composantes harmoniques et percussives

$$Y(f,n) = H(f,n) + P(f,n)$$

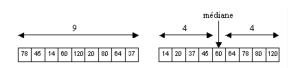
- Morphologie en temps/fréquence des instruments de musique
  - percussions : lignes verticales
  - harmoniques : lignes horizontales

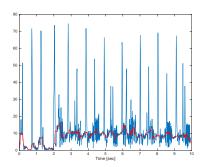


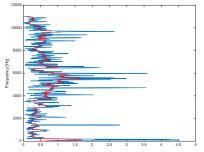
#### 2.1- Séparation Harmonique Percussive (HPS)

## Séparation de la partie percussive et harmonique d'un morceau de musique

- Création d'un spectrogramme harmonique H(f, n):
  - pour chaque f on applique un filtrage médian à travers les n de X(f, n)
- Création d'un spectrogramme percussif P(f, n):
  - ▶ pour chaque n on applique un filtrage médian à travers les f de X(f, n)
- Filtrage médian?
  - remplace chaque entrée par la valeur médiane de son voisinage
- Valeur médiane
  - ▶ tel que 50% des valeurs en-dessous et 50% au-dessus







#### 2.1- Séparation Harmonique Percussive (HPS)

## Séparation de la partie percussive et harmonique d'un morceau de musique

• Création d'un masque harmonique

$$M_{H}(f,n) = \begin{cases} & \text{1 si } H(f,n) > P(f,n) \\ & \text{0 sinon} \end{cases}$$
(11)

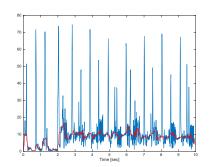
• Création d'un masque percussif

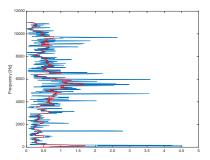
$$M_{P}(f,n) = \begin{cases} & 1 \text{ si } P(f,n) > H(f,n) \\ & 0 \text{ sinon} \end{cases}$$
(12)

Re-création de la TFCT

$$H(f,n) = X(f,n) \cdot M_H(f,n)$$
  

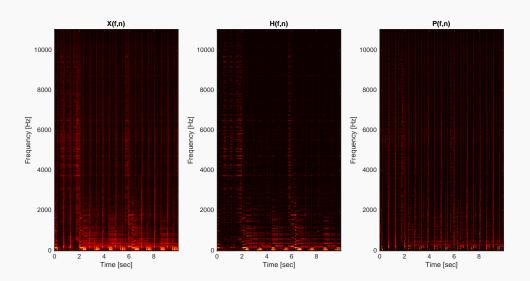
$$P(f,n) = X(f,n) \cdot M_P(f,n)$$
(13)





#### 2.1- Séparation Harmonique Percussive (HPS)

#### Séparation de la partie percussive et harmonique d'un morceau de musique

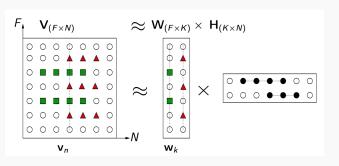


- 2- Séparation de sources
  - 2.2- Décomposition en matrice non-négatives (NMF)

#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Introduction

[D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 1999.]

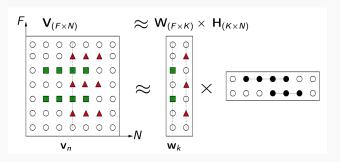


source : Cédric Févotte

- $V_{(F,N)} \simeq W_{(F,K)}H_{(K,N)}$ 
  - $V_{(F,N)}$  : matrice de données, observée (spectrogramme d'énergie), définie positive :  $V_{fn}\geqslant 0$
  - $W_{(F,K)}$ : matrice de bases, dictionnaires, définie positive :  $W_{fk} \ge 0$
  - $H_{(K,N)}$ : matrice d'activation, définie positive :  $H_{fn} \ge 0$
  - K : le nombre de bases du dictionnaire

#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Introduction



source : Cédric Févotte

- ullet Chaque trame n est reconstituée comme l'activation H d'un certain nombre de bases H
  - $V_{(1:F,n)} \simeq \sum_{k=1}^{K} W_{(1:F,k)} H_{(k,n)}$
- Le signal d'une source k est reconstitué comme

$$V_{(1:F,1:N)}^k = W_{(1:F,k)}H_{(k,1:N)}$$

#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Estimation des paramètres de la NMF

- $V_{(F,N)} \simeq W_{(F,K)}H_{(K,N)}$
- Minimisation de
  - $\rightarrow \min_{W,H \ge 0} D(V|WH)$
  - $\rightarrow \min_{\theta} C(\theta) \stackrel{\text{def}}{=} D(\underline{V}|\underline{WH}) \text{ avec } \theta = \{W, H\}$
- *D/d* est une divergence séparable

$$D(\underline{V}|\hat{V}) = \sum_{f=1}^{F} \sum_{n=1}^{N} d(v_{fn}|\hat{v}_{fn})$$

- Choix de *D*/*d* :
  - Distance Fuclidenne :

$$d_{EUC}(x,y) = (x-y)^2$$

Divergence de Kullback-Leibler :

Divergense d'Itakura-Saito :

$$d_{IS}(x,y) = \frac{x}{y} - \log \frac{x}{y} - 1$$

 $d_{KL}(x,y) = x \log \frac{x}{y} - x + y$ 

(16) **n** 

(14)

(15)

#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Dérivation du critère pour la distance Euclidenne

Non Negative Matrix Factorization

$$V_{(f,n)} \simeq W_{(f,k)(k,n)} \tag{17}$$

- Erreur de reconstruction : e = V WH
- Minimisation de la SSE (Sum of Squared Error) ou de la norme de Frobenius de  $SSE = ||V WH||_F^2$
- Norme de Frobenius :  $||A||_F = \sqrt{\sum_i \sum_j a_{ij}^2}$

## 2.2- Décomposition en matrice non-négatives (NMF)

#### Dérivation du critère pour la distance Euclidenne

$$SSE = ||V - WH||_F^2$$

$$SSE = (V - WH)^T (V - WH)$$

$$= (V^T - H^T W^T)(V - WH)$$

$$= V^T V - V^T WH - H^T W^T V + H^T W^T WH$$

$$= V^T V - 2V^T WH + H^T W^T WH$$

$$\frac{\partial sse}{\partial H} = -2W^T V + 2W^T WH$$

$$= 2W^T (WH - V)$$

$$\frac{\partial sse}{\partial W} = -2VH^T + 2WHH^T$$

$$= -2(V - WH)H^T$$
(18)

# Propriétés utilisées (Matrix CookBook)

$$\bullet \ \frac{\partial a^T x}{\partial x} = a$$

• 
$$\frac{\partial a^T X b}{\partial X} = a b^T$$

• 
$$\frac{\partial x^T B x}{\partial x} = (B + B^T) x$$

$$\bullet \frac{\partial b^T X^T X c}{\partial X} = X(bc^T + cb^T)$$

#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Algorithme de descente de gradient

- Descente de gradient?
  - déplacement dans la direction opposée au gradient, de manière à faire décroître la fonction
- Le gradiant :

$$\vdash \ \frac{\partial sse}{\partial H} = \underbrace{2W^TWH}_{\nabla_+} - \underbrace{2W^TV}_{\nabla_-}$$

Mise à jour de H

$$H \leftarrow H + \eta \cdot \left[-\text{gradient}\right]$$

$$H \leftarrow H + \eta \cdot \left[\underbrace{W^{T}V}_{\nabla_{-}} - \underbrace{W^{T}WH}_{\nabla_{+}}\right]$$
(19)

#### Algorithme de descente de gradient

• si on choisit 
$$\eta = \frac{H}{W^T W H}$$

$$H \leftarrow H + \frac{H}{W^{T}WH}(W^{T}V - W^{T}WH)$$

$$H \leftarrow H + \frac{HW^{T}V}{W^{T}WH} - H$$

$$H \leftarrow H \cdot \frac{\overline{W^{T}V}}{\overline{W^{T}WH}}$$

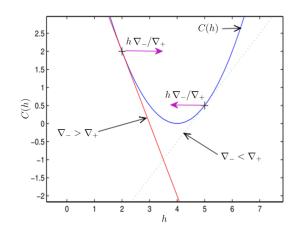
(20)

#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Mise à jour multiplicative

- permet de garantir que les valeurs restent positives!!!
- Séparation du gradient en contribution positive et négative

$$\nabla_h C(h) = \nabla_+ - \nabla_- \tag{21}$$



#### 2.2- Décomposition en matrice non-négatives (NMF)

## Algorithme complet de NMF dans le cas Euclidéen : $V \simeq W H_{(f,n)} \simeq W H_{(f,k)(k,n)}$

- Calcul de la TFCT : V(f, n) = |X(n, f)'|
- Choix du nombre de bases K du dictionnaire W
- Initialisation de W et H : valeurs aléatoires positives
- Itérations
  - Mise à jour des bases W étant donné les activations H

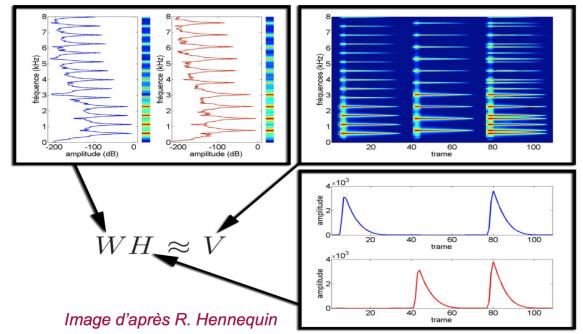
$$W \leftarrow W \cdot \frac{VH^T}{WHH^T} \tag{22}$$

Mise à jour des activations H étant donné les bases W

$$H \leftarrow H \cdot \frac{W^{T}V}{W^{T}WH} \tag{23}$$

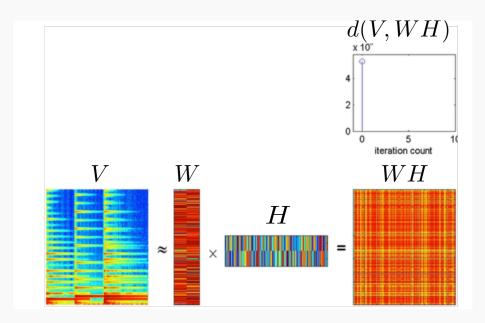
- Prise en compte de l'invariance d'échelle
  - normalisations des colonnes de H
  - ► OU
  - normalisation des lignes de W
- Arrêt lorsque la SSE cesse de décroitre

#### 2.2- Décomposition en matrice non-négatives (NMF)



## 2.2- Décomposition en matrice non-négatives (NMF)

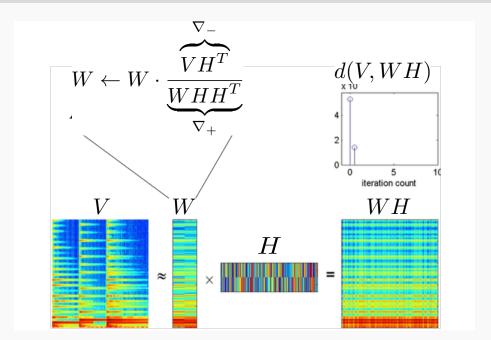
#### Initialisation



source : Tuomas Virtanen

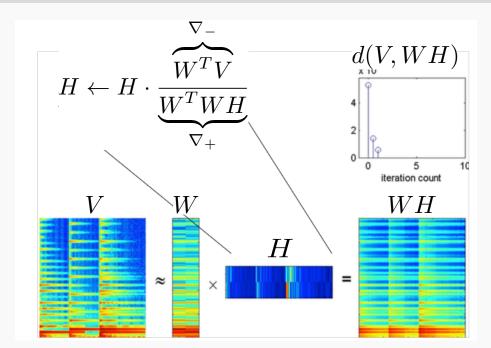
#### 2.2- Décomposition en matrice non-négatives (NMF)

## Iteration 1 : Mise à jour de W



#### 2.2- Décomposition en matrice non-négatives (NMF)

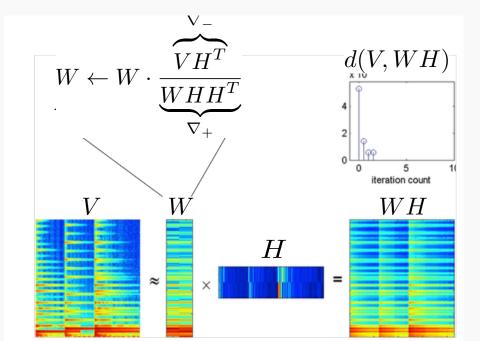
#### Iteration 1 : Mise à jour de H



source : Tuomas Virtanen

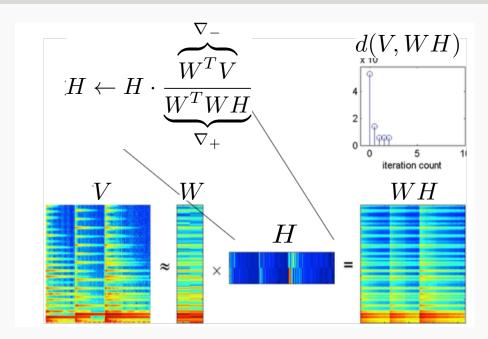
#### 2.2- Décomposition en matrice non-négatives (NMF)

### Iteration 2 : Mise à jour de W



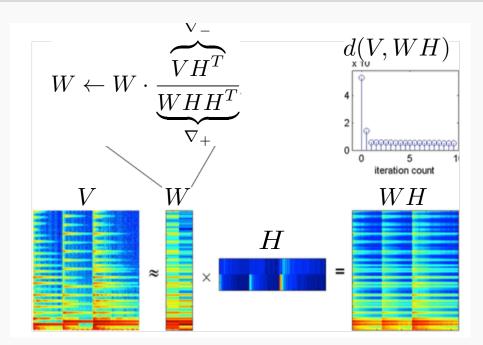
#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Iteration 2 : Mise à jour de H



#### 2.2- Décomposition en matrice non-négatives (NMF)

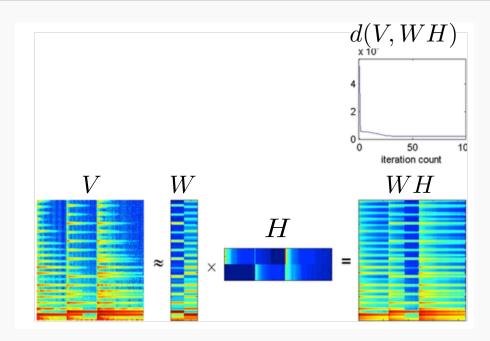
#### Iteration 10 : Mise à jour de W



source: Tuomas Virtanen

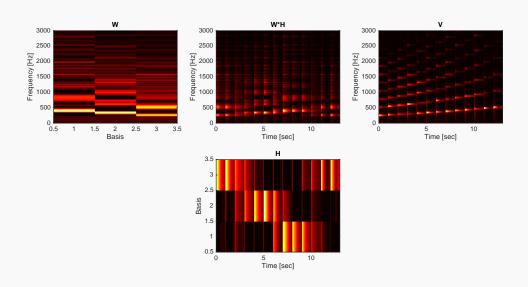
#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Iteration 100



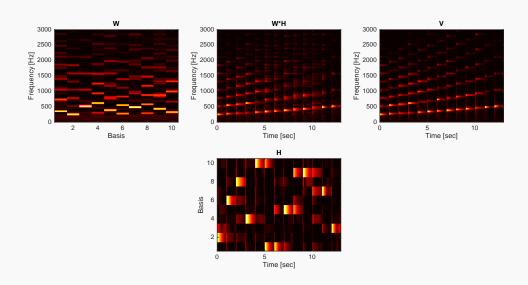
#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Choix du nombre de bases K = 3 (trop faible)



#### 2.2- Décomposition en matrice non-négatives (NMF)

### Choix du nombre de bases K10 (correcte)



#### 2.2- Décomposition en matrice non-négatives (NMF)

#### Choix du nombre de bases K = 20 (trop grand)

