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ABSTRACT

In order to be able to operate relevant musical transfor-
mations of a sound, a knowledge of the musical structure
of this sound is often mandatory. Therefore, we consider
a structured representation of sound composed of acous-
tical entities on top of the widely used sinusoidal model.
From the analysis point of view, these entities are clus-
ters of partials which are perceived as a unique complex
sound. To be able to automatically identify these clusters,
numerous cues are proposed in the literature. We study
in this article a generic one, the common variation of the
parameters of the partials. Thanks to an original dissimi-
larity metric based on the autoregressive modeling of the
vectors of frequency or amplitude of the partials, we are
able to use even micro-modulations of these parameters
for our purpose.

1. INTRODUCTION

Many musical transformations can be processed with a
“short-term” sinusoidal model. The audio signal is di-
vided in overlapping frames where some sinusoidal com-
ponents (often called peaks) are identified. The param-
eters of these components are then modified to achieve
meaningful musical transformations. The automatic pro-
cessing of these transformations should be guided by a
knowledge of the musical structure of the sound. Yet,
this knowledge can hardly be deduced from a “short-term”
representation of the sound.

Alternatively, we consider a structured representation
of the sound. We first identify continuities between peaks
of successive frames. Peaks are linked from frame to frame
to build partials: quasi-sinusoidal oscillators with param-
eters evolving slowly and continuously with time. A new
partial tracking algorithm is used [1] to enhance the iden-
tification of the onsets / offsets of partials as well as the
variation of the parameters of partials even in polyphonic
recordings.

The next step is to identify similarities between partials
to identify which ones belong to the same acoustical en-
tity. From the perceptual point of view, partials belong
to the same entity if they are perceived by the human au-
ditory system as a unique sound. There are several cues
that lead to this perceptual fusion: the common onset, the

harmonic relation of the frequencies, the correlated evolu-
tions of the parameters and the spatial location [2].

The common onset is an important cue that can be ro-
bustly handled using a long-term sinusoidal model since
the onset of partials are explicitly modelled. This issue is
left for further discussion. In this article, we will consider
that the considered partials start together. The spatial loca-
tion is generally not handled by common sinusoidal model
although it may be an interesting issue.

The earliest attempts at acoustical entity identification
and separation consider harmonicity as the sole cue for
group formation. Some rely on a prior detection of the
fundamental [3, 4] and others consider only the harmonic
relation of the frequencies of the partials [5, 6, 7]. The
main advantage of this cue is to rely on a short-term si-
nusoidal model. Yet, many musical instruments are not
harmonic.

In contrast, the cue that consider the correlated evo-
lutions of the parameters of the partials is generic. Nu-
merous psycho acoustical studies showed that the varia-
tions or the micro-modulations are important for percep-
tion. Bregman writes: “Small fluctuations in frequency
occur naturally in the human voice and in musical instru-
ments. The fluctuations are not often very large, ranging
from less than 1 percent for a clarinet tone to about 1 per-
cent for a voice trying to hold a steady pitch, with larger
excursions of as much than as 20 percent for the vibrato
of the singer. Even the smaller amounts of frequency fluc-
tuation can have potent effects on the perceptual grouping
of the components harmonics.” According to the work of
McAdams [8], a group of partials is perceived as a unique
acoustical entity only if these variations are correlated.

The clustering method proposed in this article there-
fore relies on the definition of a dissimilarity metric to
evaluate how “far” are two partials given the correlation
of their evolutions int the time / frequency plane or the
time / amplitude plane. Some dissimilarity metrics pro-
posed in the literature [9, 6] are reviewed in Section 2.
We then introduce a new metric based on the autoregres-
sive (AR) modeling of the evolutions of the parameters of
the partials. This new metric is compared in Section 4 to
those described in Section 2. The proposed metric is then
used to cluster partials thanks to a well-known clustering
method presented in Section 5: the Agglomerative Hierar-
chical Clustering (AHC) [10]. The experiments presented



in Section 6 show that the proposed metric allows us to
consider strong variations such as vibrato or tremolo but
also micro-modulations to cluster partials of the same en-
tity.

2. REVIEW OF EXISTING DISSIMILARITY
METRICS

To compare the metrics that will be described in the re-
mainder of this article, we consider a set of partials ex-
tracted from various musical sounds: a tone of saxophone
with vibrato (entity C1), a modulated singing voice (en-
tity C2), a piano tone (entity C3) and a triangle tone (en-
tity C4). For each sound, the five partials with the highest
amplitude are selected. Five other partials, erroneously
extracted from a white noise signal are added to the eval-
uation set (entity C0). All the partials are truncated to be
of the same duration (≈ 1 second). This testing set is plot-
ted on Figure 1 where the partials are sub-indexed by the
number of the entity it belong. Except for the metric dv

proposed by Virtanen in [6] where the amplitudes and fre-
quencies parameters of partials are used as-is, the mean is
subtracted before any computation and the amplitudes are
normalized.

During the experiments, it appears that the correlated
evolutions of the frequency parameter was the most rele-
vant cue. It will then be used for the comparison of the
different metrics although the correlated evolutions of the
amplitudes can also be considered for the clustering of
partials as it will be shown in Section 6.

Some widely known metrics are now described. The
euclidean distance de between two vectors is defined as:

de(F1,F2) =

√

N

∑
i=1

(F1(i)−F2(i))2 (1)

where F1 and F2 are frequency vectors of size N.
Let us consider a harmonic tone modulated by a vi-

brato of given depth and rate. All the harmonics are mod-
ulated at the same rate but their respective depth depends
on their harmonic rank. It is then important to consider
a dissimilarity metric which is scale-invariant. The eu-
clidean distance is therefore not suitable for our purpose.
Alternatively, Cooke uses a distance [9] equivalent to the
cosine dissimilarity dc defined as:

dc(F1,F2) = 1−
c(F1,F2)

√

c(F1,F1)
√

c(F2,F2)
(2)

c(F1,F2) =
N

∑
i=1

F1(i)F2(i) (3)

where F1 and F2 are frequency vectors of size N. Thanks
to the normalization, this dissimilarity is scale-invariant.

Virtanen proposed in [6] to use the mean-squared error
between the frequency vectors first scaled by their average
values:

dv(F1,F2) =
1
N

N

∑
i=1

(

F1(i)
F̄1

−
F2(i)

F̄2

)2

(4)

0 1 s

1
0

2
0

3
0

4
0

5
0

6
1

7
1

8
1

9
1

10
1

11
2

12
2

13
2

14
2

15
2

16
3

17
3

18
3

19
3

20
3

21
4

22
4

23
4

24
4

25
4

Time

Figure 1. Frequency evolution of five partials extracted
from a white noise signal (class C0), five partials of a
saxophone tone with vibrato (entity C1), five partials of
a singing voice (entity C2), five partials of a piano tone
(entity C3) and five another from a triangle tone (entity
C4). These frequency evolutions are arbitrarily distributed
over the ordinate and are indexed by growing index and
sub-indexed by number of entity.

where F1 and F2 are frequency vectors of size N and X̄
denotes the mean of X .

If one considers the evolution in time of the frequen-
cies of a partial as a signal, one can consider a decompo-
sition of this signal in two parts. One part evolves slowly
and continuously with time and therefore comply to the
requirements of the sinusoidal model. The other part be-
longs to observation noise due to estimation error of the
frequencies of the partial or background noise.

Only the first part should be considered to identify sim-
ilarities between the parameters of the partials. As a con-
sequence, a relevant dissimilarity for our purposes should
be scale-invariant only for the part of the signal that com-
ply to the sinusoidal model. This issue will be studied in
the next section to propose an improved dissimilarity met-
ric.



3. PROPOSED DISSIMILARITY METRIC

Let Fl be the frequency vector of the partial l. Accord-
ing to the Auto Regressive (AR) model [11], the sample
Fl(n) can be approximated as a linear composition of past
samples:

Fl(n) =
k

∑
i=1

Kl(i)Fl(n− i)+El(n) (5)

where El(n) is the prediction error. The coefficients Kl(i)
model the predictable part of the signal and it can be shown
that these coefficients are scale invariant. On contrary, the
non-predictable part El(n) is not scale invariant.

We have shown in [12] that AR-modeling of the fre-
quency and amplitudes parameters is relevant to improve
the tracking of partials. In this article, we show that the
AR modeling is a good candidate for the design of a ro-
bust dissimilarity metric.

For each frequency vector Fl , we compute a vector Kl

of 4 AR coefficients with the Burg method [13, 14]. Since
the direct comparison of the AR coefficients computed
from the two vectors F1 and F2 is generally not relevant,
the spectrum of these coefficients may be compared. The
Itakura distortion measure [15], issued from the speech
regognition community can therefore be considered:

dAR(F1,F2) = log
Z π

−π

|K1(ω)|

|K2(ω)|

dω
2π

(6)

where

Kl(ω) = 1+
k

∑
i=1

Kl(i)e
− jiω (7)

An other approach may be considered. The amount
of error done by modeling the vector F1 by the coeffi-
cients computed from vector F2 indicate the proximity of
these two vectors. Let us introduce a new notation E2

1 , the
crossed prediction error defined as the residual signal of
the filtering of the vector F1 with K2:

E2
1(n) = F1(n)−

k

∑
i=1

K2(i)F1(n− i) (8)

The principle of the dissimilarity dσ is to combine the two
anti-symmetrical dissimilarities |E2

1 | and |E1
2 | to obtain a

symmetrical one:

dσ(F1,F2) =
1
2

(

|E2
1 |+ |E1

2 |
)

(9)

Given two vectors F1 and F2 to be compared, the co-
efficients K1 and K2 are computed to minimize the power
of the respective prediction errors E1 and E2. If the two
vectors F1 and F2 are similar, the power of the crossed pre-
dictions errors E2

1 and E1
2 will be as weak as those of E1

and E2.We can consider an other dissimilarity d ′
σ defined

as the ratio between the sum of the crossed prediction er-
rors and the sum of the direct prediction errors:

d′
σ(F1,F2) =

|E2
1 |+ |E1

2 |

1+ |E1|+ |E2|
(10)

These dissimilarity metrics based on AR modeling will
now be compared to the ones presented in Section 2 using
two criteria described in the next section.

4. COMPARISON OF DISSIMILARITY METRICS

A relevant dissimilarity between two elements (the par-
tials) is a dissimilarity which is low for elements of the
same class (acoustical entity) and high for elements that
do not belong to the same class. The intra-class dissimi-
larity should then be minimal and the inter-class dissimi-
larity as high as possible. Let U be the set of elements of
cardinal # U and Ci the class of index i between Nc dif-
ferent classes. An estimation of the relevance of a given
dissimilarity d(x,y) for a given class is:

intra(Ci) =
ni

∑
j=1

ni

∑
k=1

d(Ci( j),Ci(k)) (11)

inter(Ci) =
ni

∑
j=1

# U−ni

∑
l=1

d(Ci( j),Fi(l)) (12)

Qd(Ci) =
inter(Ci)

intra(Ci)
(13)

where ni is the number of elements of Ci and Fi = U −Ci.
The overall quality Qd is then defined as:

Qd(U) =
∑Nc

i=1 inter(Ci)

Nc ∑Nc
i=1 intra(Ci)

(14)

For example, let A1 = {{1.1,5.1},{1.0,5.2},{1.0,5.3}}
and A2 = {{1.0,1.1},{1.1,0.9}} be two classes of points
ei = {xi,yi} in a two dimensional space. One dissimilarity
considers the abscissa dx(ei,e j) = |xi − x j| and the other
considers the ordinate dy(ei,e j) = |yi−y j|. If we study the
data, the most relevant dissimilarity is dy which is verified
by the quality measure Qd : Qdx(U) = 0.75 < Qdy(U) =
32.

The criterion defined in Equation 13 is first used to
evaluate the capability of the metrics proposed in the last
two sections to discriminate partials of a given class from
the others. Next, the criterion defined in Equation 14 is
used to globally evaluate this criterion for each metric.
The results, summarized in Table 1 will be further detailed
in the remaining of the section. It can however be noticed
that this criterion is highly dependant of the scale of the
studied dissimilarity metric.

We then also consider an other criterion, noted ζ which
is more independent of the scale the evaluated dissimilar-
ity metric than the previous one. Given a set of elements
X , ζ(X) is defined as the ratio of couples (a,b) so that b
is the closest element to a and a and b belong to the same
class.

Given a function named “cl” defined as:
cl: X → N

a 7→ i
where i is the index of the class of a. We get:

ζ(X) =
# {(a,b) |d(a,b) = minc∈X d(a,c)∧ cl(a) = cl(b)}

# X
(15)

where X can be either a class Ci or the set of elements U
and # x denotes the cardinal of x.

As shown on the first column of Tables 1 and 2, the dis-
similarity de obtain bad marks for the saxophone tone and



Qd de dc dv dAR dσ d′
σ

C0 3.9 4.3 0 57.3 8.9 16.8
C1 10.5 806.6 47634 37.4 97.3 46.9
C2 3.1 1586.6 37.4 33.6 23.1 29.5
C3 147.9 4.8 57.1 22.8 251.8 81.3
C4 49.5 43.9 83866 23.3 72.1 22.6
U 5.5 10.6 5.1 27.8 21.2 36.2

Table 1. Quality estimation according to the criterion Qd

defined in equations 13 for the first five lines and 14 for
the last line. The evaluated dissimilarities are: de the eu-
clidean distance, dc the cosine distance, dAR the Itakura
distortion measure, dσ the crossed prediction error dissim-
ilarity and d′

σ the normalized cross prediction error dis-
similarity. The frequency vectors used for the experiment
are plotted on Figure 1. The metrics based on AR model-
ing obtain the better overall results.

ζ de dc dv dAR dσ d′
σ

C0 0.6 0.6 0.6 1 0 1
C1 0 1 1 1 0.8 0.8
C2 0 1 1 1 0.2 1
C3 1 0.6 0.4 1 1 1
C4 0 1 1 1 1 1
U 0.3 0.84 0.8 1 0.6 0.96

Table 2. Quality estimation according to the criterion ζ
defined in Equations 15 for dissimilarity de the euclidean
distance, dc the cosine distance, dAR the Itakura distortion
measure, dσ the crossed prediction error dissimilarity and
d′

σ the normalized cross prediction error dissimilarity. The
frequency vectors used for the experiment are plotted on
Figure 1. The dc and dv metrics obtain comparable results
while dAR and d′

σ obtain the best overall results.

the modulated voice because this dissimilarity is not scale-
invariant. The dissimilarity dc gets better results in case of
modulations, as shown by the second column of Tables 1
and 2. The dissimilarity dv shows disparate results. Some
entities are easily discriminated like the saxophone tone
C1 and the triangle one C4. On contrary, the marks are not
as satisfying for others entities like the piano one and the
“noisy” partials.

The dissimilarity dAR gets very good marks as it can
be noticed in the fourth column of Tables 1 and 2. The
dissimilarity dσ offers good performances in case of pre-
dictable evolutions of the frequency. On contrary, the cor-
relations between the partials of the voice tone or the noisy
partials are not clear, see the fifth column of Table 2. The
dissimilarity d′

σ offers more homogeneous results for the
classes of partials we want to handle, see the last column
of Table 1. This homogeneity is crucial for the clustering
method described in the following section.

5. AGGLOMERATIVE HIERARCHICAL
CLUSTERING

As stated before, dissimilarity-vector based classification
involves calculating a dissimilarity metric between pair-
wise combinations of elements and grouping together those
for which the dissimilarity metric is small according to a
given clustering method.

One employed by Cooke [9] selects a seed element
from the data set and computes the distance between this
seed and all other elements in the data set in order to clus-
ters the elements whose distance from the seed is below a
given threshold. If any elements remain in the data set af-
ter this search, a new seed is selected from the remaining
elements and the grouping procedure is repeated. If no el-
ement is found in the data set that is within the threshold
of the seed, the seed is considered to belong to a singleton
group. The entire process is repeated until no elements
remain in the data set.

The method of Virtanen [6] is a slight variation to this
approach where the initial seeds are not individual tracks
but rather small groups of tracks that have been formed
by matching onset times. The distance between the seed
group and each of the remaining tracks in the data set is
then defined as the average distance between each of the
tracks in the seed and the track under consideration. Vir-
tanen adopted this method as a mean for computational
complexity reduction, over performing an exhaustive min-
imisation of the distance between tracks within each group.

These two approaches rely on a good initialization, and
would failed if the threshold or the seed are not relevant
for the considered data set. Alternatively, we propose to
cluster partials by means of the agglomerative hierarchical
clustering (AHC) method which requires no initialization.

An agglomerative hierarchical clustering procedure pro-
duces a series of partitions of the data: (Pn,Pn−1, . . . ,P1).
The first partition Pn consists of n singletons and the last
partition P1 consists of a single class containing all the
elements. At each stage, the method joins together the
two classes which are most similar according to the cho-
sen dissimilarity metric. At the first stage, of course, this
amounts to joining together the two elements that are clos-
est together, since at the initial stage each class has one
element.

Hierarchical clustering may be represented by a two di-
mensional diagram known as “dendrogram” which illus-
trates the fusions made at each successive stage of clus-
tering, see Figure 2(b) where the length of the vertical bar
that links two classes is calculated according to the dis-
tance between the two joined classes. The classes are then
found by “cutting” the dendrogram at levels where the dif-
ference between the distance of this level and those of the
previous level is above a given threshold.

Differences between methods arise because of the dif-
ferent ways of defining dissimilarity between classes. For
computing efficiency, the elements properties (amplitude
of frequency vector of partials) should not be considered
to compute the distance between the union of two joined
classes Ci and C j and the remaining classes set Ck,∀k 6=
(i, j).



A first method, known as the minimal linkage method,
consists in choosing the smaller distance between d(Ci,Ck)
and d(C j,Ck). The distance between two classes is then
the distance between the two nearest elements of these
classes. Another method, proposed by Ward [16], min-
imises the intra-class inertia during the aggregation pro-
cess. Given a partition of K classes, the intra-class inertia
considers the class homogeneity:

I =
K

∑
k=1

nk

∑
i=1

d(Ck(i),Ck) (16)

where Ck is a class with nk elements and Ck its barycenter.
The distance between the union of two classes Ci and C j

and another class Ck is computed as follow:

d(Ci ∪C j,Ck) =
1

nk +n j +ni
[(nk +ni)d(Ci,Ck)+ (17)

(nk +n j)d(C j,Ck)+(ni +n j)d(Ci,C j)]

where ni is the number of elements of the class Ci. This
method is designed for the analysis of scalar data vectors
and gives good results for our applications. As an exam-
ple, let the data set be 12 points which attributes are their
coordinates, as shown in Figure 3(a). The Figures 3(b)
and 3(c) are respectively the dendrograms computed us-
ing the minimal link method and the Ward method with
the euclidean distance as dissimilarity metric. The first
exhibit a “chain” effect not suitable for our purpose. The
second leads to a more balanced dendrogram, easing the
identification of classes.

6. EXPERIMENTS

Several experiments were conducted to evaluate the rele-
vance of the dissimilarity metrics described in this article
if the HAC algorithm is used to cluster partials. Only the
hierarchies obtained with the normalized crossed predic-
tion error dissimilarity d′

σ defined in Equation 10 are re-
ported here since it gave the most relevant results. The
hierarchies were computed with the Ward method.

We first consider the data set plotted on Figure 1. If we
consider the similarity between the frequency vector of the
partials, the resulting hierarchy is almost perfect, see Fig-
ure 4. The partials of musical tones are correctly clustered
and the noisy ones are inserted in the hierarchy at a high
level, easing their elimination by the use of the cutting
threshold (set to 0.1 here). If we consider the similarity
between the amplitude vector of the partials, the hierarchy
is not as satisfying, see Figure 5 because partials from en-
tities 1 (saxophone tome with vibrato) 2 (voice tone) and
4 (piano tone) are mixed.

The testing material used above consider a wide range
of modulations. We now focus on the micro modulations
of the parameters of some piano tones to clusters partials.
The partials of three piano tones from the IOWA database
with different pitches and similar intensity are used as test-
ing material. Five partials per tone are considered. The
hierarchies are computed with the same algorithm.
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Figure 2. On top are plotted six points on a plane with
arbitrary axes to be clustered by the AHC method. At bot-
tom is plotted the dendrogram representing the hierarchy
obtained using an euclidean distance as the dissimilarity
metric between points. We can clearly distinguish two
classes, one composed of points with abscissa close to 0
and the other composed of points with abscissa close to 1.

Even if the resulting hierarchies are not perfect, see
Figures 6 and 7, some correlations are clear especially for
the tone with the highest pitch (cluster 3). It shows that
the d′

σ dissimilarity is able to discriminate between micro-
modulations and observations noise even for steady pitch
tones of musical instruments like piano.

7. CONCLUSION

We have shown in this article that the long-term sinusoidal
model allows us to consider a generic cue for partials clus-
tering: the common variation cue. The autoregressive
modeling of the evolutions of the parameters of the par-
tials appears to be relevant for the design of a robust dis-
similarity metric exploiting this cue.

The experiments showed that thanks to the dissimilar-
ity proposed in this article, not only the large modulations
such as vibrato or tremolo but also the micro-modulations
are relevant for clustering partials into acoustical entities.
The analysis of these modulations may be of interest for
the description of acoustical entities with applications to
instruments recognition. This topic should be explored in
a near future.
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Figure 3. 12 points on a plane with arbitrary axes are
clustered by the AHC method. Dendrograms of the hier-
archies obtained with either the minimal link method (b)
and the Ward’s method (c). In both hierarchies, the 2-
dimensional euclidean distance is used as a dissimilarity
metric between the elements to be classified. The first hi-
erarchy exhibits a “chain” effect not suitable for our pur-
pose. The second one is more balanced, easing the identi-
fication of classes.
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Figure 4. Dendrogram obtained while clustering the par-
tials of the testing set plotted on Figure 1 according to the
dissimilarity of their frequency vectors computed with the
d′

σ metric. The partials are indexed by growing index and
sub-indexed by number of entity. The cuts, represented
with dots allows us to identify classes that clusters partials
from the same entity. Using the frequency variation cue,
all partials are correctly clustered. Additional cuts split the
cluster of partials erroneously extracted from noise (class
0). This is not a major disadvantage since these partials
does not explicitly belong to an acoustical entity.
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Figure 5. Dendrogram obtained while clustering the par-
tials of the testing set plotted on Figure 1 according to
the dissimilarity of their amplitude vectors computed with
the d′

σ metric. The hierarchy is not perfect because par-
tials from entities 1 (saxophone tone with vibrato) 2 (voice
tone) and 4 (piano tone) are mixed.
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Figure 6. Dendrogram obtained according to the fre-
quency vectors of 15 partials of 3 piano tones with dif-
ferent pitches. The partials are indexed by growing index
and sub-indexed by number of entity. The two higher enti-
ties (sub-indexed 2 and 3) are well identified in the hierar-
chy whereas the lower one (sub-indexed 1) is split. Even
if the piano has an almost steady pitch, some correlations
between the frequency vectors of the same tone can be
exploited.
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Figure 7. Dendrogram obtained according to the ampli-
tude vector of three piano tones (of five partials each) with
different pitches. Only the highest tone (sub-indexed 3) is
clearly identified on the hierarchy. The correlation of the
amplitude of the partials appears to be a less relevant cue
for the clustering of partials than the one that considers the
frequencies of partials.
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