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ABSTRACT

This paper introduces a partial-tracking algorithm suitable for the sinusoidal modelling of polyphonic sounds.
A new method, based on the backward exploration of possible extensions of the partials in future frames, is
proposed to cope with the lack or corruption of spectral data. The allocation of spectral peaks to a partial
is done by considering possible trajectories in future frames where frame hoping is allowed. A suitable
transition probability that takes into account missing or rejected peaks is proposed. The trajectory that
exhibits the highest probability is searched for and the corresponding peak for the current frame is chosen
to extend the partial.

1. INTRODUCTION Spectral sound models provide general representations
for many applications such as compression, content ex-
traction and transformation. Most of these models, such
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as additive synthesis, are based on the Fourier analysis
which has proven to be accurate under the condition of
local stationarity.

Additive synthesis is the original spectrum modeling
technique. It is rooted in Fourier’s theorem, which states
that any periodic function can be modeled as a sum of si-
nusoids at various amplitudes and harmonic frequencies.
For stationary pseudo-periodic sounds, these amplitudes
and frequencies continuously evolve slowly with time,
controlling a set of pseudo-sinusoidal oscillators com-
monly called partials. The audio signal s can be calcu-
lated from the additive parameters using Equations 1 and
2, where nP is the number of partials and the functions
fP, aP, and φP are the instantaneous frequency, ampli-
tude, and phase of the P-th partial, respectively. The nP

pairs ( fP,aP) are the parameters of the additive model
and represent points in the frequency-amplitude plane at
time t. This representation is used in many analysis /
synthesis programs such as SMS [1] or InSpect [2].

s(t) =
nP

∑
P=1

aP(t) cos(φP(t)) (1)

φP(t) = φP(0)+2π
Z t

0
fP(u) du (2)

Thanks to the enhanced Fourier transform based on the
derivative of the signal [3], the precision of parameters
of selected peaks in the spectrum is quite high. Since the
short-term analysis uses a sliding time/frequency win-
dow, the resulting representation is discrete. For appli-
cations such as time scaling and pitch shifting of mono-
phonic sources, this discrete representation is sufficient.
But for many other applications, a continuous represen-
tation of the sinusoidal components of the sound is very
useful. Low bit-rate audio coding (HILN and SSC) can
be done using a sinusoidal model since the parameters
controlling oscillators are slow-time varying and can be
encoded very efficiently [4, 5]. Recently, this model has
been also used for musical transcription and source sepa-
ration [6]. The temporal integration of informations pro-
vided by the continuous representation of spectral com-
ponents is used to interprete complex spectral data of a
polyphonic sound mixture.

To analyse harmonic monophonic sounds, the size of the
analysis window to be used can be adapted to an esti-
mate of the pitch of the source. The frequency resolution
is then sufficient to separate harmonics and the resulting

time resolution is optimal, see Figure 1.1. The partial
tracking can be done efficiently by linking a peak with
the nearest frequency peak neighbor in the next frame
as proposed by Mac Aulay and Quatieri in [7]. Dur-
ing the analysis of a polyphonic sound mixture, a good
frequency resolution is required so that the size of the
window should be fixed to an arbitrary high value, there-
fore breaking local stationarity condition. Intermodula-
tions between sinusoidal components may lead to spuri-
ous peaks or some peaks may be missing, blurring the
spectral representation, see Figures 1.2, 1.3. The task of
tracking partials over time is then much more complex.
Considering evolutions of sinusoidal components over
several frames can be useful to avoid local disturbances,
as in the Hidden Markov Model algorithm (HMM) pro-
posed in [8].

An overview of these two tracking methods is first given,
the Mac Aulay and Quatieri algorithm (MAQ) in Section
2 and the HMM algorithm in Section 2.3. Section 3 pro-
vide an overview of the tracking algorithm proposed in
this article. The peak-to-peak distance is introduced in
Section 4 and a statistical approach to extend this dis-
tance to allow frame hopping is proposed in Section 5.
This new distance is then used to generate a set of tra-
jectories in future frames that will be used as guides for
existing partials, as described in Section 6. Results fol-
low in Section 7.

2. MAQ ALGORITHM

The algorithm is based on the assumption that partials
composing a voiced speech signal have stationary fre-
quency evolutions. It is then proposed to consider fre-
quency differences between peaks of immediate succes-
sive frames to form partials. A maximal frequency differ-
ence threshold ∆ f between successive peaks of a partial
is set:

| f k
i − f k+1

j | < ∆ f (3)

where f k
i is the frequency of the ith peak of frame k.

2.1. Basic Algorithm

The algorithm operates iteratively frame by frame and
by increasing frequency. For a peak ρk

i of index i and
frame k, we look for an unlinked peak ρk+1

j such that the
frequency difference between those peaks is minimal. If
the frequency difference is greater than ∆ f , the current
partial is labeled as “dead”. Else, ρk+1

j is selected.
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Fig. 1: Spectral peaks (spectrum local maxima) of a singing voice analyzed at a 512 samples frame rate using a window
of 1024, 2048 and 4096 samples respectively. As the size of the window grow, the temporal smearing is getting more
and more pronounced.
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Fig. 2: One step of the MAQ algorithm. White peaks
cannot be candidate, whereas black peaks can. Peaks
with dots are “tails” of partials.

If this peak cannot be better linked with ρk
i+1, the partial

having peak ρk
i is extended to peak ρk+1

j . If not, the cur-
rent partial looks for another candidate in the next frame.
If no alternative can be found (partial P2 in Figure 2), the
partial is also labeled “dead”. After all reachable peaks
of frame k +1 are linked, unlinked peaks of frame k +1
give rise to new partials.

2.2. “Zombie” extension

For various reasons such as decreasing amplitude, strong
modulations or Fourier’s transform bin corruption, the
peak selection process can discard peaks [9]. This leads
to missing peaks. To overcome this analysis drawback,
it is proposed in [1] to add a “zombie” state to partials,
so that if a partial cannot link to any peak in a frame, it
can still look for a peak candidate in the next frames. If
a peak can be found, the parameters of “zombie” peaks

are interpolated. This extension is very useful to obtain a
more concise set of partials.

2.3. HMM Algorithm

It is proposed in [8] to use the HMM formalism to track
partials in musical sounds. This approach is very inno-
vative because it tends to optimize a global tracking cri-
terion over several frames. An HMM is composed of a
set of states linked by transitions and a set of observa-
tion linked to states by observation probabilities. In this
approach, a state is defined as the results of tracking be-
tween two immediately successive frames.

The transition probability between two peaks is com-
puted jointly over time / frequency and time / ampli-
tude planes considering the slope of parameters between
the two last inserted peak. The transition probability be-
tween two states is then the product of transition proba-
bilities between all linked peaks between the two consid-
ered frames. Hence, to find the “optimal” tracking, the
sequence of states maximizing the product of transition
probabilities between successive states over the consid-
ered frames is found by means of the Viterbi algorithm
[10].

As the number of peaks in frames grows, the number of
possible combinations between states can be very impor-
tant, so it seems difficult to consider also transitions be-
tween peaks of non adjacent frames. However, frame
hopping capability is of great importance to avoid a spu-
rious peak at a given frame so as to to link with a good
one in the next frames.
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Fig. 3: Backward incremental generation of optimal tra-
jectories inside Γ. Note that optimal trajectories can
share peaks. Unfilled peaks are inactive, double circles
indicate the last inserted peak in a partial (the tail), Par-
tials are plotted with bold lines, optimal trajectories with
thin arrows.

3. OVERVIEW OF THE PROPOSED METHOD

The analysis of possible evolutions of partials over nu-
merous frames is a solution to cope with local spectral
artifacts. Let be a set of partials tracked until frame t,
some of these partials may be extended using some peaks
of frame t +1. This choice should be made according to
possible evolutions in future frames. The principle of
the proposed method is to build backward short trajecto-
ries going through peaks of a restricted number of future
frames called Γ according to a given transition probabil-
ity distance. These trajectories finally link with the tail of
a partial, indicating the optimal extension for this partial,
see Figure 3.

A peak-to-peak distance is computed using spectral in-
formations of the extracted peaks as detailed in Section
4. This distance cannot be used in the case of frame hop-
ping since it does not consider frame distance between
the two peaks: two peaks having similar spectral proper-
ties may be linked even if several frames separate them.
To address this problem, we propose in Section 5 a sta-
tistical approach which, given a spectral distance and a
frame distance between two peaks, computes a transition
probability between those peaks.

Trajectories in future frames are computed with an al-
gorithm described in Section 6.1 that takes advantage of

54321
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time
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frequency

Fig. 4: Second round of a tracking step.

this transition probability. Partials then select the trajec-
tory that ends at their tail, see Figure 3. Partials having
the best trajectory (P1 and P4 in Figure 4) lock their tra-
jectory and link with the first peak of the trajectory if
this peak is in frame t +1, a peak having interpolated pa-
rameters is considered otherwise. The peaks used in this
trajectory are not considered any more during this track-
ing step. Trajectories that go through remaining peaks
are then computed and assigned until no extension can
be done for existing partials, see Figure 4. If a partial
has not extended itself like partial P2, it is considered as
dead and removed from the tracking process. All un-
linked peaks of frame t +1 give rise to new partials.

4. PEAK-TO-PEAK DISTANCE

It is considered in the MAQ algorithm that the frequency
of partials should be constant over time. Yet, the evolu-
tions of partials in frequency and amplitude may varies -
due to musical modulations - but not chaotically. For ex-
ample, there is a strong correlation between the evolution
of the amplitude and the frequency of a natural vibrato,
as can be seen in Figure 5. Note that these evolutions are
out of phase, suggesting that when the frequency grow
up, the amplitude fall down to preserve some kind of en-
ergy conservation. Therefore, we propose the use of a
peak-to-peak distance between ρk

i and ρk+1
j that consider

this property :

d2(ρi,ρ j) = ( fi − f j)
2 (ai −a j)

2 (4)

Where fi and ai are the frequency and the amplitude of
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Fig. 5: Frequency (top), amplitude (middle) and the
peak-to-peak distance (bottom) for the first harmonic of a
vibrato saxophone tone. Note that frequency and ampli-
tude are out of phase. Values of frequency or amplitude
are artificially corrupted at frame 25 or 75 respectively.

the peak ρi.

Although this example can not be a proof and this prop-
erty would require in depth acoustical studies, this dis-
tance has proven successful to identify peak successor
in a given frequency neighborhood and to avoid spuri-
ous peaks of wrong frequency or amplitude. Figure 5.3
illustrate the influence of noisy frequency or amplitude
values on the proposed distance.

5. TRANSITION PROBABILITY

We propose to weigh a transition between ρk
i and ρk+1

j
by a Gaussian function of variance σ applied to a given
peak-to-peak distance between the two peaks:

p1(ρk
i ,ρ

k+1
j ) =

1

σ
√

2π
e−(d2(ρk

i ,ρ
k+1
j )/2σ2) (5)

The variance σ is a parameter that is the variance of the
distance between peaks of a “well-tracked” partial. σ can
be estimated by considering distance variance between
successive peaks within a partial over a large set of al-
ready tracked partials.

A n-transition is a direct transition (without intermediate
peaks) from a peak ρk

i of frame k to a peak ρk+n
j belong-

ing to frame k + n. Let us denote by pn(a,b) the proba-
bility of a n-transition from a peak a to a peak b. In the
following, the other peaks are described by their distance
relative to a.

1

V

0

n

distance from a

time

d(a,b)

a

v

b

Fig. 6: Extension principle of the probability measure.
Real peaks (a, b) are black, the virtual peak v in white.
Its position follow a Gaussian (dashed line) and has a
maximum occurrence probability at V .

For a 2-transition, we consider that we take a step
through a virtual peak v of unknown characteristics.
It has its ideal position V when d(a,v) = d(v,b) =
1/2d(a,b). Its position is considered distributed with
a Gaussian probability law g(∆) centered at the ideal
position V having variance σ. The probability of a 2-
transition is then expressed by:

p2(a,b) =

Z ∞

−∞
g(∆) p1(a,v) p1(v,b)d∆ (6)

Where ∆ is the distance between the position of v and
its ideal position V . p2 is the integral over all possible
position of v of the probabilities of transition (a, v, b),
weighted by the probability of finding the virtual peak at
this position, that is at distance ∆ of its ideal position V .

p2(a,b) =
1

σ2π

Z ∞

−∞
g(∆)e

− (V+∆)2

2σ2 e
− (V−∆)2

2σ2 d∆ (7)

Recursively, we define the probability of a n + 1-
transition by:

pn+1(a,b) =

Z ∞

−∞
g(∆).p1(a,v).pn(v,b)d∆ (8)
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Where v has its ideal position V defined by :

d(a,v) =
1

n+1
d(a,b) (9)

d(v,b) =
n

n+1
d(a,b) (10)

And p1(a,v).pn(v,b) is the probability of a (n + 1)-
transition from a to b with taking a step with a peak v
(see Figure 6). By solving the integral, we find:

pn(a,b) =
1

√

2(2n)
n−1 Kn−1(σ

√
π)n

e−(d2(a,b)/2nσ2) (11)

Where Kn is recursively defined by:

K1 =
√

2 (12)

Kn = Kn−1

√

2
2n−1
n−1

(13)

By simplifying, we find:

pn(a,b) =
1

√

2n
(2n−1

n

)

(σ
√

π)n
e−(d2(a,b)/2nσ2) (14)

Note that this transition probability depend on the σ pa-
rameter. Some properties on pn can be computed to be
able to choose a meaningful σ considering the chosen
peak-to-peak distance and a given hop-size.

pn(a,c) > p1(a,b) pn−1(b,c)

if d(a,b) > σ

√

ln( n−1
2n−1)

n
(15)

pn(a,b) > p1(a,c) pn−1(c,b)

if d(a−b) > σ
√

ln(
2n−1
n−1

n(1−n)) (16)

Where d(a,c) = 0 and d(a,b) = d(b,c). Now that we
have defined the transition probability between peaks of
non adjacent frames, we will show how this probability
is used to build optimal trajectories in a restricted set of
future frames.

6. TRAJECTORIES IN FUTURE FRAMES

b

distance from a

0 n-1
1

time

n
d(a,b)

a c

c

distance from a

time

0

n-1

n

d(a,b)

1
a

b

Fig. 7: Representation of the two inequality 15 and 16
useful for the estimation of σ parameter.

An optimal trajectory from ρi
k to ρ j

k+n is a set of suc-

cessive transitions starting from ρi
k and leading to ρ j

k+n,
maximizing the associated weight W , defined as the
product of transition probabilities of transitions between
peaks of the trajectory.

6.1. Generation of Trajectories

The set of transitions in considered future frames can
be seen as a probability trellis similar to those used by
the Viterbi algorithm [10] for HMM training. The effi-
ciency of the Viterbi algorithm is based on the property
that there is only one optimal trajectory from ρi

k to ρ j
k+n.

Unfortunately, since we allow transitions of size greater
than 1, this property is not directly verified. Indeed,
pn+m(a,c) can be equal to pn(a,b) pm(b,c). In practice,
we always choose the trajectory having the greatest num-
ber of peaks, since this trajectory is more relevant, based
on extracted peaks.

Two parameters are taken into account: n f , the number
of future frames considered and nm, the maximal size of
transition allowed. We have the constraint: n f ≥ 2nm−1
(in the following, we consider n f = 5 and nm = 3).

We give an initial weight for each unlinked peak in Γ (the
set of considered frames), equal to the weight of a tra-
jectory from this peak to a virtual peak of same spectral
property in the next frame after Γ. Optimal trajectories
are then generated backwards. For each peak in a given
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frame, we look for an optimal trajectory starting from
this peak. If this trajectory has a weight greater than the
initial weight, the trajectory is selected. At frame 4, in
Figure 3, the lower peak is too far from peaks in frame
5 so no trajectory is selected. On the other hand, for the
upper peak, the weight of the optimal trajectory is greater
than initial one, so the trajectory is selected.

6.2. Comparison of Trajectories

As can be seen on Figure 3, optimal trajectories can share
peaks. To favor partials having stable evolutions, the
system must allocate the optimal trajectories having the
greatest weights first, so that competing trajectories hav-
ing lower weights are discarded. Trajectories can have
different lengths or be shifted, we can therefore only
compare them on the weight associated to their com-
mon part, defined as a trajectory portion starting from
the largest starting frame index of the two trajectories we
want to compare to the smallest ending frame index of
the two trajectories. If the common part is the same or
empty, we favor the longest trajectory.

7. RESULTS

The aim of the presented method is to be able to obtain
partials that are reliable concerning the frequency and
amplitude evolutions. To illustrate this, we compare the
MAQ method and the proposed method on their ability
to extract the third harmonic of a violin vibrato. For both
method, the maximal frequency difference ∆ f defined in
2 is set to 100 Hz, the number of “zombie” states is 3.
Concerning the proposed method, 12 future frames are
considered. For both methods, to remove small and low
amplitude partials, we use a rejection criterion. If a par-
tial has its mean amplitude multiplied by the number of
peak in the partial below .02, the partial is not plotted.

On strong vibrato, spurious peaks appear due to the
strong modulations (see Figure 8.1). Processed by the
MAQ method, these peaks give birth to new partials that
are closer in frequency to future peaks than “older” par-
tials (see Figure 8.2) whereas, by considering trajectories
in future frames having lowest energy distortion, we are
able to track the harmonic and represent it with an unique
partial (see Figure 8.3). An overall view is given by Fig-
ure 9. A reliable set of partials provided by a tracking
module even in case of musical modulations is of great

importance to possible applications of sinusoidal mod-
els. In case of source identification, indexing or separa-
tion, the interpretation task is much easier. Concerning
coding applications where the number of sinusoids is a
critical parameter for coding efficiency, the quality gain
is appreciable as presented in the listening tests results
in Figure 10. A positive diff score indicate that the new
method performs better than the MAQ method and vice
and versa. This subjective MUSHRA test performed at
France Telecom R&D by five audio coding experts com-
pare the MAQ method and the proposed method using
the sinusoidal output of a SSC encoder. Therefore, the
tracking module use a hop size of 360 samples at 44100
kHz and up to 60 sinusoids may be encoded at a time.
Some sequences of the Mpeg set plus violin solo, piccolo
solo and a Tracy Chapman song are used. The grading
scale ranging from 0 to 100. Excepting voice sequences,
the subjective quality is significantly improved.

Taking account of future trajectories induce a non neg-
ligible complexity overhead. The proposed method pro-
cess roughly 3 to 20 times slower than the MAQ method
depending on the number of peaks per frames. The vio-
lin vibrato – 120 frames long – plotted on Figure 9 was
processed in 5 seconds by our C++ implementation on a
1gHz processor.

8. CONCLUSION

In this article, we have presented a new tracking method
designed to extract reliable partials from sounds mixture.
By considering several future frames, the partials can
choose the link that leads to an “optimal” evolution in the
future. This new approach is helpful to extract coherent
and concise informations on the evolution of sinusoidal
components.
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Fig. 8: Tracking of the third harmonic of a violin vibrato
plotted on the time / frequency plane. The peak view is
on top, at the middle, partials extracted by the MAQ al-
gorithm are plotted, and at the bottom is the partial as
extracted by the proposed method.

Fig. 9: Tracking of a violin vibrato using proposed
method and plotted on the time / frequency plane.
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