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ABSTRACT

Scene analysis is a relevant way of gathering informations
about the structure of an audio stream. For content extraction
purposes, it also provides prior knowledge that can be taken
into account in order to provide more robust results for stan-
dard classification approaches.

In order to perform such scene analysis, we believe that
the notion of temporality is important. We study in this pa-
per a new way of modeling the evolution over time of the
frequency and amplitude parameters of spectral components.
We evaluate the benefits of such an approach by considering
its ability to automatically gather the components of the same
sound source. The evaluation of the proposed metric shows
that it achieves good performance and take better account of
micro-modulations.

1. INTRODUCTION

Extracting content from polyphonic audio such as musical
streams appears to be bounded to moderate performance if
the stream is considered “blindly”,i.e. processed without
any prior knowledge of the structure of the stream. As scene
analysis is a relevant way of gathering informations about the
structure of an audio stream, performing such operation prior
extracting content is a way to address this issue.

On the high end, one can consider a mid-level represen-
tation of the polyphony [1, 2] describing polyphonic sounds
as a set of coherent spectral regions, where each set can be
considered as monophonic. In this case, one can focus the
content extraction process to a given element of the scene [3].
On a lower end, one can consider some time segmentation of
the audio stream where sections that have similar properties
are identified and/or clustered. Based on this representation,
the temporal priors are considered to integrate the indexing
decision done at each analysis frame to obtain more robust
classification results [4].

In order to extract such representation or segmentation,
many cues can be considered [5]. As far as timbral cues are
considered, the common variation cue [6] is of interest as it

encodes temporal dynamics. In this paper, we focus on this
cue to propose new metrics for defining the similarity between
spectral components using the sinusoidal model.

The paper is organized as follows: after a presentation of
the sinusoidal model in Section 2, existing metrics proposed
in the literature are reviewed in Section 3 and the requisites
of a relevant a metric are also detailed.

The proposed metric is next introduced in Section 4. Mo-
tivated by the properties of the evolutions of the frequencies of
the partials, a first metric is proposed. We next show that this
metric can also be successfully used while considering the
evolutions of the amplitudes as soon as the variations of the
envelope is removed. The definition of a metric that jointly
considers these two cues is next studied.

In order to compare existing metrics to the ones intro-
duced in this article, we use the evaluation methodology pre-
sented in Section 5. In particular, the database and the criteria
that evaluate the ability of the tested metric to discriminate
partials produced from different instruments. The resultsof
this evaluation are presented in section 6.

2. MID-LEVEL REPRESENTATION OF
POLYPHONIC SOUNDS

For various applications, one needs a representation of poly-
phonic sounds where the frequency information as well as its
evolution with respect to time for each sound sources can eas-
ily be extracted. In this section, we discuss the fact that the
well-known sinusoidal model can be a basis for such a repre-
sentation.

The sinusoidal model represents pseudo-periodic sounds
as sums of sinusoidal components – so-called partials – con-
trolled by parameters that evolve slowly with time [7, 8]:

Pk(m) = {Fk(m), Ak(m), Φk(m)} (1)

whereFk(m), Ak(m), andΦk(m) are respectively the fre-
quency, amplitude, and phase of the partialPk at time index
m. These parameters are valid for allm ∈ [bk, · · · , bk + lk −



1], where thebk andlk are respectively the starting index and
the length of the partial.

These sinusoidal components are called partials because
they are only a part of a more perceptively coherent entity
that will be noted in this article an acoustical entity.

Thus, this can be written as:

S =

N⋃

n=1

En (2)

with S being the mid-level representation of the sound,E

being an acoustical entity and N the total number of entities
in the sound. Hence each entity is made of a group of partials:

En =

Mn⋃

k=1

Pn
k (3)

whereMn is the total number of partialsPn
k in the entity.

The partials can be extracted from polyphonic sounds with
dedicated tracking algorithms [9]. However, in order to avoid
problems due to strong polyphony [1], we only consider here
mixtures of already tracked entities.

To extract these entities from a sinusoidal representation
of a sound, similarities between partials should be considered
in order to gather the ones belonging to the same acoustical
entity. From the perceptual point of view, some partials be-
long to the same entity if they are perceived by the human
auditory system as a unique sound. There are several cues
that lead to this perceptual fusion: the common onset, the har-
monic relation of the frequencies, the correlated evolutions of
the parameters and the spatial location [5].

The earliest attempts at acoustical entity identification and
separation consider harmonicity as the sole cue for group for-
mation. Some rely on a prior detection of the fundamental
frequency [10, 11] and others consider only the harmonic re-
lation of the frequencies of the partials [12, 13, 14]. Yet, many
musical instruments are not perfectly harmonic.

According to the work of McAdams [6], a group of par-
tials is perceived as a unique acoustical entity only if the vari-
ations of these partials are correlated. Therefore, the corre-
lated evolutions of the parameters of the partials is a generic
cue since it can be observed with any vibrating instruments.
As an example, see Figure 1.

In order to define a dissimilarity metric that considers the
common variation cue, we will study in the next section the
physical properties of the evolutions of the frequency and am-
plitude parameters of the partials.

3. THE COMMON VARIATION CUE

Let us consider a harmonic tone modulated by a vibrato of
given depth and rate. All the harmonics are modulated at the
same rate and phase but their respective depth is scaled by a
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Fig. 1. Representation of two fictive sounds in the time-
frequency domain. Partials A, B, and C (clearly correlated
in modulation and starting and ending times, that is com-
mon variation) represent the sinusoidal components of the
first sound, while D and E represent the sinusoidal compo-
nents of the second sound.

factor equal to their harmonic rank, see Figure 2(a). It is then
important to consider a metric which is scale-invariant.

M. Cooke uses a distance [15] equivalent to the cosine
dissimilaritydc, also known asintercorrelation:

dc(X1, X2) = 1 −
c(X1, X2)√

c(X1, X1)
√

c(X2, X2)
(4)

c(X1, X2) =
N∑

i=1

X1(i)X2(i) (5)

whereX1 andX2 are real vectors of sizeN . In this article,
X1 andX2 will be the frequency and amplitude of a partial
over time. This dissimilarity is scale-invariant.

T. Virtanenet al. proposed (in [13]) to use the mean-
squared error between the vectors first normalized by their
average values:

dv(X1, X2) =
1

N

N∑

i=1

(
X1(i)

X̄1

−
X2(i)

X̄2

)2

(6)

whereX1 andX2 are vectors of sizeN andX̄ denotes the
mean ofX . This normalization is particularly relevant while
considering the frequencies since the ratio between the mean
frequency of a given harmonic and the one of the fundamental
is equal to its harmonic rank.

We proposed in [16] to consider the Auto-Regressive (AR)
model as a scale-invariant metric that considers only the pre-
dictable part of the evolutions of the parameters:

Xl(n) ≈

k∑

i=1

Kl(i)Xl(n − i) (7)

where theKl(i) are the AR coefficients. Since the direct com-
parison of the AR coefficients computed from the two vectors
X1 andX2 is not relevant, the spectrum of these coefficients
is compared as proposed by Itakura [17]:

dAR(X1, X2) = log

∫ π

−π

|K1(ω)|

|K2(ω)|

dω

2π
(8)
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Fig. 2. Mean-centered frequencies and amplitudes of some
partials of a saxophone tone with vibrato.

where

Kl(ω) = 1 +
k∑

i=1

Kl(i)e
−jiω (9)

When considering the amplitudes of the partials, a scale-
invariant metric is also important. In this context, the normal-
ization proposed by T. Virtanen is no longer motivated since
the relative amplitudes of the harmonics depend on the enve-
lope of the sound. For example, on Figure 2(b), the topmost
curve (with small modulations) represents the amplitudes of
the fundamental partial, while the second to the top curve with
broad oscillation represents the first harmonic.

Moreover the envelope is globally decreasing as the fre-
quency grows, but it can appear that the amplitude of the en-
velope is also ascending due to the specific shape of the en-
velope around formants. Therefore, when the frequency of a
partial is modulated, the amplitude may be modulated with a
phase shift, see the bottom curve of Figure 2(b). Therefore,a
metric that is phase-invariant should be considered.

The amplitude evolution of a partial is composed of a tem-
poral envelope and some periodic modulations. Since the en-
velope of the amplitude of the partials can be very different
from partials to partials of the same entity it may be useful to
consider only the periodic modulations while computing their
similarities.

The metric introduced in the next section will cope with
these issues.

4. PROPOSED METRIC

The aim of proposing a new metric is to go beyond tempo-
ral domain by taking the parameters to the spectral domain.
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Fig. 3. Centered frequencies (top) of a piano note and their
corresponding spectra (bottom). Each curve is shifted and the
spectra are smoothed using zero-padding for clarity sake.

There was already an attempt at this, using AR models (see
equation 8).

Since the Fourier transform is based on the fact that the
input signal is periodic, using a spectrum of the evolutionsof
the partials might show common periodicities of the partials.
This will be handy for the modulations of the partials created
by vibrato and tremolo, since we can assimilate these mod-
ulations to sinusoidal ones over a short period of time (see
[18, 19]). It can be also interesting for micro-modulations
such as the ones produces by vibrating strings such as the
strings of a piano (see Figure 3). Hence, the spectrum of the
evolutions in frequency and amplitude of the sound are rele-
vant from the point of view of the correlation of evolutions.

In this section, we explain how we compute the correla-
tion of evolutions in order to obtain our new metric, first for
the frequency parameters of the sound, second for the am-
plitude parameters of the sound (since two slightly different
methods are used).

4.1. Using the Frequencies of the Partials

The first step in the calculation of our new metric is to corre-
late the evolutions of the frequencies of the partials. As we
said before, a good description of these evolutions is givenby
the spectra of these evolutions.

The way to compute the spectra of the frequency evolu-
tions of the signal from a partial is to take off the mean value
of this frequency and then compute the Fourier transform of
the resulting signal. Indeed, in order to have a clean spectrum
relevant to the evolutions, it is necessary to have the evolu-
tions centered around zero.

Then, we apply the previously exposed process to the fre-



quencies of all the partials from which we want to measure
evolution correlation. Once we have these frequencies ex-
pressed in terms of spectra, the way to compute the distance
between two partial signals is to intercorrelate their spectra
(see equation 4). This gives

ds(f1, f2) = dc(|F1|, |F2|) (10)

wheref1 andf2 are the frequency vectors of two partialsP1

andP2 andFk is the Fourier spectrum offk, fk being the
frequencies of partialPk.

4.2. Using the Amplitudes of the Partials

In the case of the amplitudes of the partials, the problem is
slightly more complicated. Indeed, in order to center the os-
cillating part of the signal around zero subtracting the mean
will not be sufficient. As presented in other works [20], sub-
tracting a polynomial is sufficient to center the oscillations
around zero.The idea behind this polynomial subtraction is
that the envelope of a sound (seen as attack, decay, sustain and
release) can be roughly approximated by a 9th degree polyno-
mial.

This gives us the distancedsp:

dsp(a1, a2) = dc(|Ã1|, |Ã2|) (11)

whereÃk is the Fourier spectrum of̃ak with

ãk = ak − Π(ak)

wherea1 anda2 are the amplitudes of two partials,Π(x)
is the envelope polynomial computed from signalx using a
simple least-squares method.

5. EVALUATION

In this section, we present the methodology used for evaluat-
ing the performance of the different metrics reviewed in Sec-
tion 3 and proposed in Section 4. The evaluation database is
first described. Next, several criteria are presented, eachone
evaluating a specific property of the evaluated metric.

5.1. Database

In this study, we focus on a subset of musical instruments
that produce pseudo-periodic sounds and model them as a
sum of partials (see Section 2). The instruments of the IOWA
database [21] globally fit to this condition even though some
samples have to be removed.

The evaluation database is created as follows. Each file
of the IOWA database is split into a series of audio files, each
containing only one tone. The partials are then extracted for
each tone using common partials tracking algorithms [7, 8,
22]. Since we consider only the prominent partials of a given
tone, only the extracted partials lasting for at least 1 second
are retained.

5.2. Criteria

Once the evaluation database is defined, one need some cri-
teria to evaluate the capability of a given metric to determine
that two partials are “close” if they actually belong to the same
acoustical entity and “far” otherwise.

5.2.1. Fisher criterion

A relevant dissimilarity metric between two partials is a met-
ric which is low for partials of the same entity – the class
from the statistical point of view – and high for partials that
do not belong to the same entity. The intra-class dissimilar-
ity should then be minimal and the inter-class dissimilarity as
high as possible. The Fisher criterionF(U) described in [16]
is loosely based on the fisher discriminant commonly used in
statistical analysis to reflect this property. It provides afirst
evaluation of the discrimination quality of a given metric.It
can however be noticed that this criterion is dependent of the
scale of the studied dissimilarity metric.

5.2.2. Density criterion

Dissimilarity-vector based classification involves calculating
a dissimilarity metric between pair-wise combinations of ele-
ments and grouping together those for which the dissimilarity
metric is small according to a given classification algorithm.

The density criterionD intends to evaluate a property of
the tested metric that should be fulfilled in order to be rel-
evantly used in combination with common classification al-
gorithms such as hierarchical clustering or K-means. Indeed,
many classification algorithms iteratively cluster partials which
relative distance is the smallest one. The density criterion,
mathematically described in [16] verifies that these two par-
tials actually belong to the same acoustical entity.

5.2.3. Classification criterion

For this criterion, the quality the tested metric is evaluated
by considering the quality of a classification done using the
tested metric and a classification algorithm.

We consider an agglomerative hierarchical clustering pro-
cedure [23]. This algorithm produces a series of partitionsof
the partials:(Gn, Gn−1, . . . , G1).

The first partitionGn consists ofn singletons and the last
partitionG1 consists of a single class containing all the par-
tials. At each stage, the method joins together the two cluster
of partials which are most similar according to the chosen dis-
similarity metric.

Here, for the classification criterion, the acoustical entities
are identified by simply cutting the dendrogram at the highest
levels to achieve the desired number of entities. If the desired
number of entities is 2, only the highest level is cut.



The classification criterionH is then defined as the num-
ber of partials correctly classified versus the number of par-
tials classified:

H(X) =
1

# X
# {a|a ∈ Ên ∧ E(a) = i} (12)

whereÊn is an acoustical entity extracted from the hierarchy.

5.3. Methodology

To compare the metrics proposed in Section 4 and those re-
viewed in Section 3, we use the following methodology to
compute the three evaluation criteria. First, a number of acous-
tical entities is randomly selected in the database. Then, for
each couple of entities between this selection, the following
procedure is operated.

For the two entities of the considered couple(Ei, Ej), we
computets andte, the median values of the starting/ending
time index of the partials. Only the partials existing before
ts + ǫs and afterte − ǫe are kept.The valuesǫs and ǫe are
arbitrarily small constants.

Then, the partials of the two entities are gathered to obtain
the tested sinusoidal representation of the mixtureS = Ei +
Ej . Only the common part defined as the time interval where
all the partials are active is considered to evaluate the tested
metric.

6. RESULTS

Each distances reviewed in Section 3 and proposed in Sec-
tion 4 are now compared using the evaluation methodology
described in the last section. The correlation distancedc of
Equation 4 and the distancedv proposed by Virtanen (see
Equation 6) requires no parameterization.

The distance based on AR modelingdar considers AR
vectors of4 coefficients computed with the Burg method.The
distanceds of Equation 10 considers spectra computed with
the Fast Fourier Transform (FFT) using vectors windowed by
the periodic Hann window. The computation of the distance
dsp (see Equation 11) is similar except that a9th order poly-
nomial is first estimated and removed before the FFT compu-
tation.

300 acoustical entities were considered for all the exper-
iments detailed in the remainder of this section. The results
are presented as mean values for criterion, and the bracketed
values are the standard deviations (not shown forF since the
value is already normalized).

6.1. Frequency Parameter

The distances between partials based on the frequency param-
eter is showed on Table 4(a). Theds distance we proposed
gives the best results for the three criteria. It should be noted
that the correlation distance (dc) gives also good results for

F D H

dc 2.909 0.938 (0.216) 0.929 (0.137)
dv 1.763 0.929 (0.230) 0.881 (0.172)
dar 1.863 0.712 (0.326) 0.757 (0.166)
ds 3.488 0.944 (0.210) 0.940 (0.130)
dsp 2.909 0.936 (0.219) 0.931 (0.133)

(a) Frequencies

F D H

dc 1.304 0.818 (0.300) 0.786 (0.162)
dv 1.298 0.784 (0.316) 0.773 (0.159)
dar 1.938 0.664 (0.331) 0.733 (0.156)
ds 1.452 0.778 (0.301) 0.781 (0.163)
dsp 1.366 0.796 (0.297) 0.803 (0.171)

(b) Amplitudes

Fig. 4. Three criteria (Fisher, density, hierarchical classifi-
cation) results for distances presented in this paper, applied
on (a) the frequencies of the partials, (b) the amplitudes of
the partials. The density and hierarchical criteria (two last
columns) are presented as scores between 0 and 1, 1 being a
perfect result.

the two last criteria. We can also see that removing the poly-
nomial from the frequencies of the partials does not contribute
to the quality of the metric since frequencies of the partials of
the sounds in the IOWA database are quasi-stationary. The
performance is even worse because of the modulations that
the polynomial might take away from the frequency evolu-
tions.

6.2. Amplitude Parameter

As presented on Table 4(b), the performance of the distance
measures for the amplitude parameter are globally worse than
those obtained for the frequency parameter, lowering from
94% to 80% correct classifications at best. However, the poly-
nomial removal slightly enhances the results.

The metricdc performs best for the density criterion since
it is generally very low for very similar partials. The metric
dar gives a good result for the Fischer criterion while it per-
forms badly for the two other criteria. This metric was tested
in another work [16], but only on a very limited database. On
a larger database such as one the one of the IOWA, we can see
that this metric does not seem very stable on the three criteria.
In this mater, the spectral metricsds anddsp perform best.

7. CONCLUSION AND DISCUSSION

In this article, we have proposed a new metric that allows to
gather partials of different acoustical entities by considering
the evolutions of their frequency and amplitude parameters.

Considering the correlation of the spectrum of these evo-
lutions lead to more reliable results than the ones obtained



with the AR modelling approach proposed in previous works
[16]. According to the experiments, the modulations of the
frequency appear to be the most relevant cue. However, the
modulations of the amplitude can also be considered as rele-
vant especially when the amplitude envelope of the partial is
removed.

This new metric may be used for the classification of par-
tials into acoustical entities. It has to be noted that the hierar-
chical classification used as a quality criterion in our study,
even though very naive, yields to very good results, about
ninety five percent of correct classifications. The use of more
sophisticated classification methods will certainly lead to bet-
ter performance. It would also be of interest to cope with the
problem of contaminated partials when dealing with the more
realistic case of acoustical entities mixed in the time domain.
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