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ABSTRACT

In this paper we introduce a tool aimed at assisting com-
posers in orchestration tasks. Thanks to this tool, com-
posers can specify a target sound and replicate it with a
given orchestra. We discuss the problems raised by the
realization of such a tool, concerning instrumental sound
description and combinatorial optimization. Then we de-
scribe the solution adopted. We propose a machine learn-
ing method based on generative probabilistic modeling
to represent and generalize instrument timbre possibilities
from sample databases. This model allows to deduce the
timbre of any mixture of instrument sounds. In a second
part, we show that search of sound mixtures that match a
given target is a combinatorial optimization problem that
can be addressed with multicriteria genetic algorithms.

1. INTRODUCTION

In the last few decades contemporary music composers
have widely experienced computer-aided composition (CAC)
software in their works. Originally, those tools were de-
signed to provide composers with the ability to easily ma-
nipulate musical symbolic objects, such as notes, chords,
melodies or polyphonies, but the timbral aspect of the
composition, orchestration, has stayed relatively unexplored.
We define orchestration as the composition with the or-
chestral timbre. An orchestra is composed by many in-
struments, each of them being able to create a large vari-
ety of sounds. By the combination of those instruments,
the composer have access to a huge set of timbres. In
this paper we present a tool that helps composers to ex-
plore this set. In this tool, composers can specify a target
sound and imitate it with a given orchestra. Some attempts
have been made ([6], [12], [13]) to address this problem
by combining instrument sound spectrums to match a tar-
get spectrum. But timbre is much more than spectrum.
A sound is perceived through many different characteris-
tics, like spectrum but also modulations, roughness and
others. So our method is based on a description of sound
that takes those characteristics into account. But extend-
ing the sound description raise the problem of timbre sim-
ilarity. Comparing one characteristic of two sounds may
be complicated but still achievable, but finding a global
similarity measure that takes several characteristics into
account is more difficult [1]. Does a clarinet with vibrato

sounds closer to a clarinet without vibrato or to a flute
with vibrato ? It is a problem of personnal preference de-
pending on the aspect of the sound we focus on: is it this
frequency modulation caused by the vibrato, or this lack
of even harmonics so characteristic of the clarinet sound ?
There is no unique way of comparing sounds globally. We
thus chose to use multicriteria optimization methods that
do not make any assumption on the descriptors relative
saillance, and guess the user preferences by an interaction
process. Another drawback of the previous approaches
lies in the direct use of spectrum of instruments samples.
Doing this, they ignore one of the main difficulty, then in-
terest, of the problem: we deal with musical instruments
and the databases samples are only examples of them. The
system needs to be able to learn and generalize the tim-
bre possibilities of the instruments from those examples.
We use generative probabilistic models of the features al-
lowing to extract a general knowledge of the instrument
timbre from different samples. The last issue is the ex-
ploration of the solutions space. This is a hard combi-
natorial problem. Previous approaches use either greedy
algorithms or decomposition of the target spectrum on a
basis of instruments spectrum. Those methods are com-
putationally efficient but do not allow a wide exploration
of the solution space, and need the definition of a global
similarity measure. We then adopt a genetic multicriteria
algorithm.
The paper is organized as follow. In the first section we
give an overview of our system, then we describe the meth-
ods used to learn the instrument timbre possibilities in sec-
tion 3. Section 4 explains the exploration of the solution
space and finally we discuss the evaluation of the proposed
method.

2. ORCHESTRATION PROCEDURE

2.1. System overview

In our system the user specifies the sound to be produced
(the target) and the instruments that can be used to pro-
duce it . Then, an orchestration engine uses an instruments
samples database to suggest instruments notes combina-
tions (mixtures) that sound close to the target. The engine
can be divided into two parts, an instrument knowledge
part and an exploration process. The instrument knowl-
edge part performs the extraction and structuring of all the
available information from the sounds databases. The ex-



ploration process is an algorithm dedicated to the efficient
exploration of the possible mixtures.

2.2. Mathematical formulation

An instrument sound n, we call it an item, is defined by
the instrument i, its articulation a (vibrato, tremolo, ...),
its pitch p, its loudness l and its mute m. An item is repre-
sented by the probability density functions of its descrip-
tors values, (dn

j )j∈[1,J], f(dj |i, a, p, l,m). The sound of
a mixture K of items is represented by the pdfs f(dj |K).
The target t is defined by the set of its descriptors val-
ues (d̂j). The orchestration problem can be formulated as
follow: given a set of items E and a sound target t, the
goal of the orchestration procedure is to find a subset of E
that maximizes the similarity with t, i.e. that maximizes
the probabilities P (d̂j |K). Note that the timbre similarity
is computed as a vector of probabilities (instead of a sin-
gle value) along each descriptor in order to cope with the
multidimensional mechanism of timbre perception.

3. SOUND DESCRIPTION AND LEARNING

3.1. Sound description

The set of sound descriptors must be reasonably small and
understandable to a composer, in order to facilitate inter-
action during the exploration process. Thus we chose rel-
atively high level signal descriptors coming either from
psychoacoustic field [10] or from the automatic classifica-
tion field [11]. The orchestration procedure we are intro-
ducing relies on a set of descriptors concerning different
aspects of the sound. For the moment we use the follow-
ing ones:

- energy of the harmonics normalized by the global en-
ergy,

- global noisiness,
- frequency and amplitude of the fundamental frequency

modulation,
- frequency and amplitude of the energy modulation,
- attack time

We also need two information that do not relate to tim-
bre, the fundamental frequency (f0) and the energy of the
signal. The f0 is extracted with [3]. The signal energy is
not extracted from the signal but guessed from the sample
name. Indeed, the real energy of the sound is not avail-
able in the database samples. However, all the samples
we have are named with a dynamic indication, such as pp
or mf. From a subset of sounds for which we know that the
relative dynamics are realistic, we extracted the mean en-
ergy of each dynamic. Those values are used as standard
values for the remaining of the samples.

3.2. Mixture of gaussians

The descriptors pdfs are approximated by mixtures of gaus-
sians. The distribution of a descriptor dj is defined by the
number of gaussian components Mj , the weights ωjm, the

means µjm and the covariance matrices Σjm by the fol-
lowing equation:

f(dn
j ) =

M∑
m=1

ωn
jmN (dn

j ;µn
jm,Σn

jm) (1)

The parameters estimation is performed by an iterative
EM algorithm, where the number of gaussian components
is increased at each step. The selected model is the one
that gives the best recognition rate in a cross database clas-
sification task.

3.3. Learning strategies

Learning one model for each item present a major draw-
back, it requires many sound samples for each item. We
use two different strategies to avoid this problem.

3.3.1. Fundamental frequency and energy

The first strategy consists of learning f(d, p, l|i, a, m) ∼
f(d, f0, e|i, a, m), where f0 is the fundamental frequency
and e is the energy, instead of learning f(d|i, a, p, l,m).
In other words, we learn the joint distribution of the de-
scriptor, the fundamental frequency and the energy, next
by conditionalization we can obtain f(d|i, f0, e, a,m) [8].
Now there is only one model for each instrument and ar-
ticulation and the learning set of one model contains all
the pitches and dynamics. Note that we transformed the
discrete variables p and l into continuous variables f0 and
e, which allows to find the model for any pitch and dy-
namic even those that are not in the sample databases.

3.3.2. Dividing the problem

The second strategy is based on a reorganization of the
problem. Instead of learning one model for each com-
bination of instrument, mute and articulation available in
the database, which lead to many high dimensional mod-
els, we learn a model for each articulation, mute and in-
strument individually, and we aggregate them. Note that,
doing this, the articulation becomes a set (ak) of articu-
lations. Indeed, in the first approach a complex articula-
tion available in the database, like aeolian+vibrato, was
considered as one articulation whereas in the second ap-
proach it is considered as two. The aggregation is done in
the following way:

f(dj , f0, e|i, (ak),m) = fifm

∏
k

fak
(2)

where fi = f(dj , f0, e|i) (3)
fm = f(dj , f0, e|m) (4)
fak

= f(dj , f0, e|ak) (5)

This aggregation method is called Logarithmic Opinion
Pool [5] and relates in our context to Product Of Mixtures
of Gaussians [4]. Given that fi, fm and fak

are Mixtures
of Gaussians, f(d, f0, e|i, (ak),m) is itself a Mixture Of



Gaussians whose parameters can be calculated from the
above pdfs parameters [4].
An interesting point about this reorganization is that we
can reduce the dimension of each model by selecting the
relevant descriptors for a problem. For example, the mod-
els of vibrato and non vibaro sounds, will only describe
the modulation of the fundamental frequency and of the
energy. If a descriptor is not selected, its distribution is
assumed to be uniform, hence will have no influence in
equation 2.
Another advantage of the method is that it allows to de-
duce the model of sounds that are not in the database. For
instance, suppose we do not have any sound of a clarinet
with vibrato, but we have sounds of a clarinet without vi-
brato and sounds of other instruments with vibrato. We
can find the model of the vibrato clarinet by aggregating
the clarinet model, learned on clarinet sounds without vi-
brato, with the vibrato model, learned on all the vibrato
sounds of the other instruments.

3.4. Mixture models

3.4.1. How do descriptors add ?

To evaluate the possibility for a mixture K to imitate the
target, we have to determine the model of this mixture
from the models of its components. Thus, we have to
know how the descriptors of two or more sounds add. This
is a specific problem, related to sound perception, that we
will not detail here. For instance, we hypothesize that the
harmonics energies add, or that the attack time of a mix-
ture of two sounds equals the shortest of the two attack
times. All those hypothesis are being tested either by psy-
choacoustic experiments or by less formal tests.

3.4.2. Finding the mixture model

The distributions of K depend on the addition method of
the underlying descriptors. Hence, a specific operator is
needed for each descriptor. We will not detail here this
operator for all the descriptors but, we just show an ex-
ample where the addition method is a sum weighed by the
energy, which can be used for dj = normalized harmonics
energy.

dKj =
∑

n

endn
j (6)

Since the dn
j are described by mixtures of gaussians, the

distribution of dKj cannot be calculated. We go back to a
gaussian case by selecting, for each item n, the gaussian
component that gives the highest probability for the f0n

and the energy en of the item.
Therefore, assuming that dn

j follows a gaussian distribu-
tion N (µn

j ,Σn
j ) and that the en are known, the pdf of the

mixture descriptor is:

f(di|K) = N (di,
∑

n

enµn
j ,

∑
n

(en)2Σn
j ) (7)

This last equation will be used in the following section to
compute a similarity measure between the target and the
mixture.

4. EXPLORING THE SOLUTION SPACE

As explained in [2] searching efficient sound combina-
tions with capacity constraints (due to the limited instru-
mental ressource of an orchestra) may be seen as a multi-
objective, multidimensional 0/1 knapsack problem (MOKP-
0/1). Briefly speaking, a knapsack problem consists in
finding a set of items to be inserted in a knapsack in or-
der to maximize some profit function without exceeding
the knapsack capacity. Formally, the orchestration task is
defined as follows:

max zj = P (dj |K = {x1, ..., xn})
j = 1, ..., J

s.t. xk ∈ {0; 1}
R.x ≤ C

(8)

where J is the number of descriptors, C the orchestra’s
capacity vector (the number of instruments of each type)
and R a ressource allocation matrix handling constraints
due to the restricted number of instruments. The orches-
tration problem only differs from MOKP-0/1 by the use
of complex profit functions P (dj |K) along each objective
rather than a simple sum of item profits.
Knapsack problems areNP-hard. They have been widely
studied in operational research and combinatorial optimiza-
tion and many ad-hoc search methods have been designed
(see [9] for a review of mono-objective problems). The
orchestration problem is particularily complex as capaci-
ties and profits are multi-dimensional and profits are cor-
related. In [2] we have proposed an efficient, evolution-
ary, multi-objective method inspired of Jaszkiewicz’s al-
gorithm [7]. Our algorithm uses a population of solu-
tions and iteratively alternates between genetic recombi-
nation and local search optimization, with ad-hoc opera-
tors for each phase. The multi-objective approach is han-
dled thanks to a weighted Tchebycheff function which
aggregates the probabilities P (dj |K) into a single fitness
value:

F (D,K) = max λjP (dj |K = {x1, ..., xn}) (9)

where the weights (λj)1≤i≤J define the current direction
of optimization. The weights are randomly drawn at each
generation by a pseudo-random number sequence, insur-
ing an uniform sampling of the search directions. In other
words, the relative importance of the objectives randomly
change over the iterations, letting the population approxi-
mate the set of efficient solutions, also called Pareto set.
The use of weighted Tchebycheff functions was also moti-
vated by the opportunity to easily design a user interaction
process: When a first stopping criterion is met, the algo-
rithm stops and the user is asked to choose one best solu-
tion Kbest among the current Pareto set. Kbest’s coordi-
nates in the criteria space are used to infer the user’s pref-
erences, i.e. the relative weights (λbest

i ) that rank Kbest

first when injected in eq. 9. The algorithm then restarts
with fixed weights (λbest

i ), favorizing the search direction
of the best solution found so far.



5. RESULTS AND CONCLUSION

We have presented an approach to computer assisted or-
chestration that allows to find instrumental sound com-
binations that imitate a target sound. The approach is
based on a generative probabilistic model of the instru-
ments sounds and on a genetic algorithm for the explo-
ration of the solution space. The evaluation of the overall
system is a hard problem since the final rating of the good-
ness of a solution can only be achieved by listening. A
first step is to evaluate the two parts separately. As an in-
dication of the performance of the instruments models we
provide the results of two classification tasks realized on
five different sounds databases. For both tasks, the models
are trained on four databases and tested on the fifth one.
We performed a 8 classes task with 4 woodwind instru-
ments: clarinet, bassoon, flute and oboe. Each instrument
is played with and without flatterzungue. Learning one
model per classe leads to an average recall of 51%, but
almost none of the flatterzungue sounds are recognized.
With our method, we obtain a score of 62% with 95%
of the flatterzungue sounds that are recognized as flat-
terzungue. This shows that this method gives much more
robust models. As a second test, we did another 8 classes
experiment with 4 instruments: trumpet, trombone, horn
and tuba. In the test set, each instrument plays with and
without vibrato, but there is no vibrato brass sound in
the training set. The vibrato and non vibrato models are
trained on woodwinds and strings. The mean recall is
35%, to be compared with a random of 12%, and 71% of
the vibrato sounds are recognized as vibrato. This exper-
iment shows that the method allows to recognize sounds
that are not in the training set which is interesting in an
orchestration context since we want to know as many in-
strument sounds as possible.
Concerning the genetic algorithm, performances are es-
pecially hard to evaluate. Traditionally performances of
multi-objective optimization methods are based on the size,
shape, density, or homogeneity of the Pareto set, or on the
distance between the theoretic Pareto set and its approxi-
mation, when the former is known, which is not the case
here. Therefore, Pareto sets obtained by our algorithm are
difficult to score. However, early experiments with our
system gave encouraging results, allowing to find inter-
esting mixtures with large orchestras in a very short time.
Future research will focus on the design of objective and
subjective evaluation procedures for the genetic method
alone and for the overall system.

6. ACKNOWLEDGEMENTS

The authors wish to deeply thank the composer Yan Maresz
for his involvement in this project. The authors also want
to thank Geoffroy Peeters for his critical review of this
paper.

7. REFERENCES

[1] The role of similarity in categorization: Providing a
groundwork. Cognition, 52(2):125–157, aug 1994.

[2] Gregoire Carpentier, Damien Tardieu, Gérard As-
sayag, Xavier Rodet, and Emmanuel Saint-James.
An evolutionary approach to computer-aided orches-
tration. In EvoMUSART, volume LNCS4448, pages
488–497, Valence, Espagne, Avril 2007.

[3] B. Doval and Xavier Rodet. Fundamental frequency
estimation and tracking using maximum likelihood
harmonic matching and hmms. In Proc. IEEE-
ICASSP, pages 221–224, 1993.

[4] Gales M. J. F. and Airey S. S. Product of gaussians
for speech recognition. Computer Speech and Lan-
guage, 20(1):22–40, jan 2006.

[5] Genest, Christian and Zidek, James V. Combin-
ing probability distributions: A critique and an an-
notated bibliography. Statistical Science, 1(1):114–
135, feb 1986.

[6] Thomas A. Hummel. Simulation of human voice
timbre by orchestration of acoustic music instru-
ments. In Proceedings of International Computer
Music Conference 2005, 2005.

[7] A. Jaszkiewicz. Comparison of local search-based
metaheuristics on the multiple objective knapsack
problem. Foundations of Computing and Design Sci-
ences, 26:99–120, 2001.

[8] Alexander Kain and Michael W Macon. Spec-
tral voice conversion for text-to-speech synthe-
sis. In Proceedings of the International Confer-
ence on Acoustics, Speech, and Signal Processing
(ICASSP’98), pages 285–288, 1998.

[9] S. Martello and P. Toth. Knapsack problems: Algo-
rithms and computer implementations. John Wiley
& Sons, Chichester, 1990.

[10] S. McAdams, S. Winsberg, S. Donnadieu, G. De
Soete, and J. Krimphoff. Perceptual scaling of
synthesized musical timbres: Common dimensions,
specificities, and latent subject classes. Psychologi-
cal Research, 58:177–192, 1995.

[11] Geoffroy Peeters. A large set of audio features for
sound description (similarity and classification). in
the CUIDADO project. Paris, IRCAM, 2004.

[12] David Psenicka. Sporch: An algorithm for or-
chestration based on spectral analyses of recorded
sounds. In Proceedings of International Computer
Music Conference 2003, 2003.

[13] François Rose and James Hetrick. Spectral analysis
as a ressource for contemporary orchestration tech-
nique. In Proceedings of Conference on Interdisci-
plinary Musicology 2005, 2005.


