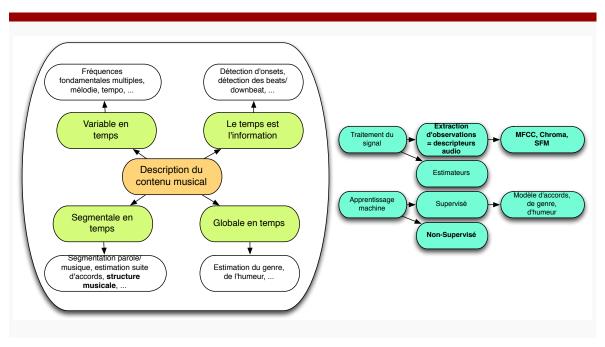
Master 2 ATIAM (2016-2017) Extraction automatique d'une structure musicale et génération d'un résumé audio

Geoffroy.Peeters@ircam.fr
UMR STMS 9912 (IRCAM CNRS UPMC)

1- Introduction Différents types de description du contenu musical



1- Introduction

Détection d'une structures musicale d'un morceau de musique

Objectifs

- Estimer une structure d'un morceau de musique
- Créer automatiquement un résumé audio représentatif du contenu du morceau

Applications

- Ecoute inter-active : création d'interface de lecture (player) interactif,
- Pré-écoute rapide d'un morceau
- Exemples audio et vidéo

Méthode

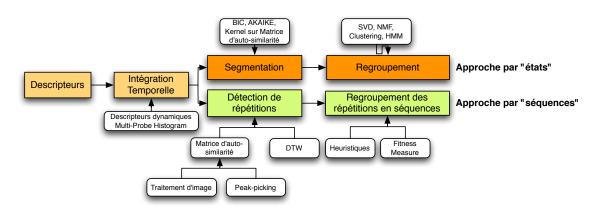
- Extraction de descripteurs audio
- Visualisation de la structure
- Estimation de la structure
 - Apprentissage non-supervisé (pas de pré-apprentissage possible)

source : Quaero project, MSSE-Orange interface

1- Introduction

Méthodes d'estimation de la structure

- 1) Extraction d'observations pertinentes du signal audio
 - Descripteurs audio : mise en évidence de différents contenus (timbre, harmonique, bruité, ...)
- 2) Analyse des observations afin de détecter une structure
 - Approche par états
 - segmentation temporelle et
 - regroupement des segments homogènes identiques
 - Approche par séquences
 - détection des répétitions non-homogènes et
 - regroupement des segments répétés en séquences



2- Descripteurs audio

2- Descripteurs audio Introduction

Les descripteurs audio

[G. Peeters. A large set of audio features for sound description (similarity and classification) in the cuidado project. Cuidado project report, Ircam, 2004.]

- Valeurs numériques extraites du signal audio dont le but est de représenter une propriété particulière de son contenu
 - Tout est dans la forme d'onde, dans la TFCT, diffiçile à lire, trop grande dimension
- Contrainte :
 - on veut le même nombre de dimensions pour toutes les données
- Extraction?
 - Algorithme d'estimation
 - Opérateurs mathématique

2- Descripteurs audio Introduction

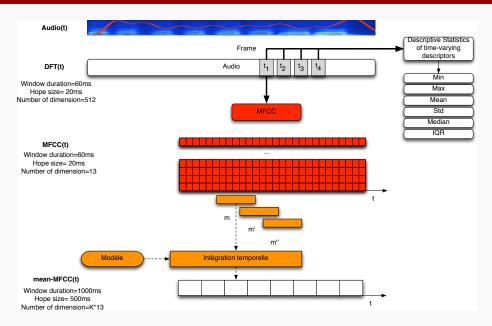
Les descripteurs audio

[G. Peeters. A large set of audio features for sound description (similarity and classification) in the cuidado project. Cuidado project report, Ircam, 2004.]

- Différentes formes :
 - scalaire: Centroide spectral, étendue spectrale, fréquence fondamentale, spectral roll-off, spectral flux, zero-crossing rate, RMS, ...
 - vecteur : Mel Frequency Cesptral Coefficients, coefficients LPC, coefficients PLP . . .
- Différentes temporalité :
 - représente une trame du signal audio → descripteurs "instantanés"
 - représente le résumé du contenu d'un ensemble local de trame → texture windows
 - représente globalement le signal audio
- Mise en évidence de différents contenus (, harmonique, bruité, ...)
 - contenu timbral : Mel Frequency Cesptral Coefficients, coefficients LPC, coefficients PLP . . .
 - contenu harmonique : Pitch Class Profiles/ Chroma ...
 - contenu bruité : Spectral Flatness Measure
 - contenu **rythmique** : ...

2- Descripteurs audio Introduction

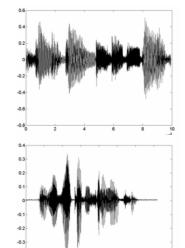
Les descripteurs audio

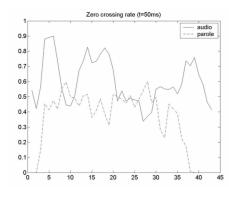


2- Descripteurs audio Taux de passage par zéro

Taux de passage par zéro / zero-crossing rate (zcr)

- Mesure le nombre de fois que la forme d'onde croise l'axe zéro
 - $zcr = 0.5 \sum_{n=1}^{N} |sign(x(n)) sign(x(n-1))|$
- Utilisation :
 - permet de distinguer les signaux bruités → zcr élevé
 - permet de distinguer les signaux harmoniques → zcr bas



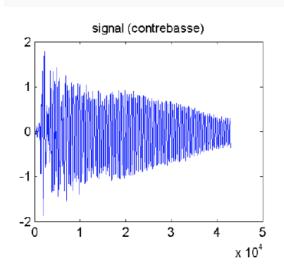


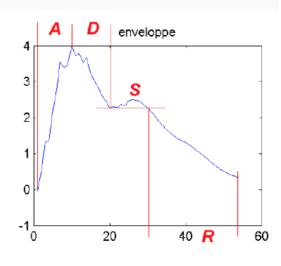
source : Gaël Richard

2- Descripteurs audio Enveloppe ADSR

Enveloppe ADSR (Attack, Decay, Sustain, Release)

- Modèle réprésentant l'évolution (l'enveloppe) d'énergie d'une note de musique
- Utilisation :
 - permet de distinguer les attaques rapides (sons percussifs) / lentes
 - permet de distinguer les décroissances rapides (sons non-tenus) / lentes (sons tenus)





2- Descripteurs audio

Description du spectre (barycentre, étendue spectral)

Description du spectre (barycentre, étendue spectral)

Centroid spectral

•
$$cs = \frac{\sum_{k} f_k A_k}{\sum_{k} A_k}$$

- Utilisation :
 - permet de distinguer les sons terne des sons brilliant

• Etendue spectral

•
$$es = \sqrt{\frac{\sum_{k} (f_k - cs)^2 A_k}{\sum_{k} A_k}}$$

- Utilisation :
 - permet de distinguer les sons pauvres des sons riches

Flux spectral

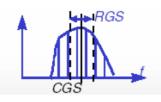
• Mesure la variation temporel du spectre

•
$$fs = \sum_{k} (A_k(t) - A_k(t-1))^2$$

- Utilisation :
 - permet de distinguer les sons pauvres des sons riches

source : Gaël Richard

source : Gaël Richard



source : Gaël Richard

Objectif

• décrire la forme du spectre (du timbre) d'un signal à l'aide d'un nombre réduit de coefficients

Cepstre complexe

• Cepstre complexe $c(\tau)$:

$$c(\tau) = TF^{-1} \left[\log(X(\omega)) \right]$$

$$= \frac{1}{2\pi} \int_{\omega} \log(X(\omega)) e^{j\omega\tau} d\omega$$
(1)

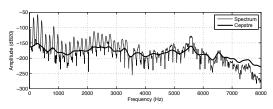
- τ est appelé "céfrence"
- $x(t) \xrightarrow{TF} X(\omega) \xrightarrow{\log} \log(X(\omega)) \xrightarrow{TF^{-1}} c(\tau)$

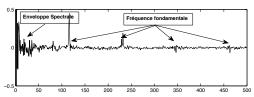
Cepstre complexe

- Modèle source/ filtre :
 - Source : signal périodique
 - Filtre : résonant/ anti-résonant

$$x(t) = e(t) \circledast g(t)$$

$$\xrightarrow{TF} X(\omega) = E(\omega) \cdot G(\omega)$$
(2)





$$\frac{\log \log(X(\omega))}{\operatorname{variation rapide à travers } \omega} + \underbrace{\log(G(\omega))}_{\operatorname{variation lente à travers } \omega} + \underbrace{\log(G(\omega))}_{\operatorname{variation lente à travers } \omega}$$

$$TF^{-1} \left[\log(X(\omega))\right] = \underbrace{TF^{-1} \left[\log(E(\omega))\right]}_{\text{énergie aux céfrences } \tau >> \text{ énergie aux céfrences } \tau <<}$$
(3)

Cepstre réel

- Cepstre réel :
 - Cepstre calculé sur la partie réelle du log-spectrum

$$X(\omega) = A(\omega) \cdot e^{j\phi(\omega)}$$

$$\log(X(\omega)) = \log(A(\omega)) + j\phi(\omega)$$

$$\Re(\log(X(\omega))) = \log(A(\omega))$$

$$\operatorname{cepstre r\'eel} = TF^{-1} \left[\Re(\log(X(\omega)))\right]$$
(4)

$$= TF^{-1} \left[\log(A(\omega)) \right]$$

$$c(\tau) = \frac{1}{2\pi} \int_{\omega} \log(A(\omega)e^{j\omega\tau} d\omega)$$

- Le spectre d'amplitude étant réel etsymétrique
 - sa TF se réduit à sa partie réelle
 - donc à la projection de $\log(A(\omega))$ sur un ensemble de cosinus \to DCT

(5)

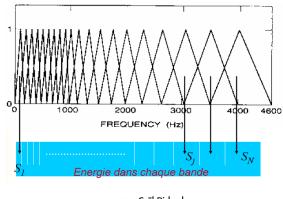
Mel Frequency Cepstral Coefficients (MFCCs)

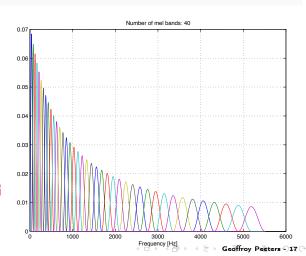
- Mel Frequency Cepstral Coefficient :
 - Cepstre réel calculé sur un spectre d'énergie exprimé en convertissant l'énergie $|X(\omega)|^2$ en échelle perceptive (échelle de Mel)
- Pouquoi?
 - La transformée de Fourier :
 - décomposition sur une série de sinusoides linéairement espacées (10Hz, 20Hz, 30Hz, ... Hz)
 - L'oreille :
 - décomposition sur une série de filtres de fréquences logarithmiquement espacé (10, 20, 40, 80, ... Hz).
 - meilleure résolution en basses fréquences que en hautes fréquences.
 - résonances de l'enveloppe spectrale sont plus rapprochées en basse fréquence.
 - MFCCs permet une représentation plus compacte que le cepstre réel
- Comment?
 - On utilise des échelles dites perceptives : échelles de Mel, de Bark, filtres ERB, Gamma tone
- Utilisation?
 - Les coefficients les plus utilisés dans le monde de la reconnaissance audio : parole, musique, sons environnementaux, ...

Mel Frequency Cepstral Coefficients (MFCCs)

• Echelle de Mel :

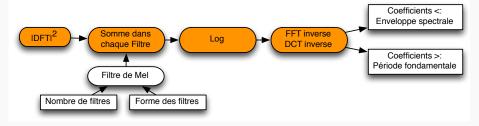
$$M = f$$
 pour $f < 1000Hz$
$$M = f_c \left(1 + \log_{10} \left(\frac{f}{f_c} \right) \right) \text{ pour } f \geqslant 1000Hz$$
 (6)



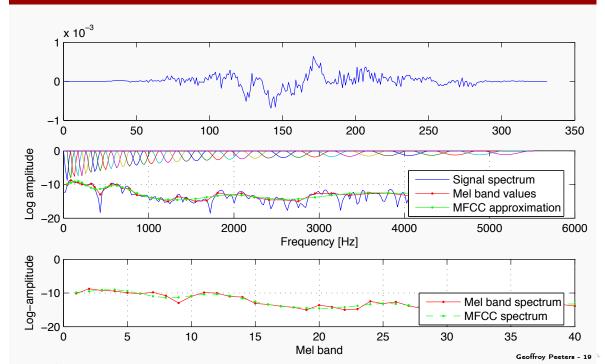


Mel Frequency Cepstral Coefficients (MFCCs)

- Calcul du spectre de puissance : $|X(\omega)|^2$
- Calcul des filtres de Mel : $H_b(\omega)$ avec $b \in [1, B]$
 - choix du nombre de filtres B:40
 - choix de la forme des filtres : triangulaire, hanning, tanh, ...
- Conversion du spectre de puissance en bandes de Mel : $S(b) = \sum_{\omega} |X(\omega)|^2 \cdot H_b(\omega)$
- ullet Passage en échelle logarithmique : $\log(S(b))$
- Calcul de la IFFT (ou de la IDCT) :
- Sélection des coefficients de la IDCT proches de zéro (jusqu'à 13)
 - les coefficients proches de zéro représentent la décomposition du spectre en échelle de Mel sur un ensemble de cosinus à variation lente



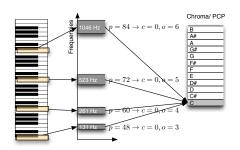
Exemple de calcul de MFCCs

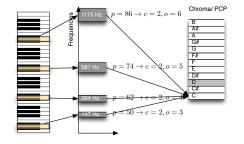


Définition des Chroma - Pitch Class Profile (PCP)

• Objectif:

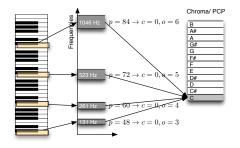
- le spectre à l'instant n: X(k,n)
- représenter son contenu harmonique sous forme d'un vecteur : C(c,n) $c \in [0,12[$
- Utilisations :
 - reconnaissance de tonalité,
 - reconnaissance de suite d'accords,
 - détection de "cover versions"
- Shepard-1964 :
 - représenter la hauteur d'une note p comme une structure bi-dimensionelles :
 - $\bullet \ p = c + o \cdot 12$
 - le chroma c (classe de hauteur).
 - la hauteur tonale o (numéro d'octave),

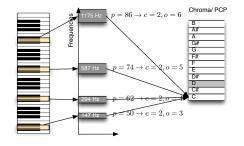




Calcul des Chromas - Pitch Class Profile (PCP)

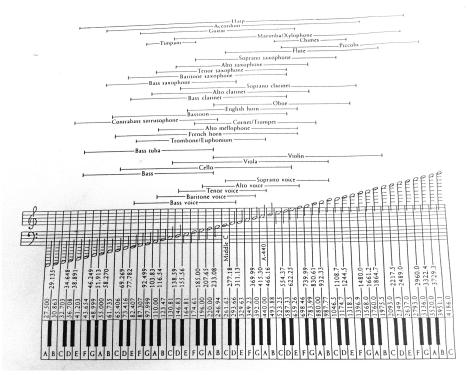
- Relation entre les fréquences f_k de la DFT et les hauteurs de note p (hauteurs de demi-tons en échelle de notes MIDI)
 - $p(f_k) = 12 \log_2 \left(\frac{f_k}{440} \right) + 69, \ p \in \mathbb{R}^+$
 - $f(p) = 440 \cdot 2^{\frac{p-69}{12}}$
- Calcul des chromas C(c, n)
 - On additionne toutes les valeurs du spectre X(k,n) tel que f_k correspondent à un c donné
 - Hard-mapping
 - Soft-mapping





Calcul des Chromas - Pitch Class Profile (PCP)

- Résolution fréquentielle?
 - Elle doit permettre la séparation des notes voisines
 - ullet On définit la largeur (à -6 dB) : $Bw = \frac{Cw}{L_{sec}}$
 - ullet Si f_{\min} (la fréquence la plus basse considérée dans le sectre) est 50 Hz
 - on veut séparer G#1 (51.91Hz) et A1 (55Hz) $\to L_{sec} = \frac{Cw}{Bw} = \frac{2.35}{3.0869Hz} = 0.7613s$
 - Si f_{\min} est 100 Hz
 - on veut séparer G#2 (103.82Hz)de A2 (110Hz) $\to L_{sec} = \frac{Cw}{Bw} = \frac{2.35}{6.1738Hz} = 0.3806s$
- Deux possibilités :
 - Choisir L_{sec} en fonction f_{\min}
 - Choisir f_{\min} en fonction de L_{sec}

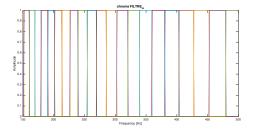


Calcul des Chromas - Pitch Class Profile (PCP)

- Calcul des chromas C(c, n)
 - On additionne toutes les valeurs du spectre X(k,n) tel que f_k correspondent à un c donné

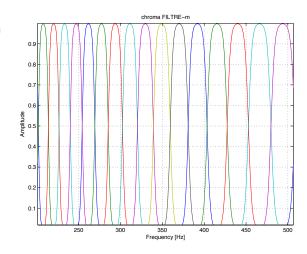
Hard-mapping

- Hard-mapping?
 - Une fréquence f_k de la DFT contribue uniquement à la note la plus proche
 - Par exemple,
 - l'énergie à f_k =452 Hz ($p(f_k)$ =69.4658) contribue entièrement à la note p=69 (c=10)
 - alors que f_k =453 Hz $(p(f_k)$ =69.5041) à p=70 (c=11).
- Création d'un banc de filtres $H_{p'}$ centrés sur les hauteurs de demi-tons $p' \in [43, 44, \dots, 95]$:



Soft-mapping

- Soft-mapping?
 - Une fréquence f_k de la DFT contribue à différents chroma avec un poids inversement proportionnel à la distance entre $p(f_k)$ et les p les plus proches
 - Par exemple,
 - l'énergie à f_k =452 Hz $(p(f_k)$ =69.4658) contribuera de manière presque égale à p=69 (c=10) et p=70 (c=11).
- Création d'un banc de filtres $H_{p'}$ centrés sur les hauteurs de demi-tons $p' \in [43, 44, \dots, 95]$:



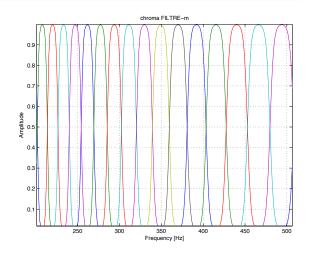
Soft-mapping

- Création d'un banc de filtres $H_{p'}$ centrés sur les hauteurs de demi-tons $p' \in [43, 44, \dots, 95]$:
 - Chaque filtre est défini par la fonction

$$H_{p'}(f_k) = \frac{1}{2} \tanh(\pi(1-2x)) + \frac{1}{2}$$

dans lequel x= distance relative entre centre du filtre et fréquences de la TF $x = R|p' - p(f_k)|$.

• Les filtres sont équi-répartis et symétriques sur l'échelle logarithmique des hauteurs de demi-tons, non-nulles entre p'-1 et p'+1 et à valeur maximale en p'.



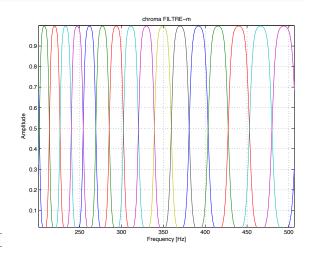
Calcul des Chromas - Pitch Class Profile (PCP)

• La valeur du spectre de hauteur de demi-ton N(n') est obtenue en multipliant les valeurs de la transformée de Fourier $A(f_k)$ par l'ensemble des filtres $H_{n'}$:

$$P(p') = \sum_{f_k} H_{p'}(f_k) A(f_k)$$

- Le mapping entre les hauteurs de demi-tons n et les classes de hauteurs de demi-ton (chroma) c est défini par c(p) = mod(p, 12).
- La valeur du vecteur de chroma est obtenue en additionnant les valeurs de classes de hauteur équivalentes

$$C(c) = \sum_{p' \text{ tel que } c(p')=l} P(n') \quad c \in [0, 12[$$

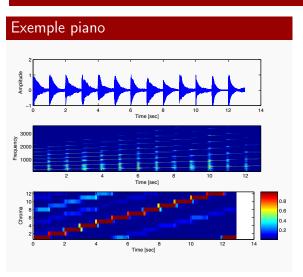


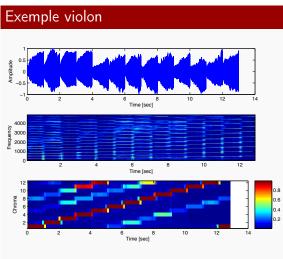
Limitations des Chromas - Pitch Class Profile (PCP)

- Présence des harmoniques supérieures de chaque note
 - En pratique pour une note C on a pas [1,0,0,0,0,0,0,0,0,0,0,0]
 - mais plutôt $[a_1 + a_2 + a_4, 0, 0, 0, a_5, 0, 0, a_4, 0, 0, 0, 0]$
- Influence de l'enveloppe spectrale

	Pitch	Harmonic	Frequency f_{μ}	MIDI-scale m_{μ}	Chroma/PCP p
	с3	f_0	130.81	48	1 (=c)
		$2f_0$	261.62	60	1 (=c)
		$3f_0$	392.43	67.01	$8.01 (\simeq g)$
		$4f_{0}$	523.25	72	1 (=c)
		$5f_0$	654.06	75.86	4.86 (≃ e)
Į					

Limitations des Chromas - Pitch Class Profile (PCP)





Représentation visuelle de la structure temporelle de la musique

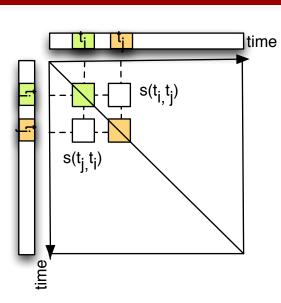
3- Représentation visuelle de la structure temporelle de la musique La matrice d'auto-similarité

La matrice d'auto-similarité

- ullet Similarité entre deux instants t_i et t_j
- Similarité entre les observations du signal aux trames i et $j: s(t_i,t_j) = s(\underline{d}^i,\underline{d}^j)$
- Matrice d'auto-similarité= les valeurs $s(t_i,t_j)$ sont représentées sous forme d'une matrice $\underline{S}=s(t_i,t_j) \ \, \forall i,j$

Lecture/ interprétation

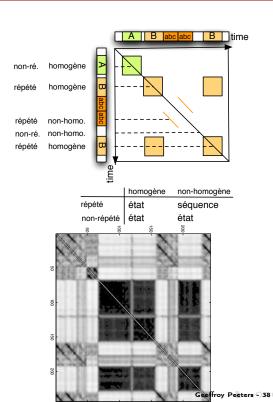
- Une valeur élevée dans $S(t_i,t_j)$ représente une similarité importante entre les instants t_i et t_j .
- Si $t_i \simeq t_{i+1} \simeq t_{i+2}$ nous observons un bloque homogène
- Si une séquence de temps t_i, t_{i+1}, t_{i+2}, ...
 est similaire à une séquence de temps
 t_j, t_{j+1}, t_{j+2}, ... nous observons une
 diagonale supérieure/ inférieure dans S.



3- Représentation visuelle de la structure temporelle de la musique Hypothèses concernant la macro-structure d'un morceau

Hypothèse 1 : homogénéité

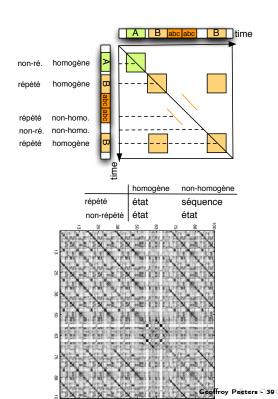
- Hypothèse : le morceau est formé d'une succession de segments temporels homogènes $t_i \simeq t_{i+1} \simeq t_{i+2}, \ldots$ et de segments non homogènes
 - homogène? contenant une information similaire au sens d'un critère d'observation)
 - "A" et "B" sur la Figure
- Exemple : arrangements d'un couplet ou d'un refrain
- Méthode : approche par "état"



3- Représentation visuelle de la structure temporelle de la musique Hypothèses concernant la macro-structure d'un morceau

Hypothèse 2 : répétition

- Hypothèse : le morceau renferme des répétitions temporelles.
 - elles peuvent correspondre à des répétitions de segments homogènes
 - $\{t_j, t_{j+1}, t_{j+2}\} \simeq \{t_i, t_{i+1}, t_{i+2}\}$ et $t_i \simeq t_{i+1} \simeq t_{i+2}$
 - "B" dans la figure
 - Méthode : approche par "état"
 - elles peuvent correspondre à des répétitions de segments non homogènes
 - $\{t_j, t_{j+1}, t_{j+2}\} \simeq \{t_i, t_{i+1}, t_{i+2}\}$ et $t_i \neq t_{i+1} \neq t_{i+2}$
 - séquence "abc" dans la Figure
 - Méthode : approche par "séquence"



3- Représentation visuelle de la structure temporelle de la musique

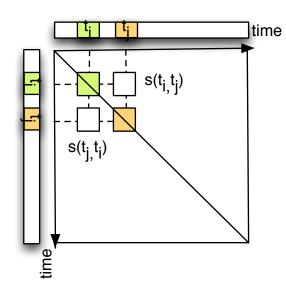
3- Représentation visuelle de la structure temporelle de la musique Matrice d'auto-similarité/distance (temps,temps)

Matrice d'auto-similarité/distance (temps,temps)

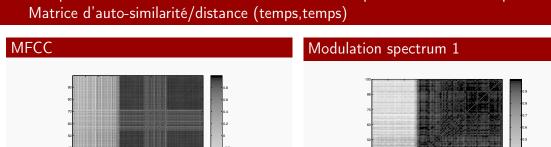
- Similarité entre deux instants t_i et t_i
- Similarité entre les observations du signal à deux trames i et j : $s(t_i,t_j)=s(\underline{d}^i,\underline{d}^j)$
- Descripteurs audio multi-dimensionnels $d = d_k \ k \in K$

Choix d'une distance

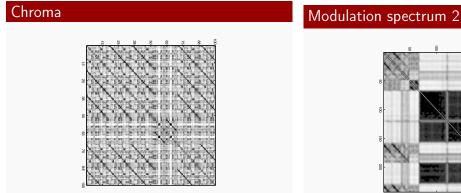
- ullet Distance euclidéenne : $\sqrt{\sum_k (d_k^i d_k^j)^2}$
- \bullet Corrélation : $\sum_k (d_k^i \cdot d_k^j)$
- Distance cosinusoidale : $\frac{\sum_k (d_k^i \cdot d_k^j)}{\sqrt{\sum_k (d_k^i)^2} \sqrt{\sum_k (d_k^j)^2}}$
- $\begin{array}{l} \bullet \;\; \text{Correlation Pearson}: \\ \frac{\sum_k (d_k^i \mu^i) \cdot (d_k^j \mu^j)}{\sqrt{\sum_k (d_k^i \mu^i)^2} \sqrt{\sum_k (d_k^j \mu^j)^2}} \end{array}$
- ..



3- Représentation visuelle de la structure temporelle de la musique Matrice d'auto-similarité/distance (temps,temps)



Geoffroy Peeters - 42



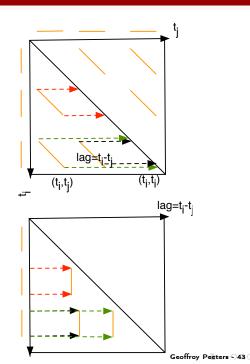
3- Représentation visuelle de la structure temporelle de la musique Matrice d'auto-similarité/distance (temps,lag)

Matrice d'auto-similarité/distance (temps, lag)

- Une valeur élevée dans $S(t_i,t_j)$ représente une similarité importante entre les instants t_i et t_j .
- Si une séquence de temps t_i, t_{i+1}, t_{i+2}, ... est similaire à une séquence de temps t_j, t_{j+1}, t_{j+2}, ... nous observons une diagonale supérieure/ inférieure dans S.
- Lag = distance entre la répétition (démarrant en t_i) et la séquence originale (démarrant en t_i)
 - cette distance est donnée par la projection de t_i sur la diagonale principale de la matrice : $t_i t_j$
 - souvent constante
- Matrice de lag :

$$L = L(t_i, lag_{ij}) = S(t_i, t_i - t_j)$$

- les diagonales dans une matrice (temps,temps)
- deviennent des lignes verticales dans une matrice (temps,lag)

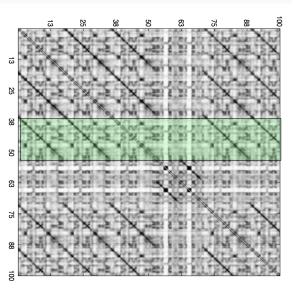


3- Représentation visuelle de la structure temporelle de la musique Génération de résumé audio par méthode du "summary score"

Génération de résumé audio par méthode du "summary score"

[M. Cooper and J. Foote. Automatic music summarization via similarity analysis. In Proc. of ISMIR, Paris, France, 2002.]

 Recherche du segment temporel continu représentant au mieux le contenu d'un morceau de musique selon un critère de similarité → création de "previews" musicaux



3- Représentation visuelle de la structure temporelle de la musique Génération de résumé audio par méthode du "summary score"

Génération de résumé audio par méthode du "summary score"

- Recherche du segment démarrant en q de durée L=r-q expliquant le maximum de répétitions
- Similarité moyenne de l'instant q avec tous les temps du morceau

•
$$\frac{1}{N}\sum_{n=1}^{N}S(q,n)$$

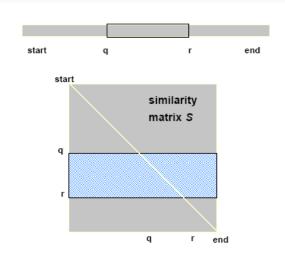
• Similarité moyenne du segment [q, r] (de longueur L = r - q) avec tous les temps du morceau

•
$$s(q,L) = \frac{1}{LN} \sum_{m=q}^{r} \sum_{n=1}^{N} S(m,n)$$

• Pour un L donné, nous cherchons q maximisant s(q, L)

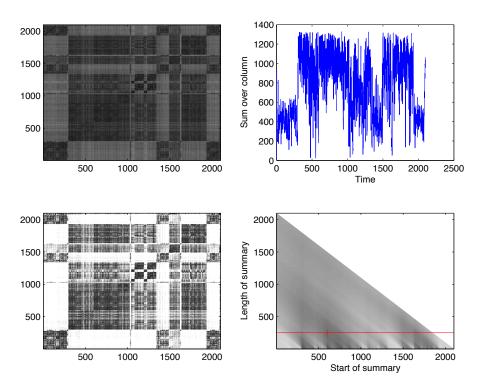
•
$$q_L = \operatorname{argmax}_{1 \le i \le N-L} s(i, L)$$

- Variante : pour favoriser la détection de résumés en début de morceau,
 - ajout d'une pondération w(n) fonction décroissante du temps
 - $s(q,L) = \frac{1}{LN} \sum_{m=q}^{r} \sum_{n=1}^{N} w(n) S(m,n)$



source : [Cooper and Foote, 2002, ISMIR]

3- Représentation visuelle de la structure temporelle de la musique Génération de résumé audio par méthode du "summary score"



4- Segmentation temporelle d'un flux de descripteurs

4- Segmentation temporelle d'un flux de descripteurs Segmentation trame-à-trame

Segmentation trame-à-trame

ullet Variation trame-à-trame de \underline{d}^t

4- Segmentation temporelle d'un flux de descripteurs Critère BIC (Bayes Information Criteria)

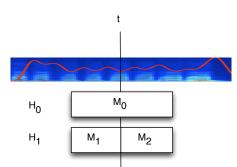
Critère BIC (Bayes Information Criteria)

- Pour chaque temps t (potentiellement instant de rupture) on compare deux hypothèses
 - H0 : le signal obéit au même modèle probabiliste de part et d'autre de t, modèle noté $M_0(\mu_0, \Sigma_0)$
 - H1 : il y a un changement de modèle en t, deux modèles différents $M_1(\mu_1, \Sigma_1)$ et $M_2(\mu_2, \Sigma_2)$
- Critère Delta BIC

$$\Delta BIC = R(t) - \lambda P$$

$$R(t) = \frac{1}{2} (N \log(|\Sigma_0|) - t \log(|\Sigma_1|) - (N - t) \log(|\Sigma_2|)$$

- si $\Delta BIC > 0$, H1 est vérifiée
- paramètres :
 - \bullet P : proportionnel à la différence des nombres de paramètres estimés pour chaque hypothèse
 - λ : facteur de pénalité choisi tel que $\Delta BIC>0$ si H1 est vérifiée



4- Segmentation temporelle d'un flux de descripteurs Convolution de la matrice d'auto-similarité par un noyau en damier

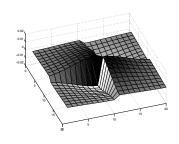
Convolution de la matrice d'auto-similarité par un noyau en damier

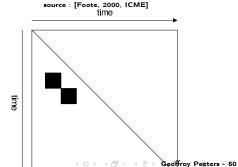
[J. Foote. Automatic audio segmentation using a measure of audio novelty. In Proc. of IEEE ICME, New York City, NY, USA, 2000.]

- Méthode "Novelty Curve" [Foote, 2000, ICME]
- Approche plus robuste
- Convolution de la matrice de similarité $\underline{\underline{S}}$ par un noyau prenant en compte
 - la similarité inter-segment (homogénéité) et
 - la dis-similarité entre **segments** gauches et droites
 - "checker-board" kernel :

$$C = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

 La valeur de la diagonale de la matrice "filtrée" mesure la similarité/ dis-similarité des régions gauches et droites





4- Segmentation temporelle d'un flux de descripteurs Convolution de la matrice d'auto-similarité par un noyau en damier

Exemple

