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ABSTRACT encodes temporal dynamics. In this paper, we focus on this

Scene analysis is a relevant way of gathering information§Y€ to propose new metrics for defining the similarity betwee

about the structure of an audio stream. For content exbracti spectral components using the sinusoidal model.

purposes, it also provides prior knowledge that can be taken '€ Paper is organized as follows: after a presentation of
into account in order to provide more robust results forstant'€ Sinusoidal model in Section 2, existing metrics propose
dard classification approaches. in the literature are reviewed in Section 3 and the requsite

In order to perform such scene analysis, we believe thaqf arelevant a metric a_re_also d(_etalled. ] )
the notion of temporality is important. We study in this pa- | "€ Proposed metric is nextintroduced in Section 4. Mo-
per a new way of modeling the evolution over time of thetivated py the propertleg qfthe evolutions of the frequesioff .
frequency and amplitude parameters of spectral companenf8€ partials, a first metric is proposed. We next show that thi
We evaluate the benefits of such an approach by considerif§etric can also be successfully used while considering the
its ability to automatically gather the components of thesa  €volutions of the amplitudes as soon as the variations of the
sound source. The evaluation of the proposed metric showi1Velope is removed. The definition of a metric that jointly

that it achieves good performance and take better account 6PNSIders these two cues is next studied. _
micro-modulations. In order to compare existing metrics to the ones intro-

duced in this article, we use the evaluation methodology pre
sented in Section 5. In particular, the database and treierit
that evaluate the ability of the tested metric to discrinéna

Extracting content from polyphonic audio such as musica a_lrtlals produced from d|ﬁergnt mstruments. The resofts
s evaluation are presented in section 6.

streams appears to be bounded to moderate performance it
the stream is considered “blindlyT,e. processed without
any prior knowledge of the structure of the stream. As scene 2. MID-LEVEL REPRESENTATION OF

1. INTRODUCTION

analysis is a relevant way of gathering informations abloeit t POLYPHONIC SOUNDS
structure of an audio stream, performing such operatiaor pri
extracting content is a way to address this issue. For various applications, one needs a representation gf pol

On the high end, one can consider a mid-level represerphonic sounds where the frequency information as well as its
tation of the polyphony [1, 2] describing polyphonic soundsevolution with respect to time for each sound sources can eas
as a set of coherent spectral regions, where each set caniliebe extracted. In this section, we discuss the fact that th
considered as monophonic. In this case, one can focus theell-known sinusoidal model can be a basis for such a repre-
content extraction process to a given element of the scgne [Zentation.

On a lower end, one can consider some time segmentation of The sinusoidal model represents pseudo-periodic sounds
the audio stream where sections that have similar progertieis sums of sinusoidal components — so-called partials — con-
are identified and/or clustered. Based on this representati trolled by parameters that evolve slowly with time [7, 8:

the temporal priors are considered to integrate the indexin

decision done at each analysis frame to obtain more robust Py(m) = {F(m), Ag(m), Px(m)} (1)
classification results [4].

In order to extract such representation or segmentationvhere Fi.(m), Ax(m), and®;(m) are respectively the fre-
many cues can be considered [5]. As far as timbral cues agency, amplitude, and phase of the paritalat time index
considered, the common variation cue [6] is of interest as itn. These parameters are valid forallc [by, - - , b + Ik —



1], where the,, andi;, are respectively the starting index and
the length of the partial.

These sinusoidal components are called partials because
they are only a part of a more perceptively coherent entity
that will be noted in this article an acoustical entity.

Thus, this can be written as: T

Frequency

S = En (2) Time

Fig. 1. Representation of two fictive sounds in the time-
with S being the mid-level representation of the soust, frequency domain. Partials A, B, and C (clearly correlated
being an acoustical entity and N the total number of entitie$n modulation and starting and ending times, that is com-
in the sound. Hence each entity is made of a group of partialgnon variation) represent the sinusoidal components of the
first sound, while D and E represent the sinusoidal compo-
nents of the second sound.

C =

n=1

M,
E,=J Pt (3)
= factor equal to their harmonic rank, see Figure 2(a). Iténth
wherel,, is the total number of partialg* in the entity. important to consider a metric which is scale-invariant.

The partials can be extracted from polyphonic soundswith M. Cooke uses a distance [15] equivalent to the cosine
dedicated tracking algorithms [9]. However, in order toidvo dissimilarityd., also known adntercorrelation
problems due to strong polyphony [1], we only consider here (X1, Xo)
mixtures of already tracked entities. de(X1, X2) - ’

To extract these entities from a sinusoidal representation Ve(X, Xi)/e(Xo, Xz)
of a sound, similarities between partials should be comsitle ) )
in order to gather the ones belonging to the same acoustical o( X1, Xz) = ZXl(Z) (i) ®)
entity. From the perceptual point of view, some partials be- '
long to the same entity if they are perceived by the humawhereX; and X, are real vectors of siz&. In this article,
auditory system as a unique sound. There are several cu&s and X, will be the frequency and amplitude of a partial
that lead to this perceptual fusion: the common onset, the haover time. This dissimilarity is scale-invariant.
monic relation of the frequencies, the correlated evohstiof T. Virtanenet al. proposed (in [13]) to use the mean-
the parameters and the spatial location [5]. squared error between the vectors first normalized by their

The earliest attempts at acoustical entity identificatioh a average values:
separation consider harmonicity as the sole cue for group fo 9
mation. Some rely on a prior detection of the fundamental dy (X1, Xo) = Z ( (i) (z)) (6)
frequency [10, 11] and others consider only the harmonic re- N X X
lation of the frequencies of the partials [12, 13, 14]. Yeamm
musical instruments are not perfectly harmonic.

According to the work of McAdams [6], a group of par-
tials is perceived as a unique acoustical entity only if the-v
ations of these partials are correlated. Therefore, theecor .
lated evolutions of the parameters of the partials is a gener
cue since it can be observed with any vibrating instruments.
As an example, see Figure 1.

In order to define a dissimilarity metric that considers the
common variation cue, we will study in the next section the
physical properties of the evolutions of the frequency and a Xi(n) ~ Z Ki(1)Xi(n — i) @)
plitude parameters of the partials. '

(4)

where X; and X, are vectors of siz&V and X denotes the
mean ofX. This normalization is particularly relevant while
considering the frequencies since the ratio between th@mea
frequency of a given harmonic and the one of the fundamental
is equal to its harmonic rank.

We proposed in [16] to consider the Auto-Regressive (AR)
model as a scale-invariant metric that considers only tke pr
dictable part of the evolutions of the parameters:

where thek(;(¢) are the AR coefficients. Since the direct com-
parison of the AR coefficients computed from the two vectors
X; and X5 is not relevant, the spectrum of these coefficients

Let us consider a harmonic tone modulated by a vibrato oifS compared as proposed by Itakura [17]:
given depth and rate. All the harmonics are modulated at the dan(Xe Xo) =1 | K1 (w)] dw
same rate and phase but their respective depth is scaled by a AR(X1, X2) = log K (w)| 27

3. THE COMMON VARIATION CUE

(8
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Fig. 3. Centered frequencies (top) of a piano note and their
) ) ) corresponding spectra (bottom). Each curve is shifted aed t
Fig. 2. Mean-centered frequencies and amplitudes of SOMgnacira are smoothed using zero-padding for clarity sake.
partials of a saxophone tone with vibrato.

There was already an attempt at this, using AR models (see

where .
k equation 8).
Kj(w)=1+ Z K(i)e 7™ 9 Since the Fourier transform is based on the fact that the
i=1 input signal is periodic, using a spectrum of the evolutiohs

When considering the amplitudes of the partials, a scalehe partials might show common periodicities of the pastial
invariant metric is also important. In this context, themat-  This will be handy for the modulations of the partials crelate
ization proposed by T. Virtanen is no longer motivated sincdy Vibrato and tremolo, since we can assimilate these mod-
the relative amplitudes of the harmonics depend on the envéllations to sinusoidal ones over a short period of time (see
lope of the sound. For example, on Figure 2(b), the topmos{tl& 19]). It can be also interesting for micro-modulations
curve (with small modulations) represents the amplitudes oSuch as the ones produces by vibrating strings such as the
the fundamental partial, while the second to the top curtie wi Strings of a piano (see Figure 3). Hence, the spectrum of the
broad oscillation represents the first harmonic. evolutions in frequency and amplitude of the sound are rele-

Moreover the envelope is globally decreasing as the frevant from the point of view of the correlation of evolutions.
quency grows, but it can appear that the amplitude of the en- In this section, we explain how we compute the correla-
velope is also ascending due to the specific shape of the efion of evolutions in order to obtain our new metric, first for
velope around formants. Therefore, when the frequency of &€ frequency parameters of the sound, second for the am-
partial is modulated, the amplitude may be modulated with #litude parameters of the sound (since two slightly diffire
phase shift, see the bottom curve of Figure 2(b). Therefore, methods are used).
metric that is phase-invariant should be considered.

The amplitude evolution of_ a partial is co_mpose_d ofa temy 4 Using the Frequencies of the Partials
poral envelope and some periodic modulations. Since the en-
velope of the amplitude of the partials can be very differentThe first step in the calculation of our new metric is to corre-
from partials to partials of the same entity it may be usejul t late the evolutions of the frequencies of the partials. As we
consider only the periodic modulations while computingrthe said before, a good description of these evolutions is giyen

similarities. the spectra of these evolutions.
The metric introduced in the next section will cope with  The way to compute the spectra of the frequency evolu-
these issues. tions of the signal from a partial is to take off the mean value
of this frequency and then compute the Fourier transform of
4. PROPOSED METRIC the resulting signal. Indeed, in order to have a clean spectr

relevant to the evolutions, it is necessary to have the evolu

The aim of proposing a new metric is to go beyond tempotions centered around zero.
ral domain by taking the parameters to the spectral domain. Then, we apply the previously exposed process to the fre-



guencies of all the partials from which we want to measuré.2. Criteria
evolution correlation. Once we have these frequencies ex- i ) ] ]
pressed in terms of spectra, the way to compute the distan&dce the evaluation database is defined, one need some cri-

(see equation 4). This gives that two partials are “close” if they actually belong to tlaee

acoustical entity and “far” otherwise.
ds(f1, f2) = de(|F1], | F2l) (10)

wheref; and f, are the frequency vectors of two partid®s 52 1 Fisher criterion
and P, and F}, is the Fourier spectrum ofx, fi being the

frequencies of partiaP. A relevant dissimilarity metric between two partials is atme
ric which is low for partials of the same entity — the class
4.2. Using the Amplitudes of the Partials from the statistical point of view — and high for partials tha

do not belong to the same entity. The intra-class dissimilar
In the case of the amplitudes of the partials, the problem iﬁy should then be minimal and the inter-class dissimiyeais
slightly more complicated. Indeed, in order to center the OShigh as possible. The Fisher criterigi{U) described in [16]
cillating part of the signal around zero subtracting the mea s |oosely based on the fisher discriminant commonly used in
will not be sufficient. As presented in other works [20], sub-gatistical analysis to reflect this property. It providefirst
tracting a polynomial is sufficient to center the oscillaBo  gyauation of the discrimination quality of a given metrit.

around zero.The idea behind this polynomial subtraction igan however be noticed that this criterion is dependentef th
that the envelope of a sound (seen as attack, decay, sustain &:5je of the studied dissimilarity metric.

release) can be roughly approximated by a 9th degree polyno-

mial.
This gives us the distaneg,,: 5.2.2. Density criterion
dsp(ar,az) = do(| Ay, |;1;|) (11) Dissimilarity-vector based classification involves cédting
— . . . a dissimilarity metric between pair-wise combinationslef e
whereA,, is the Fourier spectrum af; with ments and grouping together those for which the dissintylari

metric is small according to a given classification algarith
The density criteriorD intends to evaluate a property of
wherea; anda, are the amplitudes of two partiali{z)  the tested metric that should be fulfilled in order to be rel-

is the envelope polynomial computed from sigralising &  evantly used in combination with common classification al-

Zl; = ar — H(ak)

simple least-squares method. gorithms such as hierarchical clustering or K-means. lddee
many classification algorithms iteratively cluster pdstighich
5. EVALUATION relative distance is the smallest one. The density criterio

mathematically described in [16] verifies that these twa par
In this section, we present the methodology used for evaluatials actually belong to the same acoustical entity.
ing the performance of the different metrics reviewed in-Sec
tion 3 and proposed in Section 4. The evaluation database is o o
first described. Next, several criteria are presented, eaeh 9-2.3. Classification criterion

evaluating a specific property of the evaluated metric. For this criterion, the quality the tested metric is evaddat

by considering the quality of a classification done using the
tested metric and a classification algorithm.

In this study, we focus on a subset of musical instruments We consider an agglomerative hierarchical clustering pro-
that produce pseudo-periodic sounds and model them ascgdure [23]. This algorithm produces a series of partitinins
sum of partials (see Section 2). The instruments of the IOWAhe partials (G, Gy—1, ..., G1).
database [21] globally fit to this condition even though some  The first partition(¥,, consists ofx singletons and the last
samples have to be removed. partition Gy consists of a single class containing all the par-
The evaluation database is created as follows. Each filéals. At each stage, the method joins together the two@tust
of the IOWA database is split into a series of audio files, eaclef partials which are most similar according to the chosen di
containing only one tone. The partials are then extracted fosimilarity metric.
each tone using common partials tracking algorithms [7, 8, Here, for the classification criterion, the acousticaltéi
22]. Since we consider only the prominent partials of a giverare identified by simply cutting the dendrogram at the highes
tone, only the extracted partials lasting for at least 1 sdco levels to achieve the desired number of entities. If therddsi
are retained. number of entities is 2, only the highest level is cut.

5.1. Database



The classification criterioft! is then defined as the num- F D H
ber of partials correctly classified versus the number of par de | 2.909 0.938(0.216) 0.929 (0.137)
tials classified: d, || 1.763 0.929(0.230) 0.881 (0.172)
dar || 1.863 0.712(0.326) 0.757 (0.166)
1 . _ ds || 3488 0.944(0.210) 0.940 (0.130)
H(X) = #—X# {ala € B, ANE(a) =i} (12) dsp || 2.909 0.936(0.219) 0.931 (0.133)
(a) Frequencies
whereF,, is an acoustical entity extracted from the hierarchy. T D H
de 1.304 0.818(0.300) 0.786 (0.162
5.3. Methodology d, || 1.298 0.784(0.316) 0.773 (0.159)
dar 1938 0.664(0.331) 0.733(0.156
To compare the metrics proposed in Section 4 and those re- ds || 1.452 0.778(0.301) 0.781(0.163)
viewed in Section 3, we use the following methodology to dsp || 1.366 0.796 (0.297) 0.803 (0.171)
compute the three evaluation criteria. First, anumberofiac (b) Amplitudes

tical entities is randomly selected in the database. Tham, f

each couple of entities between this selection, the follgwi o ] ] ] . -
procedure is operated. Fig. 4. Three criteria (Fisher, density, hierarchical classifi-

For the two entities of the considered coufi&, E), we cation) results for di_stances prese_nted in this paper, ol
computet, andt., the median values of the starting/ending®" (&) the frequencies of the partials, (b) the amplitudes of
time index of the partials. Only the partials existing befor the partials. The density and hierarchical criteria (twasta
t, + e, and aftert, — e, are kept.The values, ande, are columns) are presented as scores between 0 and 1, 1 being a
arbitrarily small constants. perfect result.

Then, the partials of the two entities are gathered to obtain
the tested sinusoidal representation of the mixtire F; +
E;. Only the common part defined as the time interval wher
all the partials are active is considered to evaluate thedes
metric.

the two last criteria. We can also see that removing the poly-
$omial from the frequencies of the partials does not couteib

to the quality of the metric since frequencies of the pastixl

the sounds in the IOWA database are quasi-stationary. The
performance is even worse because of the modulations that
6. RESULTS the polynomial might take away from the frequency evolu-

tions.
Each distances reviewed in Section 3 and proposed in Sec-

tion 4 are now compared using the evaluation methodolog
described in the last section. The correlation distaficef

Equation 4 and the distaneg proposed by Virtanen (s€e ag presented on Table 4(b), the performance of the distance

Equation 6) requires no parameterization. _ measures for the amplitude parameter are globally worse tha
The distance based on AR modelig considers AR  {hgge obtained for the frequency parameter, lowering from

vectors of4 coefficients computed with the Burg method.Theg4o4 t0 809 correct classifications at best. However, the-poly

distanced; of Equation 10 considers spectra computed With,gmial removal slightly enhances the results.

the Fast Fourier Transform (FFT) using vectors windowed by the metriad, performs best for the density criterion since

the periodic Hann window. The computation of the distancg; is generally very low for very similar partials. The metri

dsp (see Equation 11) is similar except tha'd order poly- ;- gives a good result for the Fischer criterion while it per-

nomial is first estimated and removed before the FFT compugms hadly for the two other criteria. This metric was teiste
tation. _ - _ in another work [16], but only on a very limited database. On
300 acoustical entities were considered for all the expery larger database such as one the one of the IOWA, we can see

iments detailed in the remainder of t_his'section. The rssultthat this metric does not seem very stable on the threeieriter
are presented as mean values for criterion, and the bracketg, ihis mater. the spectral metrids andd,, perform best.
values are the standard deviations (not showr#F@ince the ’ ) P

value is already normalized).

%.2. Amplitude Parameter

7. CONCLUSION AND DISCUSSION
6.1 Frequency Parameter In this article, we have proposed a new metric that allows to
The distances between partials based on the frequency paragather partials of different acoustical entities by coasitg
eter is showed on Table 4(a). THe distance we proposed the evolutions of their frequency and amplitude parameters
gives the best results for the three criteria. It should ktedho Considering the correlation of the spectrum of these evo-
that the correlation distancéd) gives also good results for lutions lead to more reliable results than the ones obtained



with the AR modelling approach proposed in previous works [9] M. Lagrange, S. Marchand, and J.B. Rault, “Enhancing
[16]. According to the experiments, the modulations of the the tracking of partials for the sinusoidal modeling of
frequency appear to be the most relevant cue. However, the  polyphonic sounds,JEEE TASLR 2007.

modulations of the amplitude can also be considered as rel

vant especially when the amplitude envelope of the padial iflo] Stephen Grossbergitch Based Streaming in Auditory

Perception Cambridge MA, Mit Press, 1996.

removed.

This new metric may be used for the classification of par{11] paulo Fernandez and Javier Casajus-Quiros, “Multi-
tials into acoustical entities. It has to be noted that tleedr: Pitch Estimation for Polyphonic Musical Signals,” in
chical classification used as a quality criterion in our gtud IEEE ICASSPApril 1998, pp. 3565—3568.

even though very naive, yields to very good results, about

ninety five percent of correct classifications. The use ofamor[12] Anssi Klapuri, “Separation of Harmonic Sounds Us-
sophisticated classification methods will certainly leabét- ing Linear Models for the Overtone Series,” IBEE
ter performance. It would also be of interest to cope with the ~ ICASSP2002.

problem of contaminated partials when dealing with the mor

L ) . o . i 13] Tuomas Virtanen and Anssi Kl ri, “ ration of
realistic case of acoustical entities mixed in the time doma T3] uomas Virtanen and ssi Klapuri, “Separation o

Harmonic Sound Sources Using Sinusoidal Modeling,”
in IEEE ICASSPApril 2000, vol. 2, pp. 765—768.
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