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ABSTRACT

A novel approach to classification of peaks of audio spectra is pre-
sented. In extending previous work on detecting transient spectral
peaks we here investigate into the classification of sinusoidal and
noise peaks. The classification is based on descriptors derived from
properties related to time-frequency distributions: mean time, du-
ration, instantaneous frequency and normalized bandwidth. In con-
trast to existing methods, the descriptors are designed to properly
deal with non-stationary sinusoids, which considerably increases
the range of applications. The experimental investigation shows
superior classification results compared to the standard correlation-
based approach.

1. INTRODUCTION

The decomposition of audio spectra in sinusoids, transients and
noise is often used to improve the results of parameter estimation
and/or signal manipulation applications. In the following paper we
are going to investigate into the possibility to classify individual
spectral peaks. As has been shown for the case of transient detec-
tion [1] the classification of spectral peaks is a beneficial approach
to identify signal components. Such a classification scheme that
makes optimal use of the information provided by spectral peaks,
can then be used to achieve a robust segmentation into higher level
signal components, e.g. partials or unvoiced region. Complement-
ing the transient peak classification method the present paper will
deal with classification into noise and sinusoidal peaks.

There exist few approaches for the classification of spectral
peaks. Among them we cite the widely used correlation based mea-
sure of sinusoidality [2] and another proposal that is based on the
reassigned spectrogram [3]. The former takes the maximum of the
complex correlation between the DFT of the analysis window and
each peak of the STFT of the signal. If the value is equal to 1,
the peak belongs to a noiseless steady-state sinusoid, otherwise it
indicates the presence of noise or time-variable components. The
letter proposes the classification of the STFT peaks in sinusoids,
unresolved sinusoids, transients and noise. Various statistics are
calculated for each side of the peak separately and the traditional
pattern classification method with a likelihood ratio test is applied
to perform the classification.

The shortcoming of both approaches is the underlying assump-
tion of quasi-stationary signals. As shown in the experimental sec-
tion the performance of the correlation based method severely de-
grades for non-stationary sinusoids that are present in real world
signals. Moreoever, the method presented in [3] uses a probabilistic
approach to derive classification thresholds. As long as a probabilis-
tic description of the signal composition is available this will result
in optimal performance. This, however, is rarely the case because
the probability of noise peaks changes with the size of the analy-
sis window. The larger the window, the more noise peaks will be
observed in contrast to the number of sinusoidal peaks which is ap-
proximately constant. Due to the conceptual problem with the prob-
abilistic approach, we derive our classification criterion by means of
declaring a worst case situation. This situation is characterized by a
defined deviation from the stationary noise-free sinusoid.

There exist a number of audio signal processing applications
where the classification of spectral peaks could be used. It can be
applied as a pre-processing stage to reduce the number of candi-

date peaks considered for partial tracking in additive analysis. A
reliable classification of noise peaks would reduce the number of
incorrect connections and for probabilistic approaches [4] it would
considerably reduce the computational cost. Also for F0 detection
algorithms the impact of noise components could be reduced.

Another domain of application is the voiced/unvoiced segmen-
tation in speech processing. For this case, however, the classifica-
tion of spectral peaks is not sufficient and needs to be extended to
obtain higher level descriptors. This, however, is beyond the topic
of the current article.

The paper is organized as follows. In section2 we define the
descriptors that will be used for classification of spectral peaks and
discuss the properties of the descriptors if applied to different types
of spectral peaks. In the following section3 we describe the struc-
ture of the decision tree and derive the thresholds to be used for
classification. We present an experimental result of our classifica-
tion procedure and demonstrate its superior performance compared
to the correlation based peak classification. We conclude the paper
with a discussion of the achievements and required further develop-
ments.

2. SPECTRAL PEAK DESCRIPTORS

From the many descriptors of spectral peaks that we have studied
we have selected four that achieved the best discrimination perfor-
mance.

2.1 Descriptor definitions

The frequency reassignment operator has been derived in [5] to im-
prove signal localization in the time-frequency plane. For constant
amplitude chirp signals it exactly points onto the frequency trajec-
tory of the chirp at the position of the center of gravity of the win-
dowed signal. The frequency offset∆ω between the frequency at the
center of an DFT bin and the reassigned frequency in rad is given
by

∆ω (k) = imag
Xd(k)X∗(k)
|X(k)|2

. (1)

Herek specifies the bin index of the DFT.X(k) is the DFT of the
signal windowed with the analysis window andXd(k) is the DFT of
the signal windowed with the time derivative of the same window.
The operatorX∗ denotes complex conjugation. To characterize the
frequency coherence of a spectral peak we select as descriptor the
minimum value of|∆ω | for all k belonging to this peak and nor-
malize by 2π

N whereN is the size of the DFT. The normalization
ensures that the frequency coherence descriptorFCD is invariant
with respect the analysis parameters.

The group delaygd(k) is defined to be the derivative of the
phase spectrum with respect to frequency. For a single bin of the
DFT spectrum it equals the mean time according to [6] and spec-
ifies the contribution of this frequency to the center of gravity of
the signal related to the spectral peak. The mean time is the main
feature to detect transient peaks [1]. In the current investigation we
found that due to the influence of neighboring peaks the mean time
derived from the spectral peak as a whole is not sufficiently robust.
Therefore we use a modified version given by

te =−gd(kmax)|∆ω (kmax2)|+gd(kmax2)|∆ω (kmax)|
|∆ω (kmax2)|+ |∆ω (kmax)|

, (2)



which characterizes the energy location by means of investigating
the peak center only. The indiceskmax andkmax2 correspond to the
largest and second largest samples in the peak. The weighting by
means of the frequency reassignment operator results in the fact that
constant amplitude chirp signals will always have a mean time very
close to zero even if their frequency trajectory does not exactly pass
through a center frequency of a bin. To prevent a dependency of
classification results on the analysis parameters we normalize|te|
by the length of the analysis window to obtain the energy location
descriptorELD. Note that the group delay can be calculated effi-
ciently by

gd(k) =− real
Xt(k)X∗(k)
|X(k)|2

, (3)

whereXt(k) is the DFT of the signal using a time weighted analysis
window [5].

The time duration of a signal as defined in [6] is the standard
deviation of the time with respect to the mean time interpreting sig-
nal energy as distribution. For discrete spectra it can be obtained by
means of

T =

√
∑k(A′(k)2 +(gd(k)− t̄)2)|X(k)|2

|X(k)|2
, (4)

where the sum is performed over the spectral peak under consider-
ation. t̄ is the mean time of the signal related to the peak andA′(k)
is the frequency derivative of the continuous magnitude spectrum.
It can be shown thatA′(k) is the imaginary counterpart of the group
delay in eq. (3)

A′(k) =− imag
Xt(k)X∗(k)
|X(k)|2

. (5)

Similar to the mean time for classification we normalize the time
durationT by means of the window size to obtain the duration de-
scriptorDD.

As with mean time and time duration, the mean frequencyω̄

and the bandwidthB give a rough idea of the concentration of the
spectral density along the frequency grid. ConsideringL to be the
number of samples in the spectral peak then the normalized band-
width descriptorNBDcan be defined as:

ω̄ = ∑k k|X(k)|2

∑k |X(k)|2
, (6)

NBD =
B
L

= ∑k(k− ω̄)2|X(k)2|
L∑k |X(k)2|

. (7)

As for the duration the summation is done over all the bins in the
spectral peak.

2.2 Descriptor properties

For deriving the classification thresholds for the descriptors we rely
on the declaration of a worst case scenario. The related test signal
is a single AMFM-sinusoid in noise (SNR = 0dB) where both fre-
quency and amplitude change in a sinusoidal fashion. To resemble
natural vibrato signals, the period of the frequency modulation is
two times the period of the amplitude modulation. The characteris-
tics of the test signal are:
• for amplitude modulation: modulation index 0.5,
• for frequency modulation: 200 Hz of frequency deviation.

The analysis window is a 50ms Hanning window and the fre-
quency modulation period is 100ms. For calculating the DFT we
use 4096-point FFT with the sample rate being 44100Hz. This sce-
nario roughly reproduces the analysis conditions for the tenth har-
monic of a 333Hz pitch tone under half tone vibrato extent.

In the initial investigation only the two classes, noise and sinu-
soids, have been taken into account and all but the sinusoid peaks

have been considered to be noise. During the initial experiments we
found that the noise distributions of the descriptors would change
with the SNR. Further investigation revealed that this effect was due
to the presence of sinusoidal sidelobes in the noise region. Because
sidelobes should not be confounded with sinusoids or noise it was
necessary to introduce a further class for sinusoid sidelobes.

The descriptor distributions for the peak classes that have been
obtained for the test signal are shown in fig. 1. For the sinusoidal
distributions the descriptors were applied only to the largest peak
in the spectrum for a total of 1100 time frames. The noise distri-
butions were obtained by analyzing all the peaks in the DFT of a
white noise signal. To derive the sidelobe distributions we analyzed
all the sidelobe peaks of a stationary noise-free sinusoid. For ease
of comparison all distributions are displayed normalized such that
their maximum value is equal to one. As the threshold levels we are
going to determine aim to preserve fractions of the distributions,
this normalization does not affect the results.

After having defined our descriptors we will now shortly dis-
cuss the behavior of the descriptors when applied to the different
peak classes. The relations between the descriptor values and the
signal characteristics are very complicated and can be theoretically
explained only for the simple case of a constant amplitude chirp
signal. For signal peaks related to noise or complex modulated
sinusoids the behavior of the descriptors will be derived from the
distributions obtained experimentally.

Because∆ω is the frequency location (in bins) of the center of
gravity of the band limited signal related to bink of a DFT spec-
trum, its minimum, which is theFCD, will always be below 0.5.
For the distribution of theFCD of sinusoidal peaks depicted in
fig. 1 we observe that the distribution remains limited below 0.5
even for the amplitude and frequency modulated signal used in the
worst case scenario. For the noise peaks the distribution is centered
around 0 with nearly linear falloff up to 0.5 while the distribution
for sidelobe peaks is nearly uniform over a large frequency range
(not completely displayed). According to the observed distribution
we expect that theFCD achieves a good sidelobe detection but only
limited performance for distinction between sinusoids and noise.

TheELD is similar to the mean time and will be close to zero
for constant amplitude chirp signals. For amplitude modulation the
ELD may increase. However, due to the normalization, its magni-
tude is always below 0.5. The signals corresponding to isolated
sidelobes are not limited to the duration of the analysis window
but are confined to the region of the zero-padded analysis window.
Therefore, the mean time extends over larger range (not displayed).
Due to the strong variations of theELD distribution for sinusoidal
peaks with the modulation parameters, it is hard to expect a good
performance for discrimination between sinusoids and noise. Nev-
ertheless, we expect that this descriptor achieves a good detection
of sidelobe peaks.

Considering theDD we know that for constant amplitude chirp
signals it will always be close to the duration of the analysis win-
dow itself. For amplitude modulation theDD distribution of the
sinusoidal peaks will spread and move its center thus covering a
considerable part of theDD distribution of the noise peaks. As ex-
plained in the discussion of theELD sidelobe related signals ex-
tend outside the analysis window and therefore have systematically
a larger value of DD than noise and sinusoids. Accordingly the
DD will achieve a very good discrimination of sidelobes. While
the worst case signal appears to allow fairly good distinction be-
tween sinusoids and noise the modulation dependency of the dis-
tribution center does not allow very strict placement of the classifi-
cation thresholds such that theDD achieves approximately similar
discrimination between sinusoids and noise as theFCD.

The NBD descriptor can be viewed as a measure of the noise
energy in the neighborhood of a sinusoidal spectral peak. Its per-
formance can be explained in terms of the relation between the peak
bandwidth and the total peak regionL. The theoretical investigation
of theNBD is very complicated even for the relatively simple case
of constant amplitude chirps. The experimental investigation of the
NBD distributions for modulated noise free sinusoidal peaks and
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Figure 1: Distributions for peak descriptors used.

for noise peaks has shown that these distributions do not overlap
at all making them a very good candidate for sinusoidal and noise
classification. With increasing noise level in the sinusoidal signal
the tail of the sinusoidalNBDdistribution is moving right and over-
laps slightly with theNBD noise distribution. To characterize the
robustness of the descriptor with respect to noise we also have in-
vestigated into the dependency between classification errors for sta-
tionary sinusoids in noise as a function of the SNR. We used the
maximum value of the sinusoidalNBD descriptor as classification
threshold (0% classification errors for the sinusoidal peaks) and did
allow 5% classifications errors for the noise peaks. The error rates
are achieved for an SNR that keeps the noise floor -15dB below the
sinusoidal peak. Due to amplitude and frequency modulation in the
worst case scenario studied here the overlap is slightly larger but
remains small compared to the overlap obtained for all the other de-
scriptors. For sidelobe classification theNBDwill only achieve low
performance.

3. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed descriptors a prelimi-
nary binary decision tree for the peak classification has been estab-
lished as follows: in the first level a sinusoidal and non-sinusoidal
classification is performed. Then in the second level the non-
sinusoidal peaks are classified into sidelobes and noise. The thresh-
olds for both levels of classification have been obtained by means of
analyzing the distributions shown in fig. 1. Because we have been
interested to achieve nearly perfect sinusoidal detection we have
set theNBD for the threshold classification such that 10% of noise
peaks are misclassified. To exclude the sidelobes below theNBD

threshold we require as second condition that theDD lies below a
threshold such that no sidelobe peak is classified as sinusoid. The
selected thresholds are listed in table (1). For our worst case signal
we achieve less than 1% misclassification of sinusoidal peaks. Be-
cause sidelobe and sinusoidalDD distribution do hardly overlap the
DD threshold need not be adapted to the signal at hand. The adapt-
able parameter for the first level of the decision tree is theNBD
threshold. This threshold can be simply determined as a function
of the noise classification error. Because the noise distribution does
not change with the spectral envelop of the noise it can be rapidly
created for a given window size and type and theNBD threshold
can be automatically selected according to the noise classification
error requested by a user. The thresholds shown in table (1) for the
second level of the classification scheme have been selected accord-
ing to fig. 1 such that each threshold achieves approximately similar
classification error when distinguishing between noise and sidelobe
peaks. The thresholds depend only weakly on the signal and can be
kept constant for most applications.

The selected thresholds have been used to classify a number of
artificial and real audio signals. Due to space constraints, we will
present only one result of the algorithm applied to a real audio sig-
nal. The signal is a flute signal with vibrato taken from the Iowa
University Database. We use this example to compare the proposed
classification method to the correlation method mentioned in the in-
troduction. In order to make the comparison meaningful, we have
adjusted the thresholds for the correlation method such that for the
worst case scenario signal it achieves the same percentage of sinu-
soidal peaks correctly classified.

In the top part of fig. 2 the spectrogram of the original signal is
shown. Below it the classified spectrograms for both methods are
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Figure 2: Flute vibrato signal: spectrogram (top), peaks classi-
fied by correlation (center), peaks classified by new descriptors
(bottom). In the classified spectra the bins of all peaks are col-
ored indicating the classification results as follows: white=sinusoid,
black=noise, gray/orange=sidelobe.

sinusoid/non-sinusoid: NBD≤0.17 & DD≤0.18

sidelobe/noise: DD≥0.28‖FCD≥0.35‖ELD≥0.25

Table 1: thresholds for sinusoid/nonsinusoid detection in level 1
and for sidelobe/noise classification in level 2 of the binary decision
tree.

drawn. The advantage of our approach (bottom) is evident. The bad
performance of the correlation method can be explained by means
of the distribution of the correlation descriptor for sinusoidal and
noise peaks. To reliably detect peaks related to non stationary si-
nusoids the threshold for the correlation based descriptor has to be
extended that much that nearly all noise peaks are considered sinu-
soids. Refined investigation showed that the results of the proposed
method are always superior or equal to the correlation-based ap-
proach.

4. CONCLUSIONS

In this paper we have presented new descriptors for the classifica-
tion of spectral peaks and have described preliminary results com-
paring the new classification method with a correlation-based ap-
proach. We have shown that the proposed descriptors achieve sig-
nificantly better classification than the correlation-based descriptor
if the signal contains only non-stationary sinusoids. The thresholds
can be automatically adapted as a function of the desired noise clas-
sification error. Further investigation will be concerned with the
use of the descriptors to obtain higher level features as for example
voiced/unvoiced time frequency sections and partial tracks.
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