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ABSTRACT

This article is concerned with the F0 tracking in monodic instrument solo recordings. Due to reverberation,
the observed signal is rather polyphonic and single-F0 tracking techniques often give unsatisfying results.
The proposed method is based on multiple-F0 estimation and makes use of the a priori knowledge that the
observed spectrum is generated by a single monodic instrument. The predominant F0 is tracked first and
the secondary F0 tracks are then established. The proposed method is tested on reverberant recordings and
show significant improvements compared to single-F0 estimators.

1. INTRODUCTION

Many single-F0(fundamental frequency) estimators
have been developed through the years. How-
ever, when it comes to analyzing solo recordings of
monodic instrument, most of which are recorded in
a reverberant environment, the results of most of the
single-F0 estimators are not satisfying. This comes
from the fact that reverberation extends the note du-
ration and makes the observed spectrum polyphonic.
However, a single-F0 estimator assumes that there
is only one F0 present in the observed signal. If the
algorithm does not make use of instrument models,
a single-F0 estimator often tends to favor a subhar-
monic which explains both the current note and the
reverberation of the preceding notes.

Several studies have tried to cope with the rever-
beration issue in monodic instrument solo record-
ings. In [1], instrument model priors and duration
priors have been included in a Bayesian inference
framework. The performance for transcribing solos
is promising but requires parameter tuning on prior
distributions. In [2] the authors adapt a double-F0
estimator (an extension of YIN [3]) to the task of
F0 tracking for monodic instrument recordings and
significant improvements for F0 estimation of rever-
berant sounds have been found. This encourages us
to treat this problem as a multiple-F0 tracking task.
Under the assumption that there is single monodic
instruments playing, the observed short-time spec-
trum can be modeled by a predominant harmonic
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source plus the reverberant parts of the preceding
notes and background noise. Therefore, we propose
to first decode the predominant F0 track from a
set of hypothetical F0 combinations and keep non-
dominant F0s for serving as continuity of predomi-
nant F0 tracks.

This paper is organized as follows. First, an
overview of the proposed method is introduced. In
section 2, a frame-based multiple-F0 estimation is
presented. For each analysis frame, multiple-F0 es-
timation provides a list of hypothetical F0 combina-
tions for the later tracking stage which is explained
in section 3. Lastly, testing examples are shown and
conclusions are drawn.

2. SYSTEM OVERVIEW

The proposed F0 tracking system is mainly com-
posed of three stages (Fig. 1). For each analysis
frame, multiple-F0 estimation provides the list of
the best-ranked hypothetical F0 combinations. F0
tracking can thus be considered as decoding the op-
timal path through the trellis structure form by the
hypothetical F0 combinations across the frames. As
the example shown in Fig. 2, multiple-F0 estimation
proposes at each frame a pre-fixed number of candi-
date combinations for each hypothetical number of
F0s (denoted as M). Each hypothetical combination
is denoted as {F0i

M,c} (where M ranges from 1 to
the estimated number of F0s, c ranges from 1 to the
pre-defined number of candidate combinations to be
considered) for the cth top-ranked candidate com-
bination at time i. We propose to decode first the
predominant F0 track based on individual F0 prob-
ability which is inferred from the multiple-F0 com-
binatorial properties. Then, the secondary F0s can
be tracked by extending the predominant F0 tracks.
In this article, we consider the secondary F0s to be
the results of the reverberation only.

Multiple
F0
estimation

Predominant
F0
decoding

Secondary
F0
tracking

Fig. 1: Overview of the F0 tracking system

3. MULTIPLE F0 ESTIMATION

In [4], we have proposed a frame-based multiple-
F0 estimation algorithm based on a generative poly-
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Fig. 2: Decoding the optimal multiple-F0 path

phonic signal model. The inference procedure is sim-
ilar to the Bayesian model proposed in [5]. However,
to prevent the huge computational requirements of
numerical likelihood maximization, a more prag-
matic approach is proposed to construct and eval-
uate hypothetical sources, which is guided by three
physical principles for nearly-harmonic sounds:

1. Spectral match with low inharmonicity

2. Spectral smoothness

3. Synchronous amplitude evolution within a sin-
gle source

These principles are formulated as four criteria: har-
monicity HAR, mean bandwidth MBW and centroid
SPC of Hypothetical Partial Sequences (HPS), and
the standard deviation of mean time of hypotheti-
cal partials SYNC. The four criteria together evalu-
ate the plausibility of each F0 combination, which is
proportional to the likelihood p(Oi|{F0i

M,c}) where

Oi denotes the observed spectrum at instant i. An
overview of the proposed multiple-F0 estimation is
shown in Fig. 3. The process is listed step by step
in the following.

i. Hidden partial extraction:
Extracting hidden partials is essential to in-
crease the accuracy of polyphonic signal analy-
sis since the resolution is necessarily limited. To
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Fig. 3: Multiple-F0 estimation

search for the potential spectral collision possi-
bly containing hidden partials, we evaluate the
shapes of the observed peaks and their spec-
tral properties using four descriptors [6]. This
allows selecting the possibly overlapped par-
tials which are then processed to extract hidden
peaks [7].

ii. Noise component estimation:
It is important to identify target components to
be explained by the generative nearly-harmonic
model and disregard the unwanted components.
In [8], we have developed an iterative algorithm
to estimate the noise level adapted to the ob-
served spectrum (see the example shown in Fig.
3), by which the noise peaks are classified. Dur-
ing the harmonic matching process in the later
stage, matches to noisy peaks are disregarded.

iii. Single-F0 candidate selection:
A harmonic matching technique is used to pro-
vide the single-F0 candidate list.

iv. Hypothetical Partial Sequence construction:
Constructing HPSs utilizes Principle 2 and
the knowledge of spectral locations where
partial overlaps may occur according to the
multiple-F0 combination under investigation.
We have developed a method for reassigning
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Fig. 4: Noise level estimation

overlapped partials [4], by which partials in
a HPS are classified as “effective” and “non-
effective”. The non-effective partials don’t have
specified amplitudes and are disregarded.

v. Scoring multiple-F0 combinations:
At this stage, a score function [7] is used to iter-
atively evaluate the plausibility of the number
of F0s starting from one. This iterative search
is stopped once the score improvement falls be-
low a threshold. The idea is simple: when
one source more than the true source number
is added in the model to explain the observed
spectrum, the score improvement should be lim-
ited.

The score function is defined as the linear com-
bination of four score criteria:

D = p1 ·HAR+p2 ·MBW+p3 ·SPC+p4 ·SYNC
(1)

where {pj}
4
j=1 are the weighting parameters for

the four criteria. Here we briefly summarize the
score criteria below:

HAR is an indication of harmonicity and to-
tally explained energy. To evaluate the smooth-
ness of the spectral envelope of a hypothetical
source, we use the mean bandwidth MBW and
the centroid SPC of a HPS. Due to partial
overlapping, the “non-effective” partials don’t
provide specific spectral amplitudes. To evalu-
ate MBW, we remove the “non-effective” par-

AES 120th Convention, Paris, France, 2006 May 20–23

Page 3 of 6



Yeh et al. F0 tracking of solo recordings

tials. To evaluate SPC, we reconstruct the
“non-effective” partial amplitudes by interpola-
tion. To evaluate the synchronicity of the tem-
poral evolution of the hypothetical partials, we
rely solely on the “effective” partials.

For each F0 hypothesis we define effective
weighting as the sum of linear amplitudes of “ef-
fective” partials. Then the individual properties
of the last three criteria are weighted by the ef-
fective weighting and then summed to define the
combinatorial properties.

Notice that HAR favors energy explanation of
the observed spectrum, while MBW, SPC and
SYNC work together as constraints to the hy-
pothetical spectral models. Therefore, the cri-
teria perform in a complementary way and the
weighting parameters have been optimized by
an evolutionary algorithm to balance the rel-
ative contribution of each criterion. To refine
precise F0 values, we apply a linear regression
of effective partial frequencies. An experimental
setup similar to [9] has been carried out, which
shows competitive performance [4].

vi. Iterative increase the number of F0s:
We propose an iterative search to infer the plau-
sible hypothetical number of F0s. The true
number of F0s is denoted as N , while the in-
ferred hypothesis is denoted as SM . Starting
with S1, the system iteratively evaluates the
score improvements of all possible hypotheses
{S1, . . . , SM , SM+1}, where SM+1 is the last hy-
pothesis. SM+1 provides a score improvement
(w.r.t. the score of SM ) under a threshold δ,
which leads to the termination of the iterative
evaluation. Then, the hypothesis SM is consid-
ered as the most plausible number of F0s in the
current frame. Therefore, the number of F0 is
inferred if SM = SN .

In order to obtain δ, we investigate the score im-
provement of the correct estimates evaluated on
our artificially mixed polyphonic database [4].
The score improvements of iterative F0 search
are shown in Fig. 5 for two-note, three-note
and four-note mixtures. While SM = N +1, we
observe that the score improvements are close
to zero. This means that an additional har-
monic source does not significantly improve the

likelihood of the underlying model. Based on
the observed score improvements, we model the
improvements of scores from SM to SM+1 by
means of Gaussian distributions. This serves
as a mechnism to stop the iterative search and
meanwhile defines the probability of the most
probable state. In the current implementation,
the threshold is set to include 85% of the correct
estimates from S4 to S5 in the four-note mix-
tures. This might result in some spurious F0s
when N < 4 but guarantee the inclusion of the
correct F0 combinations. The top-five ranked
hypothetical F0 combinations from M = 1 to
M = 4 are kept for the later tracking stage. We
are currently relating δ to the estimated noise
level.

4. TRACKING MULTIPLE-F0 TRAJECTORIES

After evaluating the plausibility of the most prob-
able F0 combinations {F0i

M,c}s, we start decoding
the optimal path for the trellis structure, guided by
two principles: local likelihood and temporal conti-
nuity. However, it is difficult to define the transition
probability between two hypothetical F0 combina-
tions with different Ms. Therefore, we propose to
decode the predominant F0 tracks first and the sec-
ondary ones, which are assumed to be mostly rever-
berant parts, can thus be tracked by evaluating their
combinatorial probability with the predominant F0s.

4.1. Predominant F0 tracking

For solo recordings of monodic instruments, the
predominant F0s clearly relate to the monophonic
melody line being played. As long as the reverber-
ation of preceding notes is less dominant than the
notes being played, taking the most significant F0
as the predominant F0 is generally accepted.

To track predominant F0s, we rely on the individ-
ual scores of F0 candidates. The individual score
is defined similarly to eq.(1) with the combinatorial
criteria replaced by the individual criteria, that is,
for each single-F0 candidate in one combination, the
missing information of “non-effective” partials is dis-
regarded. For each hypothetical number of F0s, the
individual score of a single F0 candidate is weighted
by the combinatorial probability (derived from the
relative score in the top-five ranked combinations)
to define the average individual probability. There-
fore, an F0 candidate appearing in the combinations
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Fig. 5: Score improvement observations for different number of F0s. x-axis represents the wave file number and

y-axis represents the score improvement.

with higher score is considered more important. The
individual probability is further averaged over differ-
ent hypothetical number of F0s. In such a way, the
plausibility of each F0 candidate among the most
probable combinations can be derived.

Given the individual probability as observations, the
best state sequence of predominant F0s is going to be
inferred. We propose a two-stage tracking method.

I. Forward connection between frames
The first stage makes the connection among the
F0 candidates between consecutive frames. For
each F0 candidate, the connection is allowed for
a frequency range of one half tone. For every
“pair” of frames, the connection that gives the
highest product of individual probability is kept
for the next stage.

II. Track construction
From the connected single F0s, a track can
be defined. However, there are often several
“holes” in-between tracks to be taken care of.
These holes might be the result of note on-
sets, where the observed spectrum is disturbed.
This is done by linear prediction similar to [10].
To reconstruct the “holes” in-between tracks, a
backward/forward linear prediction tracking is
applied on the neighboring two tracks. We start
by backward linear prediction to find F0 can-
didates until no match is found. Then forward
linear prediction is performed to reconstruct the
rest of the missing predominant F0s.

4.2. Secondary F0 tracking

Once the predominant F0 track is decoded, the sec-
ondary F0s can be tracked by prolonging the pre-
dominant F0s. To track the reverberant parts of the
predominant F0 tracks, we search the combination
containing the current predominant F0 and the pre-
vious predominant F0s. As long as the “effective
weighting” of a secondary F0 is larger than 0.01, the
reverberant tracks are considered as effective.

5. EXPERIMENTAL RESULTS

To demonstrate the proposed method, we have
tested two solo recordings: bassoon and violin. For
the bassoon solos, we compare our method with
the state-of-art single-F0 estimator “YIN”. The F0
search range is set from 50Hz to 2000Hz. As shown
in Fig. 6, “YIN” produces subharmonic errors while
the reverberant parts of the preceding notes have
competitive significance. This shows the complexity
of F0 tracking for monodic solo recordings, which
can be barely handled by a single-F0 estimator.

In the second example, a violin solo, our proposed
method gives promising results for the fast arpeggios
of which the reverberant parts are well tracked, too.

6. CONCLUSIONS

We have presented a method using multiple-F0
tracking algorithm for solo recordings of monodic in-
struments. We propose to decode the predominant
F0 track and then the secondary F0s, based on the
combinatorial properties of hypothetical F0 combi-
nation. Testing examples have shown that a multiple
F0 estimation is necessary for automatic transcrip-
tion of solo recordings. There are several issues to
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Fig. 6: Comparison of predominant F0 estimation
using one Mozart’s bassoon solo

be addressed. If the reverberant parts of the pre-
ceding notes are stronger than the following notes
(for example, a strongly bowed note followed by left
hand pizzicati), our multiple-F0 tracker might favor
the reverberation that is more dominant in energy.
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