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ABSTRACT

This paper proposes to further improve the tracking of partials
in a polyphonic context. Spectral characteristics of the control-
ling parameters (amplitude and frequency) are taken into account
to ensure that these parameters evolve slowly with time. The re-
sulting algorithm better tracks closely-spaced sinusoids and is able
to avoid most of the spectral data belonging to noise. As a conse-
quence, the proposed algorithm extracts a more meaningful sinu-
soidal representation from polyphonic recordings.

1. INTRODUCTION

The sinusoidal model presented in Section 2 provides a high-quality
representation of pseudo-stationary sounds. Therefore, this model
is widely used for many musical audio processing purposes such
as musical source separation, transcription or coding. One of the
most challenging part of the analysis chain is known as partial
tracking. In [1], we proposed to enhance the partial tracking al-
gorithm proposed in [2] by means of Linear Prediction (LP). This
leads to better performance for modulated sounds such as notes
with vibrato or tremolo. Furthermore, the interpolation capability
of this algorithm is useful for interpolating missing parts of par-
tials in case of crossing sinusoids. In this article, we propose to
further improve this algorithm by considering the spectral proper-
ties of the evolutions of the controlling parameters of the partials
in order to find the best continuation for each partial trajectory.

After a short introduction about sinusoidal modeling, the con-
straint on the evolutions of the parameters of the partials that will
be exploited in this article is presented in Section 2. This con-
straint leads to a criterion presented in Section 3 to be used during
the tracking process in an algorithm described in Section 4. The
performances of this new partial-tracking algorithm are finally de-
scribed in Section 5.

2. SINUSOIDAL MODEL

The sinusoidal model proposes to represent sounds as sums of si-
nusoids – so-called partials – controlled by parameters that evolve
slowly with time. The audio signal s can be calculated from the
controlling parameters using Equations 1 and 2, where P is the
number of partials and the functions fp, ap, and φp are the instan-
taneous frequency, amplitude, and phase of the p-th partial, respec-
tively. The P pairs (fp, ap) – so-called peaks – are the parame-
ters of the additive model and represent points in the frequency-
amplitude plane at time t.

s(t) =
P
X

p=1

ap(t) cos(φp(t)) (1)

φp(t) = φp(0) + 2π

Z t

0

fp(u) du (2)

Very low bit-rate audio coding [3] can be achieved using sinu-
soidal modeling since the parameters controlling the oscillators are
slow time-varying and thus can be encoded very efficiently. More
recently, this model has been used for musical transcription [4] and
source separation [5].

Partial tracking aims at selecting peaks and linking them to-
gether from frame to frame in order to form partials. The first
tracking algorithm was proposed by McAulay and Quatieri in [2]
for the sinusoidal modeling of monophonic speech. This algorithm
is based on the assumption that partials composing a voiced sig-
nal have stationary frequency evolutions. Frequency differences
between peaks of immediate successive frames are considered in
order to form partials. A maximal frequency difference threshold
∆f is set between the frequency of the last inserted peak of the
partial and the frequency of a peak candidate for linking.

The performance of the algorithm relies on an unambiguous
short-term sinusoidal representation: the peaks identified must be-
long to sinusoidal components and a peak must be identified every
time a sinusoidal component is present. During the analysis of
polyphonic sounds, the time / frequency trade-off leads to an am-
biguous sinusoidal short-term representation as explained in [1]:
some peaks belong to stochastic components and some peaks are
missing.

An algorithm proposed in [6] enhances the previous algorithm
by considering dynamic programming. A cost function based on
amplitude and frequency deviations between the two last inserted
peaks in the partial and the peak candidate is globally (for all par-
tials) minimized to determine the linking of all peaks at a frame.
This algorithm is very innovative because it allows to better avoid
noisy peaks and handles crossing of sinusoids. Unfortunately, the
global minimization is time-consuming and the problem of miss-
ing peaks is not handled.

We propose to further improve the avoidance of noisy peaks by
considering an original cost function based on the frequency anal-
ysis of the evolution of the parameters of the partials. The param-
eters of the partials should not have a stochastic behavior (indicat-
ing that the partial models some stochastic component), nor hav-
ing abrupt changes (indicating that the partial models some tran-
sient component or jumps across several sinusoidal components)
such as those plotted with dashed / dotted lines on top of Figure 1,
because these two behaviors do not satisfy the slow time-varying
constraint.

The challenge is then to define a sinusoidal analysis procedure
that is able to extract partials having parameters that are slow time-
varying and to reject the others. A first approach is to restrict the
range of possible variations as in [2]. Yet, there can be heavily
modulated evolutions that are slow time-varying. Alternatively,
we propose to study spectral properties of the evolutions of the
parameters of the partials in order to decide if they are slow time-
varying or not. Indeed, if the evolutions of the partials show no-
ticeable energy levels in frequencies bands upper than 20 Hz, then
the induced distortion can be heard. The extracted representation
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Fig. 1. Three evolutions of the frequency of partials extracted us-
ing a nearest frequency neighbor approach (on top) and their cor-
responding spectra (at bottom). From top to bottom, an harmonic
of a saxophone tone with a synthetic local burst around frame 50
(dashed line), a well-tracked harmonic with vibrato (solid line),
and a partial wrongly extracted from a white noise signal (dash-
dotted line). The spectral estimates of the two unwanted evolutions
contain significant energy in the high frequencies.

becomes no longer relevant because it does not follow perception
anymore.

3. HIGH-FREQUENCY CONTENT ESTIMATION

As shown at bottom of Figure 1, it is possible to discriminate
slow time-varying evolutions from the others (noisy partials, local
burst in the evolution, or change of harmonics rank) by consider-
ing spectral estimates of the evolutions. Therefore, it is possible to
identify partials that belong to the model by considering the high
frequency content (HFC) of the evolutions of their frequencies and
their amplitudes. Unfortunately, removing wrong partials after the
tracking process may lead to an incomplete sinusoidal represen-
tation. The “noisy” partials will be removed but also the partials
with a local discontinuity.

To extract partials that conform to the model, the HFC esti-
mation must be integrated within the tracking process itself. To
decide whether a peak candidate should be the continuation of a
partial, the HFC induced by the insertion of this peak is estimated.
Several spectral methods for the estimation of the HFC have been
tested, and the use of low-delay elliptic high-pass filters gave the
most relevant results. Parameters such as the cutting frequency and
the order of the filters depend on the frame rate. For frequency and
amplitude parameters sampled at ≈ 86 Hz, order-4 filters having
normalized cutting frequency of 0.5 are convenient. An efficient
implementation is done using IIR order-2 cells with the following
coefficients:

 

1 0.2274 0 1 -0.2346 0
1 0.1673 -0.0137 1 -1.2898 0.4076
1 -0.3951 0.0201 1 -2.0762 1.0762

!

As can be seen on Figure 2, the output of the high-pass filter
is quite responsive so that the insertion of peak with parameters
inducing noticeable HFC in the evolutions of the parameters can
be detected very rapidly. In practice, each time a peak is inserted,
the amplitude and the frequency parameters of this peak (minus the
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Fig. 2. Output of the high-pass filter (plain) given three different
evolutions of the frequency parameter of the partials (line).

amplitude / frequency of the first inserted peak) are used to update
memories of the two filters dedicated to the estimation of the HFC
in the evolutions of amplitude / frequency parameters of the partial.
While exploring possible continuations, these memories are used
as-is.

4. PROPOSED ALGORITHM

Since the filters used for HFC estimation require at least a few ob-
served samples to be effective, a peak selection process that con-
siders HFC cannot be used from the very beginning of the partial.
Therefore, partials can be in two states during the tracking pro-
cess: the “young” state and the “mature” one, whether the number
of inserted peaks is below or upper a given threshold Ns. If the
partial is young, the selection is similar to the one proposed in [2].
It selects the peak having the frequency closest to the frequency
of the last inserted peak so that the difference between these two
frequencies is below a ∆f threshold. If the partial is mature, the
estimation of the HFC can be exploited, the selection strategy de-
scribed in the next section is used. Once each partial has selected
its best continuation in the next frame, the partials are sorted using
a criterion presented in the second part of this section, so that the
most reliable partials can extend themselves first in the next frame.

4.1. Exploring Possible Trajectories

Once a partial is mature, the HFC of the evolutions of the fre-
quency and the amplitude of possible trajectories in future frames
can be exploited. Small trajectories in futures frames of length
Nf > 1 are considered for two reasons. First, the high-pass filters
used for HFC estimation have a response delay. Second, consider-
ing several frames in the future is valuable to avoid local disconti-
nuities.

A prediction of the frequency evolution of the partial in the
next frames is computed using Linear Prediction (LP), see Figure
3.1 and [1] for further details. Two peaks per frame are chosen so
that the frequency difference between the frequency of the peak
and the interpolated one is below ∆f , see Figure 3.2. Considering
local stationarity, the LP coefficients used for the prediction are
then used to compute the parameters of the interpolated peaks. All
possibles trajectories that go through the measured peaks (dots) or
predicted ones (diamonds) are tested.



The chosen trajectory should then contain the highest number
of extracted peaks possible while maintaining a small HFC in both
frequency and amplitude. To each trajectory is associated a cost
function that considers the HFC both in frequency and amplitude.
Additionally, the cost function is divided by a factor Γ ∈]0, 1] each
time an interpolated peak is used:

πt =

„

1

Γ

«nt

·

PNf

i=0
|ãk

i |
2

Ka

·

PNf

i=0
|f̃k

i |
2

Kf

(3)

where ãk
i and f̃k

i are, respectively, the high-frequency filtered am-
plitude and frequency of the k-th peak in the frame i. This filtering
is done using memories of the filters associated to the current par-
tial. nt is the number of interpolated peaks in the trajectory num-
ber t, Ka and Kf are normalizing constants. The choice of the
best trajectory leads to constraints on the relative order between
costs and not on their absolute values, so that Ka and Kf can be
safely set to 1 in this article. The selected peak is then the first
peak of the trajectory with the smallest πt.
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Fig. 3. Selecting peak candidates in the future frames and explor-
ing possible trajectories. On top, the predicted frequencies using
linear prediction are plotted with stars. Two peaks per frame are
chosen so that the frequency difference between the frequency of
the peak and the predicted one is below ∆f (plotted in the mid-
dle). At bottom, possible trajectories that go through these selected
measured peaks (dots) and interpolated ones (diamonds) are tested.
One is chosen according to a cost function πt that penalizes HFC
both in frequency and amplitude and the use of interpolated peaks
(see Equation 3). The first peak of this trajectory is added to the
partial.

4.2. Partials Prioritization

Since a peak extracted from the Short-Time Fourier Transform
(STFT) should be allocated to only one partial, concurrency be-
tween partials must be taken into account. Once the partials have

selected their best continuation, they are sorted in decreasing or-
der, according to the sp criterion defined in Equation 4, so that the
partials having the highest amplitude and the mature – most reli-
able – ones can select their next peak first. Once the partials are
scheduled, each partial extends itself using its selected peak if this
peak is still available.

sp =

(

al if p is mature
−|f ′−fl|

∆f
otherwise

(4)

Where al and fl are the amplitude and the frequency of the last
inserted peak, and f ′ is the frequency of the peak selected for con-
tinuation.

5. RESULTS

This section compares three tracking algorithms: the first is the
McAulay-Quatieri (MAQ) algorithm with a ∆f of 80 Hz. The
second one is presented in [1]. All peaks whose distance between
its frequency and the predicted one is below a ∆f of 40 Hz are
selected and the one with the amplitude closer to the predicted one
is chosen for continuing the partial. The third one is the proposed
tracking method with Γ set to 0.9, Nf to 6 and Ns = 20.

For the three methods, only 4 successive interpolated peaks are
allowed and all the partials having less than 10 extracted peaks are
discarded. Concerning the STFT, the frame size is 2048 samples
and the hop size is 360 samples at a 44100-Hz sampling frequency.
The synthesis algorithm used is the one described in [2], based
on the linear interpolation of the amplitude and the maximally-
smooth cubic interpolation of the phase.

5.1. Deterministic / Stochastic Separation

Efficiency and discriminating capabilities of the two algorithms
are evaluated using a synthetic constant-amplitude vibrato tone of
2-kHz base frequency, with a vibrato depth and rate of respec-
tively 50 and 4 Hz, mixed with a white noise of increasing level.
The degradation is evaluated with the Degradation SNR (D-SNR)
defined as the noise energy to original signal energy ratio. The
quality of the tracking algorithm is then measured with the Re-
construction SNR (R-SNR), defined as the error (original signal
- synthesized signal) energy to the original signal energy ratio. In
the first experiment, to evaluate the efficiency, only the partial hav-
ing the highest mean amplitude was synthesized to compute the
R-SNR. At D-SNR below -7 dB, the MAQ algorithm produces
partials that are a mix of noisy peaks and tonal peaks so that the
tones are split into several partials. The LP method and the pro-
posed method are both able to track correctly the tone with vibrato
and thus perform similarly. In the second experiment, to evalu-
ate the discriminating capability of the two algorithms, all retained
partials that lay in the [1900, 2100] Hz band are synthesized to
compute the R-SNR. As shown in [1], the LP method provides a
significant improvement over the MAQ method. Compared to the
LP method, the HFC method achieves an additional improvement
of the same magnitude.

5.2. Management of Polyphony

The problem of crossing partials arises when dealing with a mix-
ture of non-stationary sounds. The tracking algorithm has to be
able to identify the evolutions of the partials and to interpolate
missing spectral data. In order to test the management of cross-
ing, a natural A-440 Hz saxophone tone is corrupted by a syn-
thetic constant-amplitude sinusoid beginning 20 frames later and
whose frequency is increasing linearly from 200 Hz to 4 kHz. Only
the extracted partials starting before frame 20 were synthesized to



D-SNR (dB) -15 0 15 -15 0 15
MAQ -30 0 20 -15 15 55

LP 20 25 35 -15 10 50
HFC 30 40 50 20 40 55

Table 1. Performances of the three tracking algorithms evalu-
ated with the R-SNR for the crossing sinusoids test (left) and the
closely-spaced sinusoids test (right).

compute the R-SNR. Having a model of the evolutions of the pa-
rameters leads to an easier management of crossing partials, by
being more selective and by having a better interpolation capa-
bility. Furthermore, the presented algorithms sort the partials in
decreasing amplitude, so that the partial with the lower degrada-
tion is processed first. It reduces the probability of handling the
crossing incorrectly, see left part of Table 1.

The time / frequency analysis of polyphonic sounds requires a
high frequency resolution, but the trade-off between time and fre-
quency leads to the use of analysis windows of reasonable length.
Pitch relation between harmonic notes leads to FFT bin contamina-
tion and closely-spaced sinusoids in most natural cases. To evalu-
ate the management of the closely-spaced sinusoids, a natural sax-
ophone tone with vibrato is mixed with a set of synthetic constant-
frequency and constant-amplitude sinusoids harmonically related,
beginning 20 frames later. The fundamental frequency of this syn-
thetic set is the same than the one of the saxophone tone, but all
the frequencies within this set have been shifted by 70 Hz towards
the low frequencies in order to obtain the same FFT bin contamina-
tion for all the harmonics of the original source. Only the extracted
partials starting before frame 20 were synthesized to compute the
R-SNR.

The right part of Table 1 shows the advantages of the analysis
of the HFC of possible evolutions in several future frames. When
the synthetic tone begins, the spectral informations are blurred and
some noisy peaks are present between the two close harmonics.
The LP method is unable to avoid bad links and performs as the
MAQ method does, whereas the proposed one performs quite good
even at high SNR levels.

5.3. Readability of the Sinusoidal Representation

In applications such as indexing or source separation of stationary
pseudo-periodic sounds, a good partial representation should pro-
vides a higher level of description, useful to detect robustly high-
level informations such as note onset / offset, pitch detection and
source identification.

In order to easily detect the note onset / offset, one would like
to have a good time separation, meaning that a partial should be-
long to only one source. And in order to detect the pitch and to
identify the sources, the partials should show “clear” time / fre-
quency and time / amplitude evolutions in order to be able to clus-
ter partials. As explained in [1], the LP method better identifies the
vibrato than the MAQ method does, but the representation is not
precise because many partials belong to more than one source. As
can be seen on Figure 4, the proposed method shows better results
in time separation and the vibrato of the second tone is also clearer.

6. CONCLUSION

In this article, we propose to replace heuristics in frequency dis-
tance by the analysis of the high frequency contents of possible
evolutions of partials. This new approach further improves the
quality of the sinusoidal representation of polyphonic recordings.
In particular, onsets and offsets of partials are better identified
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Fig. 4. Partials extracted from three successive violin tones by the
MAQ method (top) and the proposed one (bottom) – see [1] for a
comparison with the LP method. The partials are represented by
solid lines, starting and ending with circles matching the birth and
the death of the partials.

and close sinusoids can be better tracked, two important require-
ments for source identification and sources separation based on
sinusoidal modeling.
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