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ABSTRACT

In this article, we present an enhanced algorithm, of low com-
plexity, for the tracking of partials in the context of sinusoidal
modeling. By considering past evolution of each partial in the
time/frequency and time/amplitude planes to predict its future evo-
lutions, this algorithm allows a better discrimination between sinu-
soidal and noisy components and an easier cancellation of sudden
change in the evolution of the partials.

1. INTRODUCTION

The sinusoidal model presented in Section 2 provides a high-quality
representation of pseudo-stationary sounds. Therefore, this model
is widely used for many musical audio processing purposes such
as musical source separation, transcription or coding. One of the
most challenging parts of the analysis chain presented in Figure 1
is known as partial tracking.

Given a discrete time/frequency representation, a partial tracker
should be able to extract continuous informations by linking fre-
quency components of successive frames. Most tracking meth-
ods [1, 2, 3] use heuristics such as distance in frequency, ampli-
tude, and phase between two successive frequency components to
achieve such a task. While the use of such heuristics is successful
in handling monophonic sound, they generally fail when extended
to polyphonic sounds because of spectral degradations “blurring”
the time/frequency representation. In such a case, a model for the
evolutions of the partials is clearly needed. A partial should have
an evolution which is slow time-varying and predictable and for
specific purposes, the model can be more rigorous [4]. In Section
3 we present a tracking method that exploits these constraints. It
is based on the well-known linear prediction model presented in
Section 4, but this time applied to the spectral parameters of the
sounds. Its implementation is detailed in Section 5. Discussion
about the problem of the validation and comparison of the differ-
ent tracking methods, as well as results, follow in Section 6.

2. SINUSOIDAL MODELING

Additive synthesis is the original spectrum modeling technique. It
is rooted in Fourier’s theorem, which states that any periodic func-
tion can be modeled as a sum of sinusoids at various amplitudes
and harmonic frequencies. For stationary pseudo-periodic sounds,
these amplitudes and frequencies continuously evolve slowly with
time, controlling a set of pseudo-sinusoidal oscillators commonly
called partials. The audio signal s can be calculated from the ad-
ditive parameters using Equations 1 and 2, where P is the number
of partials and the functions fp, ap, and φp are the instantaneous
frequency, amplitude, and phase of the p-th partial, respectively.
The P pairs

�
fp � ap � are the parameters of the additive model and

Time/Frequency
Analysis

Peak Extraction Partial Tracking

Fig. 1. Sinusoidal analysis procedure.

represent points in the frequency-amplitude plane at time t. This
representation is used in many analysis / synthesis programs such
as Lemur [5], SMS [3], or InSpect [6].
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2.1. Analysis Procedure

Sinusoidal analysis is generally made of three steps as shown in
Figure 1. Instantaneous parameters of partials are estimated by
picking some local maxima commonly called peaks from a short-
term time/frequency analysis. Partials are then formed by tracking
peaks over time, from frame to frame.

In our system, spectral estimation is done using a short time
Fourier transform. The instantaneous frequency, amplitude, and
phase of the peaks are estimated using the derivative method [7].
For various reasons, peaks can be missing or erroneous. The peak-
picking process can remove some erroneous ones [8], but is not
able to recover missing spectral information. In order to form par-
tials of reasonable length, the partial tracking step should be able
to interpolate missing peaks.

2.2. Constraints on the Evolutions of Partial Parameters

We assume that the partials have a minimum length and that their
evolutions in frequency and amplitude are predictable since re-
peated “birth”/“death” and sudden changes in the evolutions of the
partials will generate noisy “clicks” at the resynthesis stage and
offer a poor representation of the spectral contents.

3. ALGORITHM OVERVIEW

The first partial tracking algorithm was introduced in [1] by Mc-
Aulay and Quatieri in the field of the sinusoidal modeling of voice.
The algorithm is based on the assumption that partials composing
a voiced signal have stationary frequencies. Given a set of partials
ending at frame k, it is proposed to consider frequency differences
below a given threshold ∆ f between the last inserted peak of each
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Fig. 2. Prediction capability of constant (x), linear (+) and LP
(*) predictors on a synthetic vibrato. Peaks are represented with
circles (o). The already-tracked partial using the MAQ algorithm
and the proposed method are plotted, respectively, with dotted and
solid lines.

partial and the peaks of frames k � ni � 1. The ni parameter is the
number of interpolated peaks allowed to be used at once. If no
peak satisfying this constraint can be found the partial is “dead”.
If a peak remains unlinked at frame k � 1, a partial is “born”. Con-
sidering ni � 0 gives the original McAulay and Quatieri (MAQ)
algorithm.

To select the next peak, the frequency and amplitude evolu-
tions of the partials are considered constant (see Figure 2). Yet,
frequencies and amplitudes of partials are not stationary, but their
evolutions are often predictable. A better approximation has been
proposed in [2] by considering the continuity of the slope. How-
ever, without a model for the evolutions of partials it seems impos-
sible to overcome spectral artifacts. It is proposed in [4] to model
the evolution of partials evolutions of instrumental sounds of the
brass family by means of Kalman filtering using pre-extracted sta-
tistical informations. In order to gain generality, we showed in [9]
that linear prediction (LP) can be used to model and predict the fre-
quency and amplitude evolutions with parameters computed from
the past evolution of the partials. Therefore, we propose to use
both the predicted frequency and amplitude to select peak candi-
dates in the next frames and to interpolate missing peaks.

Using linear prediction has two advantages that can be seen in
Figure 2. The predicted frequency is closest to those of the next
peak to be linked, so that the algorithm is more precise (we choose
the right peak at frame 18). Since the prediction error is lower
than using a constant predictor, the algorithm can be much more
selective by using a lower ∆ f . We can then discard the peak at
frame 21 and use an interpolated one instead.

4. LINEAR PREDICTION

In the linear prediction (LP) model, also known as the autoregres-
sive (AR) model, the current sample x

�
n � is approximated by a

linear combination of k past samples of the input signal. We are
then looking for a vector a of k coefficients, k being the order of
the LP model. Provided that the a vector is estimated, the predicted
value x̂ is computed simply by FIR filtering of the k past samples
with the coefficients using Equation 3:

x̂
�
n � �

k

∑
i � 1

ai x
�
n � i � (3)

The challenge in linear prediction modeling is to choose the model
order k, the number of samples and type of method to estimate the

coefficients that suit specific needs.
For frequency and amplitude evolutions, we want to model ex-

ponentially increasing or decreasing evolutions (portamento) and
sinusoidal evolutions (vibrato), the order of the LP model should
not be below 2. Experimental testing showed that a model order in
the

�
2 � 8 � range is suitable.
The number of samples used has to be large enough to be able

to extract the signal periodicity, and short enough not to be too
constrained by the past evolution. The short-term analysis module
uses a sliding time / frequency transform with a hop size of 512
samples on sound signals sampled at CD quality (44.1 kHz). This
means that the frequency and amplitude trajectories are sampled at� 86 Hz. Since we want to handle natural vibrato with a frequency
about 4 Hz, we need at least 20 samples to get the period of the
vibrato. Experimental testing showed that for most cases a number
of samples in the

�
4 � 32 � range is suitable.

On one hand spectral data suffer from imprecision, so the me-
thod has to be resistant to noise. On the other hand, the evolutions
of the partials in frequency and amplitude are sampled at a low
sample rate, so the method to estimate the coefficients has to be
reactive. Among the three methods tested in [9], the Burg method
was the most satisfactory. It minimizes the average of the power of
the forward e f and backward eb errors calculated using Equations
4 and 5, it then leads to stable filter coefficients, see [10, 11] for
details. Moreover, the minimization is done on a finite support, so
the method requires only few samples to be effective.

e f
k

�
n � � 1�
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5. ENHANCED ALGORITHM

Linear prediction requires at least a few samples to be effective,
all starting partials then begin using a selection mode similar to
one used in the MAQ algorithm for a fixed number of frames ns.
Partials are processed in decreasing amplitude order and the non-
starting ones are processed first.

At each frame, each partial predicts its ideal evolution in fre-
quency and amplitude using linear prediction and selects nc peak
candidates, in the next frame, with a difference between its fre-
quency and the predicted one below a given threshold ∆ f . it then
picks from these nc peaks the one that has the smallest difference
between its amplitude and the predicted one. If no peak can be
found, the predicted frequency and amplitude are used to create
an interpolated peak. As a first approximation, its phase is in-
terpolated using the maximally smooth polynomial interpolation
detailed in [1].

If two partials cross, a peak corruption occurs in the crossing
region (see Figure 3). In this case, interpolated peaks will be used
for the partial having the lower amplitude since there is no peak
satisfying the prediction constraints. When this partial links to an
extracted peak, the crossing is detected (at frame 272 in Figure
3). If the amplitude difference between the two partials is below
a given threshold, the highest amplitude partial will also use inter-
polated peaks in the crossing region because the extracted peaks in
the crossing region are considered too corrupted to be reliable.
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Fig. 3. Peak extraction of the crossing of an harmonic of a saxo-
phone tone and a synthetic frequency ramped sinusoid sound.

6. RESULTS

Due to the several possible applications of a partial tracking mod-
ule, it seems hard to give a complete evaluation of partial track-
ing algorithms by a straightforward quality measure. As a conse-
quence, we left this task for further research and give an intuitive
comparison of the MAQ algorithm and the proposed method using
several criteria.

We can roughly set two requirements concerning the results
of a tracking algorithm: the resynthesis quality concerning coding
applications and the identification of onset/offset and evolution of
partials concerning indexing applications. Both requirements are
needed for source separation. The resynthesis quality will be dis-
cussed in the first part using a synthetic tone. Crossing partials
management is studied in a second part. The identification of on-
set/offset and evolution of partials is then studied in a third part
using natural violin tones.

6.1. Resynthesis Quality

In the processing chains of hybrid sound models such as sinusoids-
+noise or sinusoids+transients+noise, the sinusoidal components
are first extracted and then synthesized to be subtracted from the
original signal to give a residual that will be considered as a ran-
dom process (noise). Ideally, the partials should efficiently rep-
resent all sinusoidal components and only them. Otherwise, if
the partial set represents only a few of the sinusoidal components,
there will be some sinusoidal components left in the residual. If the
partial tracking algorithm has no discrimination capability, it will
wrongly identify partials in noise and the random process will be
modeled as slow-time varying sinusoids, forcing the residual mod-
ule to handle those synthesized sinusoids that were not present in
the original sound.

Efficiency and discriminating capabilities of the two algorithms
are tested using a synthetic constant amplitude 4 Hz vibrato sinu-
soid with frequency ranges from 1950 to 2050 Hz, embedded in a
white noise of growing level. Concerning the parameterization of
the tracking algorithms, ni was set to 4. For the MAQ algorithms,
we used the smallest ∆ f such that the vibrato could be tracked, that
is 20 Hz. For the proposed method, ∆ f was set to 12 Hz, the pre-
diction order to 6, the prediction length to 20 frames, and ns to 10.
All the partials whose length was below 15 peaks were discarded.
The peak extraction method proposed in [7] and the original partial
resynthesis method introduced in [1] were used for the two com-
pared methods. The quality of the tracking algorithm is measured
with the reconstruction-SNR in function of the degradation-SNR.

In the first experiment, in order to evaluate the efficiency, only
the partial having the highest mean amplitude was synthesized to
compute the reconstruction-SNR. At degradation-SNR below -7
dB (see Figure 4.1), the MAQ algorithm produces partials that
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Fig. 4. Evaluation of the efficiency and discrimination capa-
bilities of the two methods: proposed method (solid line) and
MAQ method (dashed line) using a synthetic vibrato tone em-
bedded in white noise. The plot shows reconstruction-SNR ver-
sus degradation-SNR on the dB scale. To evaluate the efficiency,
on the top, only the partial with the highest amplitude is synthe-
sized. At the bottom, to evaluate the discrimination capability, all
extracted partials are synthesized to compute the reconstruction-
SNR.

are a mix of noisy peaks and tonal peaks so that the tone is split
into several partials. Whereas the proposed method, by having a
smaller ∆ f , is able to track correctly the tone with vibrato by not
choosing noisy peaks. The slow decay is due to errors in the esti-
mation of the spectral peaks. In the second experiment, to evaluate
the discriminating capability of the two algorithms, all retained
partials that have frequencies in the [1900, 2100] Hz band are syn-
thesized to compute the degradation-SNR (see Figure 4.2). Be-
cause the proposed algorithm makes it possible to use a lower ∆ f ,
it has a better discrimination capability.

6.2. Crossing of Partials

The problem of partial crossing arises when we have to deal with
a mixture of non-stationary sounds. The tracking has to be able
to identify the evolution of the partials and to interpolate correctly
missing spectral data (see Figure 3). In order to test the manage-
ment of crossing, a natural A-440 Hz saxophone tone was cor-
rupted by a synthetic constant-amplitude sinusoid beginning 20
frames later and having frequency going from 200 Hz to 4 kHz.
Only the extracted partials starting before the frame 20 were syn-
thesized to compute the reconstruction-SNR. Results for the MAQ
method using a ∆ f of 80 Hz and the proposed method using a ∆ f
of 25 Hz are plotted in Figure 5. Having a model of the evolutions
of parameters leads to an easier management of crossing partials,
by being more selective and by having a better interpolation capa-
bility. Furthermore, the presented algorithm schedules the partials
in decreasing amplitude, so that the partial with the slower degra-
dation is processed first. It reduces the probability of handling the
crossing incorrectly.

6.3. Identification of Partials

In applications such as indexing or source separation of stationary
pseudo-periodic sounds, a good representation of the partials pro-
vides a higher level of description, useful to extract robustly high
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Fig. 5. Evaluation of the crossing management capability of the
two methods: the proposed method (solid line) and the MAQ al-
gorithm (dashed line). A natural A-440 Hz saxophone tone is cor-
rupted by a synthetic constant-amplitude sinusoid beginning 20
frames later and having frequency going from 200 Hz to 4 kHz.
The plot shows reconstruction-SNR versus degradation-SNR on
the dB scale. Only the extracted partials starting before the frame
20 were synthesized to compute the reconstruction-SNR.

level informations such as note onset/offset, pitch detection and
source identification.

In order to easily detect the note onset/offset, one would like to
have a good time separation, meaning that a partial should belong
to only one source. And in order to detect the pitch and to iden-
tify the sources, the partials should show “clear” time/frequency
and time/amplitude evolutions in order to be able to cluster par-
tials. As can be seen in Figure 6.1, the partial set extracted by the
MAQ algorithm is not satisfactory. A lot of partials belong to two
or three tones and it would be very difficult to detect the vibrato
frequency of the second tone. The proposed method shows bet-
ter results in time separation and the vibrato of the second tone is
clearer (see Figure 6.2). The implementation described in Section
5 is not perfect, some partials belong to two tones and the vibrato
is still not perfectly handled in noisy conditions.

7. CONCLUSION

In this article, we proposed to use linear prediction to replace the
classic stationary assumption to better track and to interpolate par-
tials in the context of sinusoidal modeling. However the presented
implementation has to be compared with tracking algorithm ex-
plicitly dedicated to musical recording analysis [2, 4], this new ap-
proach leads to promising results in terms of resynthesis and rep-
resentation quality, two important requirements for an approach of
source separation from mono recording based on sinusoidal mod-
eling.
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