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Abstract

The following paper deals with the estimation of partial
parameters for non stationary sinusoids. First the existing
bias for the analysis of non stationary sinusoids in a stan-
dard estimator is discussed. Then a new approach to bias
reduction is proposed that consists of frequency slope esti-
mation and demodulation to reduce the bias of the standard
parameter estimator. The new approach does not require the
use of Gaussian analysis windows. We present an experimen-
tal evaluation that compares the new parameter estimation
scheme with previously existing methods. The results demon-
strate that the bias is significantly reduced to a level that is
similar or lower than the bias that exists for Gaussian analy-
sis windows. The parameter range for which significant bias
reduction can be achieved is increased.

1 Introduction
The sinusoidal or additive signal model is widely used

for signal analysis and/or signal transformation of speech and
music sound signals (Amatriain, Bonada, Loscos, and Serra
2002). The estimation of the sinusoidal parameters (ampli-
tude, frequency and phase) from the spectral peaks of the
Fourier transform of the signal is more or less straightfor-
ward as long as the sinusoids are stationary. For non station-
ary sinusoids the parameter estimation is significantly more
difficult. It is known that the standard algorithm for station-
ary sinusoids provides results with non negligible bias and a
number of algorithms have been proposed to solve this prob-
lem. Nearly all of these algorithms rely on the fact that the
analysis window is approximately Gaussian such that ana-
lytic investigation becomes tractable (Marques and Almeida
1986; Peeters and Rodet 1999; Abe and Smith 2005). For
non Gaussian windows (Abe and Smith 2005) proposes a lin-
ear adaptation of the bias correction functions that originally
were derived for a Gaussian window. Complete non station-
ary parameter trajectories can be obtained with an adaptive
algorithm (Röbel 2006). Unfortunately the adaptive proce-
dure is extremely costly.

The following article investigates into a new strategy to
reduce the estimation bias of the standard estimator. Follow-
ing the argumentation below the frequency slope is the key to
bias removal. If the frequency slope is properly estimated it

can be used to demodulate the spectral peak under investiga-
tion such that the standard estimator can be applied. There-
fore, we propose to use the approximate frequency slope es-
timator of (Abe and Smith 2005) to estimate the frequency
slope and use the demodulation scheme and then the standard
sinusoidal estimator to find the fundamental sinusoidal pa-
rameters. Note, that for a sinusoidal signal model, the slope
parameters are generally not required, because the parameter
variations are automatically created by means of interpolation
of the parameters of subsequent frames.

The organization of the article is as follows. In section 2
we will argue that the bias of the standard estimators is related
to the frequency slope, only. In section 3 we will describe the
frequency slope estimator to be used as well as the demodula-
tion scheme. In section 4 we present the experimental results
and in section 5 we conclude with an outlook on further im-
provements.

2 Estimation bias
The signal model that will be used in the following as-

sumes a linear evolution for amplitude and frequency trajec-
tories. Accordingly a discrete time sinusoid can be repre-
sented as

s(n) = (A + an) exp(i(φ + ωn + Dn2)). (1)

Here A is the mean amplitude of the signal and a is the am-
plitude slope. φ is the phase of the sinusoid at time n = 0, ω
is its mean frequency and D is the frequency slope.

Assume that the analysis window is positioned such that
its center is located at time 0. The ideal estimator should
provide (A,ω, φ) as estimates for amplitude frequency and
phase. As mentioned already we will not be concerned with
the estimation of the amplitude slope because in a piecewise
linear amplitude trajectory model the frame center amplitude
values are sufficient to completely describe the amplitude tra-
jectory.
As standard sinusoidal parameter estimator we consider the
quadratically interpolating (or QIFFT) method summarized
in (Abe and Smith 2005). This standard estimator has two
sources of bias, first the use of a second order model for inter-
polating the spectral bins is systematically wrong for all but
Gaussian windows and exponential amplitude evolution. This
interpolation bias can be reduced by means of zero padding



the analysis window. The second source of bias is related to
the fact that for the sinusoidal model eq. (1) the selection of
the amplitude maximum of the second order amplitude inter-
polation will create biased estimates for phase and amplitude
whenever the frequency slope D 6= 0. The frequency esti-
mate will be biased only if frequency and amplitude slope are
non zero. This result has been shown for Gaussian windows
in (Peeters and Rodet 1999). By means of simple symmetry
considerations we may prove that similar relations hold true
for all symmetric analysis windows.

Consider the use of the continuous Fourier transform (FT)
and the case D = 0. For this case it can be easily seen that
due to the constant frequency the peak maximum will always
be located at the frequency ω of the sinusoid. The sinusoid in
eq. (1) can now be split into two sinusoids one with constant
amplitude (a = 0) and the other with average amplitude being
zero (A = 0). The FT of the first part provides the desired
values A and φ when evaluated at frequency ω. The FT of
the second part, due to anti-symmetry of the amplitude, will
be zero. Therefore the FT provides correct estimates for all
parameters as long as D = 0. For additive modeling the bias
related to phase an frequency seems particularly important
because as long as phase an frequency are properly selected
the DFT amplitude will produce a minimum energy residual
even if the amplitude evolution does not match the model.
A real match between amplitude model and the signal will
rarely be the case for real world audio signals.

As a consequence we can conclude that we may apply the
standard estimator whenever D = 0. If D 6= 0 the argu-
ments no longer apply and in this case the standard estimator
is biased.

3 Reducing the bias
From the preceding section we conclude that a conceptu-

ally simple approach to the estimation of non stationary pa-
rameters can be performed using two steps:

1. estimate the frequency slope related to a spectral peak

2. demodulate the sinusoid that is related to the spectral
peak and use the QIFFT estimator to find the ampli-
tude, phase, and frequency parameters.

Frequency slope estimation: Most of the available frequency
slope estimators assume that the analysis window is Gaus-
sian. To our knowledge the simplest existing frequency slope
estimator that can be used for signals with amplitude modu-
lation and that can be adapted to work for all window types
is the frequency slope estimator proposed in (Abe and Smith
2005). Therefore, we will use this slope estimator to obtain
the frequency slope.

The estimator is based on a closed form mathematical
analysis of the DFT of a sinusoid with linear FM and expo-
nential AM using a Gaussian window. In the original paper it
is shown that both, the resulting log amplitude spectrum and

the phase spectrum have a quadratic form. If the quadratic
form of the unwrapped phase is

P (w) = apw
2 + bpw + cp (2)

and the quadratic form of the log amplitude spectrum is

A(w) = aaw2 + baw + ca (3)

then the frequency slope estimate is simply

D̂ =
ap

2(a2
a + a2

p)
, (4)

where (̂) denotes an estimated quantity. The quadratic forms
are simply obtained from the QIFFT model. It is interest-
ing to note that while the above estimator has been derived
for exponential amplitude evolution the same equations have
been obtained in (Peeters 2001) by means of second order
approximation of the log amplitude and phase spectrum for
linear amplitude modulation as in eq. (1). Because the esti-
mator does not change after a significant change of the model
it seems to be a good choice for real world applications where
a proper amplitude evolution cannot be expected.

Hanning Hamming Blackman
ζ1 0.995354 0.995258 0.997809
ζ2 0.169257 0.132051 0.103745
ζ3 1.393056 1.285090 1.210194
ζ4 0.442406 0.343335 0.230884

Table 1: Correction factors for the different analysis windows
(extracted from (Abe and Smith 2005)).

To obtain an estimator for other window types Abe and
Smith propose to adapt the estimator taking into account the
interpolation error due to the limited DFT sampling and the
estimated amplitude decay factor α̂ of the exponential ampli-
tude model. If we denote by ∆ the frequency offset between
the maximum of the quadratic form of the log amplitude spec-
trum and the next bin position in rad then the adapted fre-
quency slope estimation formula is

α̂ = − aabp

(a2
a + a2

p)
(5)

ˆ̂α = α̂(ζ1 + ζ2∆2) (6)
ˆ̂
D = ζ3D̂ + ζ4∆ˆ̂α. (7)

Note, that the samplerate used to calculate ∆ needs to be nor-
malized. We only reproduce the adapted estimation formulas
for the frequency slope here, for the complete set of formu-
las we refer the reader to Abe and Smiths original article. The
factors ζi, that have been given by Abe and Smith are repeated



in table (1). They have been found by means of multiple re-
gression analysis using randomly selected sinusoidal param-
eters using distributions that are said to reasonably match pa-
rameters for audio signals. The limiting value of the exponen-
tial amplitude rate achieves about 30% of amplitude change
within a window duration, which can be considered sufficient.
With respect to the frequency slope the selection has been a
bit more restrictive. With the analysis parameters that have
been used in (Abe and Smith 2005) the maximum frequency
variation over an analysis window of length M is confined to
about ≈ 1

M . Taking into account that the observed frequency
slope increases linearly with the partial order this limit is not
sufficient to model higher order partials in audio signals. Due
to the nonlinear relations between the optimal estimators for
the different types of windows this limit cannot be extended
without an improved modification scheme in eq. (5-7).

Demodulation: Having obtained an estimate of the frequency
slope D we may construct a demodulator signal as follows

y(n) = exp(−Dn2). (8)

Multiplication of the signal in eq. (8) with the signal will
remove the frequency evolution. Note, however, that the de-
convolution of the whole signal is neither required nor helpful
because the signal we are interested in is observable only in
the mainlobe of the spectral peak.

The demodulation can be performed in the frequency do-
main using as sources the spectral peak to be analyzed and
the mainlobe of the deconvolution signal. The deconvolution
will in general not be exact because we can access only the
part of the sinusoid that is represented with its main spectral
peak - or even less due to the background noise. To compen-
sate the missing part of the observed peak we normalize the
result of the convolution by means of multiplication with

Z =
∑K−1

k=0 |Y (k)|2

|Y (0)|2 +
∑(Bl−1)/2

k=1 |Y (k)|2
. (9)

Here Y (k) is the DFT spectrum of the demodulator signal and
Bl is the minimum of the widths of the extracted peak and
the demodulator mainlobe. This normalization exactly com-
pensates for the spectral parts that are missing due to back-
ground noise. As a further means to increase efficiency we
pre-calculate demodulation kernels for a fixed grid of slope
factor and linearly interpolate these kernels to obtain the de-
modulation kernel that is required for the actual situation.
Note, that due to the fact that the observed spectrum of the
sinusoidal component is always confined to the main lobe the
convolution operation is rather cheap because we have to con-
volve to complex signals of the width of the spectral main
lobe only.

4 Experimental evaluation
The proposed parameter estimation procedure will be eval-

uated in comparing it to the existing methods based on a

Gaussian window (Peeters and Rodet 1999) (denoted as PR)
as well as the estimator using a Gaussian and a Hanning win-
dow as presented in (Abe and Smith 2005) (denoted as AS).
As mentioned above the AS and PR frequency slope estima-
tors are the same. All the other parameter estimators are dif-
ferent because of the different amplitude models involved.
We denote with DE the demodulating estimator that uses the
same frequency slope estimator as the two other methods.
The window type used will be indicated by adding the let-
ter G for Gaussian or H for Hanning to the estimator short-
cut. The Gaussian window that will be used is cut such that
it has a length of 8σ with σ being the standard deviation of
the Gaussian. The results of the QIFFT estimator are shown
as reference as well as the Cramer Rao bounds for second
order polynomial phase estimation that have been presented
in (Ristic and Boashash 1998). Note, however, that these
bounds have been found for constant amplitude polynomial
phase signals, such that they can not used to claim efficiency.

In the following experiments we use synthetic test sig-
nals with a single sinusoid according to eq. (1) with A = 1,
ω (normalized frequency) randomly sampled from a uniform
distribution over the frequency range of the central bin of the
spectrum, φ randomly chosen from a uniform distribution be-
tween [−π, π], and varying slopes a and D. The analysis
window contains M = 1001 samples and the size of the DFT
is N = 4096.

For the first experiment displayed in the left group in fig. 1
we randomly sample amplitude slopes from a uniform distri-
bution over the range a = [0, 1/(2M)] and we use frequency
slopes randomly sampled from a uniform distribution over
the interval [−0.5π/M2, 0.5π/M2]. These settings approxi-
mately reflect the range of values that have been used to select
the correction parameters in table (1). For the two pictures in
the right box in fig. 1 we explore the limits of the method by
setting a = 2/M and D = 4π/M using fixed amplitude and
random phase and frequency as before.

For brevity we summarize the results. For the constrained
parameter variation:

• amplitude and phase bias is largest for the ASH estima-
tor followed by the ASG estimator.

• QIFFT has lower bias then ASG and ASH because for
low frequency slope the bias due to the exponential am-
plitude model used in AS is larger then the bias due to
the frequency slope in the QIFFT..

• The DEH and DEG have significantly lower bias than
QIFFT. Here the bias due to D 6= 0 is nearly com-
pletely removed

• PRG is best for phase estimation and marginally better
the DEG for amplitude estimation.

• for frequency estimation QIFFT and ASH have largest
bias followed by DEH then DEG. The lowest bias is
present in PRG and ASG.

• for larger slopes the bias for ASH QIFFT ASG and
PRG increases much faster then for DEG and DEH.
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Figure 1: Comparison of the estimation errors for the different parameter estimators using window size M = 1001, DFT
size N = 4096, and sinusoids with weak (left) and weak (right) amplitude and frequency slope parameters. The CRB for
constant amplitude polynomial phase signals is displayed as lower limit. Algorithms using a Gaussian/Hanning window are
distinguished by means of solid/dashed lines. See text form more details.

• the low bias for large slopes for the DE method comes
with a marginally increased noise sensitivity.

5 Conclusions
In the present paper we have shown that an efficient bias

reduction strategy for estimation of sinusoidal parameters con-
sists in a frequency slope estimation, demodulation and appli-
cation of the standard QIFFT estimator. The procedure sig-
nificantly reduces the bias of the standard estimator and for
large slope values achieves lower bias then the approximate
Gaussian methods even with a Hanning window. The compu-
tational costs are sufficiently low such that real time estima-
tion of 30-50 sinusoids from audio signals can be achieved.
Using the demodulation estimator it is often possible to re-
duce the residual error for vibrato like real world signals by
up to 3dB. Further work consists in an improved nonlinear
bias compensation scheme for the frequency slope estimator.

The author would like to thank Geoffroy Peeters for pro-
viding the implementation of the reference method and Philippe
Depalle for a discussion that triggered the investigation into
the problem and the re viewers for their helpful comments.
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