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ABSTRACT

This article is concerned with the estimation of the fundamen-
tal frequencies of the quasiharmonic sources in polyphonic signals
for the case that the number of sources is known. We propose
a new method for jointly evaluating multiple F0 hypotheses based
on three physical principles: harmonicity, spectral smoothness and
synchronous amplitude evolution within a single source. Given the
observed spectrum a set of F0 candidates is listed and for any hy-
pothetical combination among the candidates the corresponding
hypothetical partial sequences are derived. Hypothetical partial
sequences are then evaluated using a score function formulating
the guiding principles in mathematical forms. The algorithm has
been tested on a large collection of arti cially mixed polyphonic
samples and the encouraging results demonstrate the competitive
performance of the proposed method.

1. INTRODUCTION

The estimation of the fundamental frequency, or F0, of a sound
source from a given signal is an essential step for many signal pro-
cessing applications. For the monophonic case there exist many
approaches that achieve very high performance. Despite increas-
ing research activities with respect to polyphonic signals the es-
timation of multiple F0s remains a challenging problem. Some
of the generally admitted dif culties are: estimating the number
of F0s, retrieving reliable time-frequency properties, treating mix-
tures of transient parts and stationary parts. In the following ar-
ticle, we propose a new method for multiple F0 estimation under
the assumption that the number of F0s is known in advance.

There exist several approaches for multiple F0 estimation. A
probabilistic signal modeling approach proposed in [1] applies spe-
ci c prior distributions on the model parameters, such as the fre-
quency and the amplitude of each partial, the number of partials,
the detuning factor for each sinusoidal component, etc. This ap-
proach is computationally expensive and limited results are re-
ported. In [2], a robust multipitch estimation is achieved by means
of selecting reliable frequency channels as well as reliable peaks
in the normalized correlograms. This technique has been reported
to work for two-voice speech and the authors conclude that the
proposed algorithm could be extended to more than two pitches.
Klapuri’s iterative multiple F0 estimation algorithm handles most
of the dif culties like estimating the number of F0s and treating
the overlaps of coincident partials. Promising results are reported
by evaluating a variety of polyphonic musical signals.

An iterative estimation and cancellation model has been pro-
posed by de Cheveigné earlier in [3]. He compared an iterative
approach and a full search approach which performs a joint evalu-
ation. Based on this early study and later work in [4], he reported
that a joint cancellation performs better than an iterative cancella-

tion in that a single F0 estimation failure may lead to successive
errors in an iterative estimation cancellation manner. In fact, a joint
evaluation strategy provides more  e xibility in solving this prob-
lem. For each set of multiple F0 hypotheses, spectral components
in the interleaved spectrum could be reasonably allocated to each
F0 hypothesis and disturbed information provided by overlapped
partials could be identi ed and taken care of in a more accurate
way.

Therefore, we propose a new method for the joint evaluation
of multiple F0 hypotheses. Based on a generative quasiharmonic
spectral model, hypothetical partial sequences are constructed and
evaluated using three physical principles: harmonicity, spectral
smoothness and synchronous amplitude evolution within a sin-
gle source. Harmonicity is the essential principle in nearly all F0
estimation techniques. It is known that using only harmonicity,
however, often causes subharmonic/superharmonic ambiguity and
thus more cues are necessary to improve the estimation perfor-
mance. Both Kashino [5] and Goto [6] introduce tone models as
a constraint on relative partial amplitudes. Klapuri has utilized the
spectral smoothness principle [7] which assumes that the spectral
envelopes of natural quasiharmonic sounds are in general rather
smooth. Besides the two principles applied by the above authors,
we include the synchronous evolution of sinusoidal amplitudes as
another principle and  nally formulate these principles into a new
score function to rank all hypothetical combinations, which is one
important contribution of this article. The second contribution is a
new proposition to make use of the hypothetical F0s to determine
reliable information in the observed spectrum.

This paper is organized as follows. In Section 2 the genera-
tive quasiharmonic model is described and the principles for F0
estimation are established. In Section 3, we introduce a frame-
based F0 estimation method using the proposed score function. In
Section 4, experimental results are shown, which proves the com-
petitive performance of the proposed method. Finally, further im-
provements are discussed and conclusions are drawn.

2. GENERATIVE QUASIHARMONIC MODEL

The following algorithm is based on a polyphonic quasiharmonic
signal model of the following form

y[n] =
{ M∑

m=1

Hm∑
hm=1

am,hm [n] cos
(
(1 + δm,hm)hmωmn

+ φm[n]
)}

+ v[n], (1)

where n is the discrete time index, M is the number of sources,
Hm is the number of partials for the m-th source, ωm represents
the F0 of source m, and φm[n] denotes the phase. In the current
context those parameters are either  x ed or of minor interest. The
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score function will make use of am,hm [n] and δm,hm , which are
the time varying amplitude and the constant frequency detuning of
the hm-th partial and v[n], which is the residual noise component.
Generally it is supposed that the noise is suf ciently small such
that a considerable part of the individual sinusoidal components
can be identi ed.

Similar to [8] we understand the observed spectrum as gener-
ated by sinusoidal components and noise. Each spectral peak is
characterized by its amplitude and frequency. A sinusoidal peak is
assigned to one or more of the M sources in equation (1), all unas-
signed peaks contribute to the noise component v[n]. The model
supposes quasi-stationary frequency and, therefore, the sinusoidal-
ity of an observed peak is used to rate the requirement to include
it into the quasiharmonic parts of the source model. Based on this
model and given the observed spectrum and M , the most plausible
F0 hypotheses are going to be inferred. The procedure is close to
the Bayesian model speci ed in [1], however, to prevent the huge
computational requirements of numerically maximizing the likeli-
hood a more pragmatic approach is proposed.

To construct and evaluate hypothetical sources, we use three
physical principles for quasiharmonic sounds stated in the follow-
ing.

Principle 1: Spectral match with low inharmonicity. For a F0
hypothesis, a hypothetical partial sequence HPSF0 is constructed
by selecting harmonically matched peaks from the observed spec-
trum in such a way that δm,h are minimized.
The set {HPSF0m}M

m=1 should combinatorially “explain” the si-
nusoidal components in the observed spectrum. Under the as-
sumption that the noise energy is small it is reasonable to favor F0
hypotheses that explain more components of the observed spec-
trum as long as they are not contradicted by the following two
principles.

Principle 2: Spectral smoothness. For natural quasiharmonic
sounds, the spectral envelopes usually form smooth contours. While
constructing HPSF0 of a source, the partials should be selected in a
way that {am,hm}Hm

hm=1 results in a smooth spectral envelope. For
partial sequences  tting well to Principle 1, those with smoother
spectral envelopes are more probable to be originated from natural
sources such as musical instruments.

Principle 3: Synchronous amplitude evolution within a single
source. Partials belonging to the same source should have simi-
lar time evolution of the amplitudes {am,hm}Hm

hm=1 collected in a
HPS. If the partials of a hypothetical source match mostly to noisy
peaks, they evolve in a random manner and thus do not have a
synchronous amplitude evolution.

3. MULTIPLE F0 ESTIMATION

Based on the three principles described above, we design a frame-
based multiple F0 estimation system. The main task is to formu-
late these principles into four criteria serving as the core compo-
nents in a score function for evaluating the plausibility of one set
of multiple F0 hypotheses.

3.1. Front end

3.1.1. Extracting hidden partials

When analyzing polyphonic signals with limited spectral resolu-
tions, one often observes that the dense distribution of partials
causes some peaks be hidden by relatively larger coincident ones.

Thus, extracting hidden partials is essential to increase spectral res-
olution, which leads to a more accurate harmonic matching in the
later stage. As shown in the top of Figure 1, a peak of unsymmetric
form might correspond to overlapped partials.

original spectrum
subtracted peak

residue spectrum
subtracted peak

extracted peak  

original peak 

Figure 1: Extracting the hidden partial

To search for these hidden partials, we use a simple symme-
try test for the shapes of the observed peaks. For each peak, we
locate its neighboring valleys and choose the closer one to de ne
a reference range (the bin number from one observed peak to its
nearest valley). The degree of symmetry is de ned as the summa-
tion of amplitude differences between the two sides of a spectral
peak, considering the frequency bins within the reference range.
Then a threshold is set for the degree of symmetry to select rela-
tively unsymmetric peaks for further processing. After estimating
the frequency and the frequency slope of each selected peak [9],
we subtract it using the least square error criterion to extract the
hidden peak as indicated in the bottom plot of Figure 1. To pre-
vent the addition of simple residual energy as a new sinusoid, a
resolved peak is kept as a successfully extracted partial only if it is
not weaker than the original peak by 40 dB and should be located
further than half the mainlobe width away from the original peak.

3.1.2. Generating the candidate list

To generate a F0 hypothesis list, we use an harmonic matching
technique since harmonicity is the primary concern in F0 estima-
tion. The harmonic matching technique matches the regular spac-
ing between adjacent partials to determine a coherent F0 and has
been widely used for F0 estimation in the spectral domain [10].

Given a F0, we construct a vector dF0 evaluating the degree
of deviation from a harmonic model to the observed peaks. A tol-
erance interval around each harmonic is used to measure the good-
ness of the harmonic match. For the i-th observed peak matching
the h-th harmonic, the degree of deviation is formulated as

dF0(i) =
|fpeak(i) − fmodel(h)|

α · fmodel(h)
(2)

where fpeak(i) is the frequency of the ith observed peak, fmodel(i)
is the frequency of the hth harmonic of the model, and α deter-
mines the tolerance interval 2 · α · fmodel(h). If an observed peak
situates outside the corresponding tolerance interval, it is regarded
as unmatched and dF0(i) is set to 1.
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Since inharmonicity exists in most of the string instruments,
it is necessary to dynamically adapt the frequencies of model har-
monics according to the matched peaks. Thus, fmodel(h) is cal-
culated by means of adding F0 to the previously matched peak
frequency. If not a single peak is matched for the previous partial,
fmodel(h − 1) + F0 is used for the current match. The technique
of selecting one single matched peak (among all the peaks situat-
ing in the tolerance interval) as a reference position makes use of
Principle 2 and is described later.

Three vectors are chosen to weight dF0: (i) the complex cor-
relation between each observed peak and an ideal peak de ned
by the analysis window, (ii) the linear amplitudes of the observed
peaks, and (iii) an attenuation vector favoring the  rst several par-
tials1, as indicated in the top plot of Figure 2.
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Figure 2: Harmonic matching: a tenor trombone note at 137Hz

The complex correlation favors peaks of better sinusoidality
(shape and phase). The linear peak amplitude adjusts relative sig-
ni cance by considering peaks of larger energy more important.
The third weighting vector attenuates less reliable matches for higher
partials because they tend to be inharmonic and non-stationary.
Besides, the gradual decay nature of higher partials reduces the
reliability in the presence of stronger partials from other sources.
Then the weighted deviation vector is summed and normalized be-
tween 0 and 1. The resulting indicator for harmonic matching is
denoted as D. An example is shown in the bottom plot of Figure
2, the weighted sums of the deviation vectors for F0 hypotheses
ranging from 50Hz to 2000Hz are plotted. A lower value means a
better match and thus higher harmonicity. The harmonic matching
indicator is applied to polyphonic spectra to select F0 candidates
corresponding to local minima of D for the joint evaluation.

Assume there are P F0s in the candidate list and there are M
F0s to be estimated from the observed spectrum which results in
the need to evaluate CP

M combinations of F0 hypotheses.

3.1.3. Generating Hypothetical Partial Sequences

Constructing HPSs of F0 hypotheses in the candidate list is re-
alized by the partial selection technique. Both Parsons [11] and
Duifhuis [12] have proposed selecting the nearest peak around a
harmonic. However, this technique might fail if a partial is sur-
rounded by spurious peaks and partials of other sources. There-

1The third partial is tested to be a good starting point for attenuation.

fore, we try to increase the robustness by means of utilizing Prin-
ciple 2and the knowledge of spectral locations where partial over-
laps may occur according to the current F0 hypotheses under in-
vestigation. The goal is to make the best of the available credible
information.

The construction procedure has two steps: (i) Each HPS is
constructed by assigning the most plausible peaks, and (ii) the
overlapped partials containing less credible amplitudes are removed
from HPSto ensure reliability for evaluating the spectral envelope
in the score function.

To construct a HPS we start with the  rst partial by simply
assigning it to the closest peak observed. For the following par-
tials we consider two candidate peaks: the closest one and the one
of which the mainlobe contains the corresponding harmonic posi-
tion. Compared to the formerly selected partials, the peak candi-
date forming a smoother envelope is sequentially allocated to the
HPS. The case of overlapped partials requires special considera-
tion. The treatment for this case is based on the idea that an over-
lapped partial still carries important information for at least the
HPSthat locally has the strongest energy. Therefore, the algorithm
aims to assign the overlapped partial to this HPS. The strategy for
treating the overlapped partials is listed below:

(i) Partials having potential collision are determined from each
hypothetical combination of HPSs.

(ii) The local energy strength of the envelope is obtained by
means of interpolating the neighboring partial amplitudes
that are not collided. By comparing the interpolated am-
plitudes estimated from all HPSs, the overlapped partials is
exclusively assigned to the one having the most dominant
interpolated amplitude among all and then labeled as “us-
able” which means that it could be used for interpolation for
its neighboring partials. For the rest of the HPSs the over-
lapped partial is labeled as existing but without a speci ed
partial amplitude.

(iii) If one neighboring partial happens to be overlapped, the
non-overlapped partial at the other side is used instead. If
the two neighboring partials are overlapped, the correspond-
ing HPSis not considered as having reliable information for
interpolation and thus excluded.

(iv) If the amplitude of the overlapped partial is smaller than
any interpolated amplitude, it is dif cult to infer which F0
hypothesis contributes the most and thus partial assignment
is not carried out but this overlapped peak in all HPSs are
labeled as “usable” for further use of interpolation.

The score criteria explained in the following are designed to
gracefully deal with this kind of incomplete HPSs. An example of
treating the overlapped partials in HPSs of three notes is shown in
Figure 3. The above plot shows the HPSs before the treatment and
the bottom plot shows those after the treatment.

3.2. The score function

Having constructed the most reasonable peak sequences for each
set of F0 hypotheses we design a score function to rank these hy-
pothetical sets. The score function formulates the three principles
into four criteria: harmonicity HAR, mean bandwidth MBW and
duration DUR of the partial amplitude sequence, and the standard
deviation of mean time DEV.
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Figure 3: Overlapped partial treatment

Criterion 1 HAR is an indication of harmonicity and totally
“explained” energy. It is formulated as

HAR=

I∑
i=1

Corr(i) · Spec(i) · dM (i)∑
i[Corr(i) · Spec(i)]

(3)

where I is the number of peaks, i is the peak index, Corr is the
complex correlation weighting vector, Spec is the linear peak am-
plitude and dM (i) is obtained by combining {dF0m(i)}M

m=1 at the
ith peak in the following way:

dM (i) = min
(
{dF0m(i)}M

m=1

)
(4)

That is, each observed peak is matched with the closest partial
among those of {HPSF0m}M

m=1 and thus each combination under
evaluation could perform its optimal match.

Criterion 2 To evaluate the smoothness of a HPS, we calcu-
late the mean bandwidth of the partial amplitude sequence. Each
HPSis assembled with its “mirror sequence” to construct a new se-
quence SF0m for further evaluation. It could also be interpreted as
a hypothetical partial sequence constructed from a complex spec-
trum. An example of SF0m is shown in the middle plot of Figure
4.

Applying K-point Fast Fourier Transform on SF0m to obtain
the linear spectral amplitude vector XF0m , we can calculate the
mean bandwidth MBWF0m as

MBWF0m =

√√√√2 ·
∑K/2

k=1 k[XF0m(k)]2∑K/2
k=1 [XF0m(k)]2

(5)

This indicates the degree of energy concentration in low frequency
region and thus SF0m with less variation results in a smaller value
of MBWF0m .

The function of MBWF0m is to discriminate correct F0s from
subharmonics. As the example shown in Figure 4 the spectral en-
velopes of a harpsichord note. Although the nature of the harpsi-
chord does not form a smooth spectral envelope due to resonance
, the HPSof its subharmonic F0/2 contains even more variations
and thus larger MBWF0m .
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Figure 4: Spectral smoothness comparison between F0 and F0/2

Criterion 3 For a quasiharmonic sound, the spectral cen-
troid usually lies around lower partials. Applying this general prin-
ciple related to Principle 2, we could similarly evaluate the energy
spread of the partial sequence, that is, the duration DURF0m of
HPSF0m . Instead of removing the non-reliable components from
HPSF0m , we simply set them to zero to maintain correct posi-
tioning of all partials. Then the duration of HPSF0m could be
calculated as

DURF0m =

√
2 ·

∑Nm
n=1 n[HSPF0m(n)]2

L ·
∑Nm

n=1[HSPF0m(n)]2
(6)

where Nm is the length of HSPF0m . L is a normalization factor
determined by bF90/F0minc, where F90 stands for the frequency
limit containing 90% of spectral energy in the analyzing frequency
range and F0min is the minimal hypothetical F0 in search. Since
spectral envelopes of natural sounds are not always smooth, this
criterion functions as the further test of physical consistency of
Principle 2 and acts as a penalty function for subharmonics which
“explain” more than one source in the observed spectrum.

Criterion 4 To evaluate the synchronicity of the temporal
evolution of the hypothetical sinusoidal components in a HPS, we
rely on the estimation of the mean time for individual spectral
peaks. Mean time is an indication of the center of gravity of sig-
nal energy[13] and the mean time of a spectral peak can be used
to characterize the amplitude evolution of the related signal[14].
For a coherent HPSwe expect synchronous evolution resulting in
a small variance of the mean time for the HPSof a single source.

The mean time of a hypothetical source, denoted as TF0m ,
is calculated as the power spectrum weighted sum of the mean
time of the hypothetical partials. The variance of mean time of the
partials in HPSF0m is then

VARF0m =

I∑
i=1

{[t̄i − TF0m ]2 · wF0m(i)} (7)

where t̄i denotes the mean time of the i-th observed peak and the
weighting vector {wF0m(i)}I

i=1 is constructed by the following
steps:

1) Initially set {wF0m(i)}I
i=1 as the linear peak amplitude

vector.
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2) For the peaks situating too close in the observed spectrum,
their spectral phases are probably disturbed. Therefore, we
set the corresponding component in {wF0m(i)}I

i=1 to 0.
3) According to the treatment of overlapped partials among

{HPSF0m}M
m=1, the components of {wF0m(i)}I

i=1 corre-
sponding to unusable partials are set to 0.

4) {wF0m(i)}I
i=1 is then compressed by an exponential fac-

tor to reduce the dynamic range such that the signi cance
of noisy peaks is raised. This makes use of noisy peaks
to penalize a hypothetical partial sequence containing more
noisy peaks. Finally, {wF0m(i)}I

i=1 is normalized to be a
weighting vector.

DEVF0m is then de ned as the square root of VARF0m divided
by half of the window size.

For each combination under investigation, MBWof a set of F0
hypotheses is de ned as the weighted sum of {MBWF0m}M

m=1:

MBW=

∑M
m=1[

∑Nm
n=1 HPSF0m(n)] · MBWF0m∑M

m=1

∑Nm
n=1 HPSF0m(n)

(8)

This makes use of the credible components in each HPSF0m as a
weighting of relative importance. DUR and DEV are thus equiva-
lently de ned.

Score function We de ne the score function as

DCP
M

=
1∑4

j=1 pj

{
p1 ·HAR+p2 ·MBW+p3 ·DUR+p4 ·DEV

}
(9)

where the weighting coef cients {pj}4
j=1 are to be trained by an

evolutionary algorithm [15]. The score function is designed in
a way that smaller values stands for higher scores. Notice that
HAR generally favors lower hypothetical F0s while MBW, DUR
and DEV favor higher ones. Therefore, the criteria perform in a
complementary way and the weighting coef cients should be op-
timized to balance the relative contribution of each criterion such
that the score function generally supports correct F0s the best.

4. EXPERIMENTAL RESULTS

To evaluate the proposed F0 estimation method, we perform a
frame-based test using mixtures of musical samples. Since the
criteria are designed for stationary quasiharmonic sounds, station-
ary parts of musical samples are pre-selected and then mixed with
equal mean-square energy. Estimation of a polyphonic sample is
performed within a single frame. The number of F0s is given in
advance for the F0 estimation system to  nd the most probable set
of F0s.

4.1. Parameter optimization

The parameters to be optimized are the weighting coef cients
{pj}4

j=1 in the score function and α for determining the tolerance
interval in eq(2). 300 polyphonic samples containing 100 samples
for each voice mixture are generated by randomly mixing musical
instrument samples from the University of Iowa2. Then the pa-
rameters are optimized using evolutionary algorithm and the set of
parameters performing the best is used for the  nal evaluation on
a large database.

2http://theremin.music.uiowa.edu/MIS.html

4.2. Evaluation setups and results

Speci cations for this evaluation are described below:
• Three databases: two-voice, three-voice and four-voice mix-

tures, labeled as TWO, THREE and FOUR respectively,
are generated using McGill University Master Samples3. In
combining M -voice polyphonic samples, M out of twelve
(C, Db, D, Eb, E, F, Gb, G, Ab, A, Bb, B) tones are prelim-
inarily assigned and then samples ranging from 65Hz(C2)
to 1980Hz(B6) are randomly selected to mix. Around 1500
samples for each database are generated in a way that each
combination of note names are of equal proportion. Mu-
sical instruments not  tting the quasiharmonic model are
excluded. This database contains about 30 different musi-
cal instruments. To facilitate comparison, the database is
published on the  rst author’s web page 4.

• The search range for F0 is set from 50Hz to 2000Hz and
the maximal analyzing frequency limit is  x ed at 5000Hz.
A Blackman window is used for analysis and all parameters
are  x ed for this evaluation.

• Multiple F0 reference tables are built from single F0 esti-
mation of monophonic samples before mixing. A correct
estimate should not deviate from the corresponding refer-
ence value by 3%. The error rates are computed by the
number of error estimates divided by the total number of
target F0s.

Evaluation using two analysis window sizes, 186ms and 93ms,
are performed and the results are shown in Table 1 and Table 2, re-
spectively. Since musical samples mixed randomly surely contain
notes with harmonically related F0s, we present the error rates for
two groups of samples: one group of mixtures containing harmon-
ically related notes, labeled as “harmonical”, and the other group
“non-harmonical”. The overall error rates are shown in the “total”
column. The percentages of samples in the group “harmonical”
are 22.43%, 32.78% and 49.46% for the three databases TWO,
THREE and FOUR.

polyphony non-harmonical harmonical total

TWO 0.58% 7.28 % 2.09%
THREE 1.48% 5.16 % 2.68%
FOUR 2.46% 6.57 % 4.50%

Table 1: F0 estimation results using a 186 ms window

polyphony non-harmonical harmonical total

TWO 1.61% 7.59% 2.96%
THREE 3.27% 7.61% 4.69%
FOUR 5.68% 11.78% 8.70%

Table 2: F0 estimation results using a 93 ms window

The errors in the group non-harmonical are quite small which
proves the satisfying performance of the proposed method. The
overall errors are slightly better than the ones reported by Klapuri
[16], however, this comparison is not conclusive due to the fact

3http://www.music.mcgill.ca/resources/mums/html/
4http://www.ircam.fr/anasyn/cyeh/database.html
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that the testing set comprises different samples and that in [16] a
larger set of samples from four different databases has been used.

5. DISCUSSIONS

The score function sometimes fails to correctly resolve the am-
biguity concerning target F0s and their subharmonics or superhar-
monics especially F0/2and 2F0. This failure scenario accounts for
a great proportion of the estimation errors. Polyphonic samples
mixed with musical instrument samples of rich resonances often
result in this kind of wrong estimate. Taking the string instruments
for example, several predominant resonances occur with the exci-
tation [17]. If strong resonances exist in the frequency range below
the fundamental, the correct F0s might lose too much score to sub-
harmonics by the amount of explained energy (HAR). If strong res-
onances boost certain partials too much, correct F0s might lose too
much score to superharmonics by the spectral smoothness (MBW).
Dealing with resonance peaks is a key to improving robustness.

The window size is still a concern. For those mixtures contain-
ing harmonically related F0s, inharmonic partial structures might
give a chance for correct estimation if a suf cient spectral resolu-
tion is provided. With the increase of polyphony, the performance
suffers from the reduction of the window size. Therefore, investi-
gating the techniques for treating overlapped partials is necessary.

The way of constructing polyphonic databases for evaluation
should be carefully examined. With the increase of polyphony,
the number of possible combinations among different notes and
different instruments increases dramatically. A limited number of
samples mixed in a random manner could not ensure a general
representation of the large sample space. Besides, the number of
harmonically related notes increases in higher polyphonic random
mixtures and thus effective approaches to estimate F0s of exact
multiple relations become more important.

6. CONCLUSIONS

We have presented a new method for joint evaluating the plausibil-
ity of multiple F0 hypotheses based on three physical principles.
The three principles could be interpreted as reasonable prior distri-
bution for all parameters in the generative spectral model. Instead
of using an analytical approach, we optimize each hypothetical
partial sequence based on these principles and then compare the
credibility of possible combinations among F0 hypotheses using
a score function. Evaluation over a large polyphonic database has
shown encouraging results. However, there are still issues to be ad-
dressed. We envisage that further improvements on the inadequate
treatment for overlapped partials will lead to higher robustness.
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