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ABSTRACT

Sinusoidal modeling has been successfully applied to a wide
range of audio signal processing problems, such as coding or time
and frequency stretching. While many methods have been pro-
posed for the analysis part of the process, it seems that there is
some general agreement concerning the synthesis part in the non-
overlapping case: It is very often achieved by using the well-
known McAulay-Quatieri method, which consists of an order 3
polynomial reconstruction of the phases of the sinusoidal model
partials. In this paper, we compare this “classical” approach with
both a simpler (order 1, that is linear interpolation) and a more
complex (order 5) polynomial model for phase interpolation of
quasi-harmonic signals. A gain has been measured in the signal-
to-noise ratio at the synthesis stage, although the performance is
limited by the amplitude model and by the imprecision in the anal-
ysis stage.

1. INTRODUCTION

Sinusoidal modeling of audio signals has been extensively studied
since the eighties and successfully applied to a wide range of audio
signal processing problems, such as coding or time and frequency
stretching [1, 2, 3, 4, 5]. The principle is to represent the signal as
the sum of a small number P of sinusoids, given by:

s(n) =
P

∑
p=1

Ap(n)cos
(

θp(n)
)

(1)

with θp(n) = θp(0)+
n

∑
k=0

ωp(k) (2)

The parameters of the model, respectively the amplitudes Ap(n),
phases θp(n), and (digital) frequencies ωp(n) (expressed in ra-
dians per sample) are (slowly) evolving with time. An analysis-
synthesis system based on such a model requires the measurement
of the parameters on adjacent / overlapping frames of signal and
then the interpolation of the measured parameters to reconstruct
the signal. While many methods have been proposed for the anal-
ysis part of the process (e.g. pick-peaking techniques on FFT
spectrum in [1, 2] or minimum mean square error (MMSE) based

analysis by synthesis in [3]), it seems that there is some “general
agreement” concerning the synthesis part in the case where non-
overlapping synthesis frames are used: It is generally achieved by
using the well-known McAulay-Quatieri method [1], which con-
sists of an order 3 polynomial reconstruction of the phases of the
sinusoidal model partials1. The aim of this paper is to compare
this “classical” approach with both a simpler (order 1, that is lin-
ear interpolation) and a more complex (order 5) polynomial model
for phase interpolation. A quadratic phase model has been pro-
posed by Ding and Qian in [6], while they have pointed out some
drawbacks of the order 3 model. To our knowledge, the order 5
polynomial phase model has never been presented in the litera-
ture, while it presents a priori the advantage of better taking into
account the evolution of the frequencies. This becomes possible
because we are now able to measure the frequency derivative to-
gether with the phase and frequency during the analysis process
[7, 8]. On the contrary, the order 1 (linear) model is simpler and
would allow computational cost reduction in the systems. This pa-
per reports the preliminary results that were obtained in the case of
quasi-harmonic audio signals. This paper is organized as follows.
In the next section, the three phase models are presented. Then the
experiments are described in Section 3 and the results are given in
Section 4 and discussed in the conclusion.

2. THE MODELS

The McAulay-Quatieri model for phase reconstruction of each sig-
nal partial2 between the k-th and (k + 1)-th synthesis frames con-
sists of an order 3 polynomial, given by:

θ(n) = θk +ωkn+αn2 +βn3 (3)

where θk and ωk respectively denote the phase and frequency of
the partial measured at the junction of synthesis frames k and k+1
(which is chosen as the local origin n = 0). Assuming

1Amplitudes are generally linearly interpolated and we maintain this
point in this paper.

2For simplicity sake, the partial subscript has been omitted in the fol-
lowing equations.



2003 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 19-22, 2003, New Paltz, NY

1. continuity of the phases and frequencies – which are the
derivatives of the phases – at frame junctions,

2. unwrapping of the phase with a “maximally smooth” con-
straint on the phase model

leads to the model parameters α and β, given by:
[

α
β

]

=

[

3/N2
−1/N

−2/N3 1/N2

]

·

[

θk+1
−θk

−ωkN +2πM
ωk+1

−ωk

]

(4)
where N is the size of the synthesis frame, and M is the “phase
unwrapping” integer factor given by:

M = e

[

1
2π

(

(θk
−θk+1)+(ωk +ωk+1)

N
2

)]

(5)

where e[x] denotes the nearest integer from x.
As mentioned above, this model ensures the continuity of the

phases and frequencies at the frame junctions, but does not ensure
the continuity of the frequency derivatives. Now, we suppose that
we can also estimate the frequency derivatives at frame bound-
aries. In order to better take into account the frequency evolution
of the partials, we propose to add the frequency derivatives con-
tinuity constraint, and to study the corresponding order 5 polyno-
mial phase model, which is given by:

θ(n) = θk +ωkn+
ψk

2
n2 +αn3 +βn4 + γn5 (6)

Note that, compared to the order 3 model, the first and second co-
efficients, respectively θk and ωk do not change, since they still
respectively represent the phase and phase derivative at n = 0. We
denote by ψ the derivative of the frequency ω, that is the second
derivative of the phase θ. Its value at n = 0 is ψk. The other con-
straints of the model on phase and frequency at the frame junction
are in this case:

θ(N) = θk +ωkN +
ψk

2
N2 +αN3 +βN4 + γN5 = θk+1 +2πM (7)

ω(N) = θ̇(N) = ωk +ψkN +3αN2 +4βN3 +5γN4 = ωk+1 (8)

The additional constraint on the frequency derivative is given by:

ψ(N) = θ̈(N) = ψk +6αN +12βN2 +20γN3 = ψk+1 (9)

Solving the system of Equations from 7 to 9 leads to:

[ α
β
γ

]

=





10/N3
−4/N2 1/(2N)

−15/N4 7/N3
−1/N2

6/N5
−3/N4 1/(2N3)





·





θk+1
−θk

−ωkN −
ψk

2 N2 +2πM
ωk+1

−ωk
−ψkN

ψk+1
−ψk





(10)

The α, β, and γ coefficients can then be replaced in the expression
of θ in Equation 6. For the order 5 model, M is then calculated
by using the same criterion that the one used in [1], that is the
maximal smoothing of the energy of the second derivative of the
phase (ψ = θ̈), by choosing the M that minimizes the function:

f : M 7→

� N

0
(ψ(n))2dn (11)

In this case, we obtain:

M = e

[

1
2π

(

(θk
−θk+1)+(ωk +ωk+1)

N
2

+(ψk
−ψk+1)

N2

40

)]

(12)

Finally, we also implemented for comparison a linear phase
model (order 1 polynomial) given by:

θ(n) = θk +
θk+1

−θk +2πM
N

n (13)

with M given by Equation 5.

3. EXPERIMENTS

We have conducted series of tests for the three phase model orders
on both synthetic and natural sound signals. The advantage of the
synthetic signals is that, for each partial p, the phase φp, frequency
ωp, and frequency derivative ψp are known analytically, together
with its amplitude Ap. These synthetic examples are tools for the
investigation of the theoretical limits of the different order models
in case of ideal analysis. For the natural sounds, these parameters
were estimated using two analysis methods. The first one is pitch-
synchronous (PS), whereas the second one is not.

3.1. Synthetic Examples

For all the synthetic examples, the sampling frequency is Fs =
44100 Hz (in the remainder, we denote by Ts = 1/Fs the sampling
period), the width of the synthesis frames is N = 64, and the total
length of the sound in samples is L = 1000N. All these examples
are harmonic sounds, made of P = 20 partials. The signals are
also quantified using 16-bit precision, thus resulting in CD-quality
sound examples.

We have chosen θp(0) = 0, and we have ψp(n) = ω̇p(n). The
expressions of the frequency ωp and amplitude Ap have then to be
defined for each example.

The first example is a perfectly stationary sound, where the
fundamental frequency is F0 = 440 Hz and:

Ap = 1/P and ωp = p2πTsF0 (14)

The second example contains only linear variations. The am-
plitude is fading out while the fundamental frequency is raising
(portamento from F0 = 440 Hz to 2F0):

Ap(n) = (1−n/L)/P and ωp = p2πTsF0 · (1+n/L) (15)

It is clear that – unlike the previous examples – sinusoidal evo-
lutions cannot be perfectly approximated by polynomials of finite
degrees. The third example shows sinusoidal evolutions for the
frequencies (vibrato), where the mean fundamental frequency is
again F0 = 440 Hz, and the vibrato depth and rate are respectively
F1 = F0/2 and Fv = 8 Hz:

ωp(n) = p2πTs (F0 +F1 sin(2πFvTsn)) (16)

The vibrato (sinusoidal variation of the fundamental frequency)
was tested with and without tremolo (sinusoidal variation of the
amplitude). Without tremolo, the expression of Ap is the same as
in the constant case (see Equation 14). In the presence of tremolo,
with a mean amplitude of a0 = 0.5, and a tremolo depth and rate
respectively set to a1 = a0/2 and Ft = 8 Hz, we have:

Ap(n) = (a0 +a1 sin(2πFtTsn))/P (17)

The results obtained on these synthetic – but related to musical
evolutions of the frequency and the amplitude, thus significant –
examples can be found in Table 1. In this table, the signal-to-
noise ratio (SNR) measures the energy ratio between the original
signal so and the residual part (noise) obtained by subtracting the
re-synthesis sr from the original:

SNR(so,sr) = 10 log10

(

∑
n

so(n)2/∑
n

(so(n)− sr(n))2
)

(18)
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synthetic examples 1 3 5
constant ∞ ∞ ∞

linear 47.19 ∞ ∞
vibrato only 18.95 99.23 ∞

vibrato+tremolo 19.20 76.21 76.23

Table 1: SNRs in dB obtained on synthetic examples for the three
phase models.

The infinite symbol means that the two signals – original and re-
synthesis – are identical (we reached the limit of the precision of
16-bit quantization for every sample). However, it is important
to note that the SNR is an imperfect perceptual metric. Since the
SNR does not necessarily correlate with human perception, listen-
ing tests might have to be conducted in the near future. The case of
constant parameters is perfectly handled by the three phase mod-
els, whereas linear evolutions (phase of order 2) require a polyno-
mial order strictly greater than 1. The order 5 phase model better
handles the sinusoidal evolutions of the frequency, and it is clear
that the synthesis quality increases significantly with the phase
model order in all cases of Table 1, except for the vibrato+tremolo
case where the linear (order 1) interpolation we use for the am-
plitude within the synthesis frame is a bottleneck and should be
enhanced (for example by an order 3 polynomial, provided that
we can also estimate the derivative of the amplitude, see [7]).

3.2. Natural Sound Examples

We conducted experiments on a variety of quasi-periodic signals
such as voiced speech and music (pieces of guitar and bass) orig-
inally sampled at 44100 Hz. The harmonic hypothesis was used,
and for each frame k the frequencies ωk

p are multiple of the fun-

damental ωk
0 – more precisely, we have ωk

p = pωk
0 in Equation

2. Compared to the general case, this allows us to test the phase
model without interfering with problems such as those encoun-
tered with the tuning of the partial tracker that is in charge of en-
suring the continuity of the partial trajectories [1, 4]. In the har-
monic case, harmonics of the same rank are simply connected to
each other across the frames.

The experiments described in this paper were conducted in
two analysis-synthesis conditions: pitch-synchronous (PS) or not.

3.2.1. Pitch Synchronous Analysis

In the PS condition, the signals were re-sampled at 10 kHz and
pitch-marked previously to the analysis-synthesis process. This
means that each period of signal was (semi-automatically3) time-
labelled so that the analysis-synthesis process was conducted on
successive periods of signal. The amplitudes and phases of the
harmonics were estimated for each period of signal by using the
procedure used by George and Smith in [3]. The estimation is
based on a classical MMSE fitting of the harmonic model with the
signal and it has been shown to provide very accurate parameter
estimation. However, it requires to estimate first the fundamental
frequency of the signal and the parameters estimation performance
is quite dependent of the fundamental estimation. Exploiting the
pitch-mark information, the fundamental was here directly given
by the inverse of the period. For the order 5 polynomial phase
model, the frequency derivatives were directly estimated in this
preliminary study by taking the difference between two consec-
utive values of the frequency. Though quite coarse compared to
much more sophisticated estimation algorithms (see below), this

3Semi-automatically refers to manual verification and minor local cor-
rections after automatic extraction.

natural samples (PS) 1 3 5
speech (male) 21.15 23.55 23.87

speech (female) 25.75 27.52 27.83
singing voice 20.14 20.39 20.42
bass (short) 10.83 12.04 13.91
bass (long) 12.98 14.79 15.47

cello 18.00 19.24 19.67
electric guitar 10.83 12.04 14.39

Table 2: SNRs in dB obtained for different signals and the three
tested phase model polynomial orders (PS analysis method).

procedure was justified in the PS condition where the parameters
related to frequency are estimated from each period of signal.

3.2.2. Non Pitch Synchronous Parameter Estimation

Besides the pitch synchronous parameter estimation which is only
suitable for monophonic sound signals, a more general analysis
method estimating the partial parameters from the individual peaks
has been used. To be able to evaluate the synthesis quality without
having to solve the problem of partial tracking we still assume the
sound sources to be harmonic and simply take the largest peak
in a range of ±0.4F0 around the theoretical partial frequency to
estimate the partial parameters.

The frequency and frequency derivative (slope) of the partial
related to individual spectral peaks is estimated relying on a recent
reassignment technique [8]. Based on the frequency trajectory the
optimal amplitude and phase can be derived by minimizing the er-
ror when the partial is subtracted from the signal. The fact that
the frequency slope is considered for amplitude estimation signif-
icantly reduces the amplitude error for non stationary partials. For
the current experiments we use a fixed window size of at least 5
periods of the minimum F0 observed in the sound signal.

4. PRACTICAL RESULTS

Different speech and music signals4 were processed through the
analysis-modeling-synthesis process in the two (PS or not) condi-
tions (see above) and with the three different polynomial orders for
phase reconstruction. Speech signals consisted in continuous non-
sense sentences with only voiced sounds (vowels and voiced/liquid
consonants) uttered by a French male speaker and a female Amer-
ican English speaker. The two speakers were asked to produce
sequences with a great range of fundamental variation. A piece
of singing male voice was also tested with a quite more limited
range of ω0 values (3 notes). Musical signals consisted in pieces
of electric and bass guitars. These pieces are solo performances
by renowned “Metal” and Jazz musicians, and a large dynamic in
ω0 is guaranteed. Results are given in Table 2, in terms of signal-
to-noise power ratios, where the noise is defined as the difference
between the original and modeled signal.

The results of Table 2 indicate that the performances are in-
creasing with the order of the polynomial phase model. The gains
obtained by the proposed order 5 model over the classical order
3 model are approximately 0.3 dB for the speech signals, 0.7 dB
for the bass and 2.3 dB for the guitar. The gain is very small for
the singing voice (0.03 dB), reflecting the correlation between the
increasing of the gain with the model order and the ω0 dynamic of
the signals. Indeed, the instrumental signals have the most impor-
tant fluctuations in ω0, then come the speech signals and then the
singing – but quite stable – voice.

4URL: http://dept-info.labri.fr/˜sm/WASPAA03/
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Figure 1: Examples of frequency trajectories within one synthesis
frame. The order 1 phase model leads to a constant frequency
(dashed); the order 3 model makes the frequency appear as a
parabolic segment (dash-dotted), while the order 5 model is more
flexible (plain).

Note that the SNR values for the instruments, which are quite
low compared to the SNR values obtained with the speech sig-
nals, are due to the lower “voicing quality” of the signals. Some
noise components (due to the friction the bow for the cello and
the electric guitar distortion) may not be efficiently captured by
the harmonic model. However, despite the extended range of SNR
values across the different kinds of signal, it must be underlined
that all synthesized signals were perceptually quite close to their
corresponding originals.

Finally, it can be mentioned that the order 1 (linear) model log-
ically provides the lowest performances (and except for the guitar
piece, the SNR difference between order 1 and order 3 is always
significantly larger than the SNR difference between order 3 and
5). However, it has the advantage of computational simplicity and
may provide sufficient quality in the case of signals with small ω0
dynamic as illustrated by the results on the singing voice signal.

Examples of the behavior of the frequency within a synthesis
frame for the three phase models are illustrated in Figure 1.

The same experiments were then conducted with the non pitch
synchronous analysis method (see Section 3). Very similar results
were found, as shown in Table 3. Again, the bass guitar (short
extract) was analyzed – using two different analysis window sizes
– as well as the cello. Note that the SNR values for the non PS case
are smaller due to the fact that a larger analysis window and frame
offset have been used. Moreover, the non PS analysis restricts the
model to the harmonic part of the signal whereas the PS analysis,
due to its reduced frequency resolution, will model the noisy part
of the sound using the harmonic model too, which may lead to
artifacts during sound manipulation.

Of course, the results are sensitive to the analysis method used
for the extraction of the model parameters. That is the reason why
we repeated our comparison of the phase models on two different
analysis methods.

The fact that the order 5 phase model does not significantly
increase the SNR might be – similar to the case of the synthetic
sound with amplitude modulation – due to the fact that the per-
formance is limited by the linear amplitude interpolation. This
hypothesis will be investigated in further experiments.

natural samples (not PS) 1 3 5
bass (short, small window) 8.39 9.25 9.44
bass (short, large window) 8.71 9.56 9.76

cello 16.35 16.92 17.02
violin 17.68 17.91 17.94

Table 3: SNRs in dB obtained for different signals and the three
tested phase model polynomial orders (non PS analysis method).

5. CONCLUSION

In this paper, the problem of phase interpolation by polynomial
modeling for audio signal synthesis was studied. It was shown
that, compared to the classical order 3 model, an order 5 model
can afford a performance gain that may be significant in the con-
text of high-quality synthesis of quasi-harmonic signals with no-
table fundamental dynamic (a SNR improvement from 0.5 to 2 dB
was reported for such signals). This gain is obtained at the price of
an increased complexity in terms of calculation and also parame-
ter estimation: frequency derivatives must be estimated since they
provide the additional information on harmonic trajectories. Per-
spectives generally concern a more global study that would con-
nect more in details the analysis process with the synthesis quality.
As a special point, the importance of frequency derivatives estima-
tion may be precisely studied. Also, the comparison of the model
orders in the case of signal transformations such as pitch and/or
time scaling should be conducted in the near future. An enhanced
model for the amplitude parameter has to be investigated as well.
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