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Abstract

The robust estimation of the frequency of some sinusoidal compo-
nents is a major prerequisite for many applications, such as in sinu-
soidal sound modeling, where the estimation has often to be done with
a low complexity, on short-term spectra. Among the estimators pro-
posed in the literature, we focus in this paper on a class known as the
�phase-based� estimators. In this paper, we prove that �ve of these
estimators are equivalent, at least in theory. In-depth practical exper-
iments demonstrate that these estimators perform roughly similarly in
practice, although small di�erences remain, di�erences which are most
probably due to numerical properties of the mathematical operators
used in their implementation.

1 Introduction

Among numerous other applications, sinusoidal sound modeling [1, 2] re-
quires the estimation of the frequencies of sinusoidal components. This �rst
step is of great importance because the remaining elements of the sinusoidal
analysis chain strongly depend on the precision of these estimates.

If the number of sinusoidal components that should be considered were
exactly known, parametric methods such as MUSIC [3] or ESPRIT [4] could
be used to achieve virtual in�nite frequency precision and resolution (if no
noise is added). Unfortunately, the inherent complexity of the analyzed
sound signals together with the need for real-time applications often impose
the use of estimators based on short-term spectra, such as those obtained
with the Short-Time Fourier Transform (STFT) [5], often implemented using
the Fast Fourier Transform (FFT) [6]. The frequency resolution of this
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transform is bounded by the well-known time/frequency resolution trade-
o�.

On the other hand, the frequency precision can be enhanced by consid-
ering some estimators based on the spectral properties of sinusoidal compo-
nents. A �rst class of FFT-based estimators considers some values of the
power spectrum around a frequency component to �t some analytic function
� e.g. a polynomial. The location of the maximum of this function gives the
precise frequency of the sinusoidal component [7, 8, 2, 9]. A second class
explicitly uses the phase of the FFT to estimate the frequency, and includes
the reassignment estimator [10, 11] and the di�erence estimator [12] (the
latter is commonly used in the phase-vocoder approach [13, 14]). In this
paper, we extend the results published in [15], where the consideration of
the relationship between the signal and its derivative lead to the proposal of
another estimator, known as the derivative estimator.

As it was guessed in [16], and partly demonstrated by Hainsworth during
his Ph.D. [17], this so-called derivative estimator is theoretically equivalent
to the reassignment one, and so are its discrete version [18] and the di�er-
ence estimator. However, this does not ensure that these estimators perform
equally in practice. For example, a loss of precision of the derivative estima-
tor as well as a bias with the discrete version of the reassignment estimator
have been noticed in [19]. The evaluation of the performance of each es-
timator is a practical issue that should be considered to determine which
estimator is relevant for a given application.

The paper is organized as follows: The sinusoidal model and some ele-
ments of FFT-based sinusoidal analysis are presented in Section 2. Three
phase-based estimators are reviewed in Section 3 and their theoretical equiv-
alence is demonstrated. We show that the loss of precision of the derivative
estimator is due to the numerical properties of the considered mathematical
operator. This can be avoided without overloading complexity by consid-
ering improved estimators, called the trigonometric and arctan estimators,
introduced in [20] and [21], respectively.

Section 4 is dedicated to the evaluation of the performance of these es-
timators from a practical point of view. The estimation of the frequency of
complex tones is �rst considered in Section 4.1. Since musical applications
consider real tones rather than complex ones, the performance of these es-
timators in the real case is next studied in Section 4.2. When compared to
the results obtained in the complex case, these experiments show that the
performance of the estimators is signi�cantly diminished due to the spectral
properties of real signals. To achieve better performance, a pre-processing
step that converts the input real signal into an analytic � complex equiva-
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lent � signal using the Hilbert transform is also considered in Section 4.3.
The results of all these experiments are �nally summarized and discussed in
Section 5.

2 Sinusoidal Modeling

Additive synthesis (see [13]) is the original spectrum modeling technique.
It is rooted in Fourier's theorem, which states that any periodic function
can be modeled as a sum of sinusoids at various amplitudes and harmonic
frequencies. For stationary pseudo-periodic sounds, these amplitudes and
frequencies continuously evolve slowly with time, controlling a set of pseudo-
sinusoidal oscillators commonly called partials. In the analog domain, it has
been used for designing arti�cial sounds using devices such as the Telehar-
monium or the Hammond organ. In the digital domain, additive synthesis
has been used by Risset [22] for musical purposes. Many works have later
been published in the speech and audio processing areas, and the reader is
invited to refer to [23] for proper history.

2.1 Additive Model

The audio signal s can be calculated from the additive parameters using
Equations 1 and 2:

s(t) =
P∑

p=1

Ap(t) ejφp(t) (1)

φp(t) = φp(0) + 2π

∫ t

0
ωp(u) du i.e. ωp(t) =

1
2π

d

dt
φp(t) (2)

where P is the number of partials and the (real) functions ωp, Ap, and φp

are the instantaneous frequency (normalized), amplitude, and phase of the
p-th partial, respectively.

In the real case, the signal s consists of a sum of (real) sinusoids:

s(t) =
P∑

p=1

Ap(t) cos (φp(t)). (3)

In fact, each real sinusoid consists of two complex exponentials, since we
have:

cos(x) =
(
e+jx + e−jx

)
/2. (4)
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2.2 Elements of Sinusoidal Analysis

The basic method used for estimating the model parameters is the Short-
Time Fourier Transform (STFT), where a sliding analysis window w is used
to obtain short-term spectra:

Sw(ω, t) =
∫ +∞

−∞
s(τ) w(τ − t) e−j2πω(τ−t) dτ. (5)

Then the sinusoidal components are searched in each spectrum, using speci�c
estimators.

In practice, the signal is discrete. If N samples are used to compute each
spectrum, a rectangular window of size N is implicitly used:

wr[n] =
{

1 for 0 ≤ n < N
0 otherwise.

(6)

Its (discrete) spectrum Wr, plotted in Figure 1, is given by:

Wr[k] =
sin(kπ)

sin(kπ/N)
e−jkπ(N−1)/N (7)

where k is the Discrete Fourier Transform (DFT) bin number (index). A
multiplication in the temporal domain leads to a convolution in the spectral
domain. The spectrum of each exponential of s is therefore a frequency-
shifted, amplitude-scaled, and phase-rotated version of the spectrum of the
analysis window. If the size of the DFT is chosen so that the absolute
di�erence of the frequencies of two components is at least Fs/N (in Hz),
each sinusoidal component p will then give rise to a local maximum in the
power spectrum located at the DFT index kp so that:

kp − 0.5
N

≤ ωp ≤
kp + 0.5

N
. (8)

In a �rst attempt, the frequency of each component can then be approxi-
mated by:

ω̂DFT
p =

kp

N
. (9)

The precision of this rough estimate can be enhanced as desired by using
a Zero-Padded (ZP) Fourier Transform, see Table 1. This can be done by
adding trailing zeros to the temporal samples before the DFT computation.

Indeed, as shown in [24, 25], when the number of trailing zeros approaches
in�nity, the resulting estimator is the Maximum Likelihood estimator when
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the rectangular window is used. Ideally, the use of a non-rectangular window
should then be avoided because it induces a bias in the estimation. In the
speci�c case of the estimation of the frequency of a known number of sinu-
soids in Additive White Gaussian Noise (AWGN), some methods [4] achieve
close to optimal results without any windowing.

Musical signals are more complex. An arbitrary high number of sinu-
soidal components are present, and their frequencies should be estimated
reliably and e�ciently. To achieve such constraints, the some methods ap-
proximate the interpolation of the ZP Fourier Transform (ZPFT) by others
means. Polynomial methods combine a ZPFT with reasonable ZP factor and
further interpolation of the log-amplitude of the peak using polynomials, to
achieve practical computation complexity. Theoretically, a Gaussian window
� whose power spectrum is exactly a polynomial � could be used to achieve
good performance. However, the Gaussian window should be avoided while
analyzing musical signals. An in-depth study of the relationship between the
ZP factor and the estimation error of polynomial estimators while consider-
ing widely-used windows can be found in [9].

On contrary, the phase-based methods do not require the use of zero-
padding, see Table 1. As it will be discussed further in the next section,
the precision of the phase-based estimators relies on the integrity of spectral
informations, i.e. at a given local maximum, the in�uence of the other si-
nusoidal components should be negligible. In the most common case where
the frequencies ωp are not a multiple of 1/N , the use of a rectangular win-
dow induces a non-negligible energy spread so that the above assertion is
rarely veri�ed. The multiplication � prior to any DFT computation � of the
observed samples with a window function that minimizes the energy spread
has to be considered.

The (periodic) Hann window, given by:

wH [n] =
1
2

(
1− cos

(
2πn

N

))
(10)

is a good candidate since it achieves a good asymptotic attenuation of the
side lobes as shown in Figure 1.

Its spectrum is expressed by:

WH [k] =
1
2
Wr[k]− 1

4
Wr[k − 1]− 1

4
Wr[k + 1] (11)

where Wr[k] is the (discrete) spectrum of the rectangular window, see Equa-
tion 7. The two last elements of Equation 11 attenuate the side lobes of
the �rst element � the spectrum of a rectangular window � at the expense

5



ZP ω̂DFT ω̂d

mean var max mean var max

1 5.4 9.8 21.5 0.014 0.13 15.4
2 2.7 2.6 20.0 0.015 0.15 15.4
3 1.8 1.2 12.8 0.015 0.12 10.2
4 1.3 0.8 14.6 0.017 0.16 11.9
5 1.1 0.5 11.5 0.014 0.10 8.8
6 0.9 0.5 12.8 0.015 0.12 10.2
7 0.7 0.4 13.8 0.016 0.14 11.2
8 0.6 0.3 11.9 0.014 0.10 9.3
9 0.6 0.3 12.8 0.015 0.12 10.2
10 0.5 0.3 13.5 0.016 0.13 10.9

Table 1: Mathieu Lagrange and Sylvain Marchand. Mean and variance of

the square error of the rough DFT estimator and the di�erence estimator

versus increasing zero-padding factor.

of the widening of the main lobe, which is not a handicap for phase-based
estimators provided that only frequency precision is considered, and not res-
olution. This window will be used implicitly in the experiments reported in
the remainder of the paper.

3 Phase-Based Estimators

The (short-term) spectra obtained from the STFT with Equation 5 consist
of complex values, which in the polar representation are:

S(ω, t) = A(ω, t) ejφ(ω,t) (12)

and in the present study we will use only the phases:

φ(ω, t) = ∠S(ω, t) = =(log(S(ω, t))) (13)

where ∠x and =(x) denote respectively the angle and imaginary part of the
complex number x.

In this article, we focus on the estimation of the frequency, which will be
considered as constant during the analysis window w.

3.1 Reassignment Method

In usual time-frequency representations, the values obtained when decom-
posing the signal on the time-frequency atoms are assigned to the geometrical
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Figure 1: Mathieu Lagrange and Sylvain Marchand. Power spectra (in dB) of

the rectangular and Hann windows plotted versus the normalized frequency,

with dashed and solid lines, respectively. The Hann window achieves good

asymptotic side-lobe attenuation at the expense of the broadening of the main

lobe.
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center of the cells, i.e. center of the analysis window and bins of the Fourier
transform, see Equation 9. Auger and Flandrin propose in [10] to assign
each value to the center of gravity of the cell's energy. The method uses
the knowledge of the analytic �rst derivative w′ of the analysis window w in
order to adjust the frequency inside the DFT bin.

More precisely, if we consider Equations 5 and 13, we can compute:

ω̂ =
1
2π

∂

∂t
φ(ω, t) =

1
2π
=

(
∂

∂t
log(Sw(ω, t))

)
(14)

=
1
2π
=

 ∂
∂t

(∫ +∞
−∞ s(τ) w(τ − t) e−j2πω(τ−t) dτ

)
Sw(ω, t)

 (15)

=
1
2π
=

(
j2πωSw(ω, t)− Sw′(ω, t)

Sw(ω, t)

)
(16)

= ω − 1
2π
=

(
Sw′(ω, t)
Sw(ω, t)

)
(17)

where Sw is the Fourier spectrum of the windowed signal and Sw′ is the
spectrum of the signal windowed using the derivative of the window. In the
special case of a single sinusoid (P = 1 in Equation 1), we have ω̂ = ω1. In the
general case of multiple sinusoids, if we consider the spectrum at a frequency
ω close to ωp, we can neglect the in�uence of the other frequencies, since the
analysis window is band limited, and thus we have ω̂ ≈ ωp for ω ≈ ωp.
More precisely, their absolute di�erence should not be higher than the half
of the width of the main lobe. If the Hann window is used, we should have
|ω − ωp| < 2/N , see [9, 26] for further references. The frequency ω̂ gives
indeed an excellent estimate of ωp when estimated at the frequency of the
DFT bin nearest to ωp.

The reassignment estimator is the �rst estimator we consider in our
study:

ω̂r = ω − 1
2π
=

(
Sw′(ω, t)
Sw(ω, t)

)
(18)

or more precisely its discrete version:

ω̂r
p =

kp

N
− 1

2π
=

(
Sw′ [kp, n]
Sw[kp, n]

)
(19)

where kp is the DFT bin number of the p-th local maxima in the mag-
nitude spectrum for the sinusoidal component under consideration, and n
is the sample index corresponding to the time where this N -point DFT is
computed.
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3.2 Derivative Estimator

We have shown in [27, 15] that it is also possible to greatly improve the
precision of the classic Fourier analysis by taking advantage of the �rst d
derivatives of the signal itself. For d = 1, this estimator is also known as the
derivative algorithm.

3.2.1 Continuous Case

In the case of continuous time, from Equation 1, the analytic derivative of
the signal s is given by:

s′(t) =
d

dt
s(t) =

P∑
p=1

d

dt
Ap(t) ejφp(t) + j

P∑
p=1

Ap(t)
d

dt
φp(t) ejφp(t) (20)

If the amplitudes are constant, their derivatives are zero, and since the deriva-
tive of the phases are the frequencies, with Equation 2, we have:

s′(t) = j2π
P∑

p=1

Ap ωp ejφp(t). (21)

In the special case of a single sinusoid (P = 1), we get s′(t) = j2πω1s(t),
thus S′(t) = j2πω1S(t) provided that ω1 is constant. In the general case of
multiple sinusoids, the same considerations as for ω̂r lead to:

S′(ω, t) = j2πωpS(ω, t) for ω ≈ ωp (22)

thus we de�ne

ω̂d =
1
2π
=

(
S′w(ω, t)
Sw(ω, t)

)
(23)

where S′w is the Fourier spectrum of the windowed derivative of the signal.
ω̂d is the continuous version of the derivative estimator, proposed in [15].

In order to prove the equivalence of this estimator and the reassignment
estimator, we introduce ρ = τ − t which gives another expression for the
STFT:

Sw(ω, t) =
∫ +∞

−∞
s(t + ρ) w(ρ) e−j2πωρ dρ (24)

from which we can derive, as we did for the reassignment to obtain Equation
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18:

ω̂ =
1
2π

∂

∂t
φ(ω, t) =

1
2π
=

(
∂

∂t
log(Sw(ω, t))

)
(25)

=
1
2π
=

 ∂
∂t

(∫ +∞
−∞ s(t + ρ) w(ρ) e−j2πωρ dρ

)
Sw(ω, t)

 (26)

=
1
2π
=

(
S′w(ω, t)
Sw(ω, t)

)
(27)

that is exactly Equation 23, thus ω̂r and ω̂d are equivalent, at least in theory,
since they are two di�erent mathematical formulations of the same physical
quantity.

3.2.2 Discrete Case

However, in practice, the signal s is discrete and the derivative of the signal
is unknown and must be approximated. In [15], it is proposed to consider
the di�erence s− as an approximation of the derivative s′. More precisely,
we have:

s[n] = s (n/Fs) (28)

s−[n] = (s[n + 1]− s[n])Fs (29)

where Fs is the sampling frequency. In fact, s− de�nes a high-pass �lter of
the signal s whose gain is 2Fs sin(πω), and we derived in [18] the derivative
estimator in the discrete case:

ω̂d
p =

1
π

arcsin
(∣∣∣∣ S−[kp, n]

2FsS[kp, n]

∣∣∣∣) =
1
π

arcsin
(∣∣∣∣S[kp, n + 1]− S[kp, n]

2S[kp, n]

∣∣∣∣)
(30)

This estimator will be the second estimator considered in our study.

3.3 Di�erence Estimator

The di�erence estimator is used in the classic phase vocoder approach [28,
29, 12]. Considering that the frequency is constant during the time-interval
between two successive short-term spectra, with a hop size of H samples,
Equation 2 shows that the frequency can be estimated from the phase dif-
ference:

ω̂ =
1

2πH
∆φ. (31)
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S[k,n+1]+S[k,n]
2

S[k, n]

S[k, n + 1]

∆φ

θ = ∆φ

2

=

<

S[k,n+1]−S[k,n]
2

Figure 2: Mathieu Lagrange and Sylvain Marchand. Vector relationships for
phase di�erence and discrete derivative estimators. S[k, n] is the spectrum at

DFT bin number k and time index n, and ∆φ is the phase di�erence between

two consecutive (short-term) spectra.
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Thus, considering that the frequency is constant during the time-interval
between two successive short-term spectra, which is especially the case if
they are separated by only 1 sample, the frequency is then estimated directly
from the phase di�erence ∆φ (see Figure 2) by taking care of unwrapping
the phase so that this di�erence is never negative. The resulting estimator,
known as the di�erence estimator, is the third one we consider:

ω̂∆
p =

1
2π

(∠S[kp, n + 1]− ∠S[kp, n])
unwrap

. (32)

3.4 Trigonometric Estimator

As shown in [20], the behavior of the derivative estimator is closely linked to
the properties of the mathematical function arcsin of Equation 30, which is
not a linear transfer function. If the argument gets close to 1, a small error
will lead to a non-negligible error on the estimated frequency.

Fortunately, the following identity:

S[k, n + 1] + S[k, n]
2

− S[k, n] =
S[k, n + 1]− S[k, n]

2
(33)

and simple geometric considerations lead us to consider a right-angled trian-
gle, see Figure 2 (lower triangle, delimited by 3 dots). Another of its angles
measures θ = ∆φ/2 radians. Simple trigonometric considerations give:

sin(θ) =
∣∣∣∣S[k, n + 1]− S[k, n]

2
/S[k, n]

∣∣∣∣ (34)

cos(θ) =
∣∣∣∣S[k, n + 1] + S[k, n]

2
/S[k, n]

∣∣∣∣ (35)

that is

∆φ = 2 arcsin
(∣∣∣∣S[k, n + 1]− S[k, n]

2S[k, n]

∣∣∣∣) (36)

∆φ = 2 arccos
(∣∣∣∣S[k, n + 1] + S[k, n]

2S[k, n]

∣∣∣∣) . (37)

By considering again Equation 31 with H = 1 and a particular frequency
component p, but this time with Equations 36 and 37 to compute ∆φ, we
de�ne:

ω̂−p =
1
π

arcsin
(∣∣∣∣S[kp, n + 1]− S[kp, n]

2S[kp, n]

∣∣∣∣) (38)

ω̂+
p =

1
π

arccos
(∣∣∣∣S[kp, n + 1] + S[kp, n]

2S[kp, n]

∣∣∣∣) . (39)
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The errors of the estimator ω−p � the derivative one � and the estimator
ω+

p behave symmetrically with respect to the frequency of the analyzed tone.
More precisely, the error of ω+

p is high in the low frequencies and low in the
high frequencies whereas the error of the derivative estimator is low in the
low frequencies and grows as the frequency grows. Indeed, the argument of
the arccos function of the ω̂+

p estimator gets close to 1 when the frequency
is close to 0.

The ω+
p estimator can therefore be used in order to improve the precision

of the derivative one in the high frequencies. The resulting estimator, re-
cently proposed in [20] and called the trigonometric estimator, is the fourth
we consider in this paper:

ω̂t
p =

{
ω̂−p if kp/N < 0.25
ω̂+

p otherwise.
(40)

This estimator is of equivalent complexity since it also requires the compu-
tation of only two FFTs: S[k, n] and S[k, n + 1].

3.5 Arctan Estimator

The third and last way of computing the angle θ from the triangle plotted in
Figure 2 leads to another estimator proposed in [21]. This estimator, called
the arctan estimator, is the �fth and last one we consider in this paper:

ω̂a
p =

1
π

arctan
(∣∣∣∣S[kp, n + 1]− S[kp, n]

S[kp, n + 1] + S[kp, n]

∣∣∣∣) . (41)

Together with Equations 30 and 31, and because of the trigonometric
relation on θ given in Equation 34, Figure 2 shows that the estimators ω̂d,
ω̂∆, ω̂t, and ω̂a are equivalent, at least in theory, since ∆φ = 2θ.

Despite the theoretical equivalence of these phase-based estimators, the
di�erent mathematical operations used in their discrete versions in�uence
their performance. The next section will study this issue by comparing them
on a more practical (implementation) point of view.

4 Practical Experiments

To compare the estimators presented in the previous section, we consider in
turn a complex or a real signal composed of a periodic part x with ampli-
tude unity and constant frequency embedded in noise y. The power of the
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noise is chosen to achieve a desired Signal-to-Noise Ratio (SNR) expressed
in decibels:

SNR = 10 log10

(
var(x)
var(y)

)
. (42)

In the experiments, the SNR ranges from −20 dB to 100 dB.
We use frames of N = 128 samples (Fs = 4 kHz) and consider 400

di�erent (normalized) frequencies in each considered range.
The lower bound of the limited frequency range is set to 0.24 and its

upper bound to 0.26 (normalized frequencies). The lower bound of the whole
frequency range is set to 0 and its upper bound to 0.5. These bounds are
exclusive, so that the �rst evaluated frequency in the whole range is 0.0025.

For each frequency, 30 di�erent phases are evaluated from 0 to 2π. At
each evaluation, the noise is randomized. For all the tested methods, the
detection picks the greatest local maximum in the power spectrum. Although
the estimators can be used for the case of multiple sinusoids, the remainder
of the article focuses on the estimation of the frequency of one sinusoid. The
index p is therefore omitted for the sake of clarity.

4.1 The Complex Case

When evaluating the performance of an estimator in terms of variance of
the estimation error, an interesting element to compare with is the Cramér-
Rao Bound (CRB), de�ned as the limit to the best possible performance
achievable by an unbiased estimator given a dataset [24].

Let us consider a complex sinusoid x (of amplitude 1) in a Gaussian
complex noise y:

x[n] = exp(2πjωn + Φ) (43)

y[n] = 10−SNR/20z[n] (44)

where ω is the frequency and z is a Gaussian noise of variance 1. The
variance of the signal part x is 1, and the variance of the noise part y is
var(y) = σ2 = 10−SNR/10. The analyzed signal is s = x + y.

For the case of the estimation of the frequency ω of a complex sinusoid
in noise, the lower Cramér-Rao bound is [24]:

CRBc =
6 σ2

a2N(N2 − 1)
=

6
N(N2 − 1)

10−SNR/10 (45)

where a is the amplitude of the sinusoid (here a = 1), and the SNR is given
by Equation 42. We can easily show that, in the log scales, the CRB in
function of the SNR is a line of slope -1.
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As discussed in the Section 3.4, the performance of the tested estima-
tors may depend on the frequency of the analyzed sinusoid, whether this
frequency is close to the frequency boundaries � 0 or Nyquist frequency �
or not. To �rst evaluate these estimators with a minimal in�uence of these
frequency boundaries, we compare the estimators in the narrow frequency
range located around the 0.25 normalized frequency.

As asserted in [19], all the estimators seem to perform similarly at medium
SNR, see Figure 3(a). A loss of precision can be observed for ω̂r in the high
SNR range. In the special case of only one sinusoid, this bias can be removed
[30]. The estimators ω̂∆ and ω̂a perform slightly better than ω̂d and ω̂t.

When the whole ]0, 0.5[ frequency range is considered, ω̂d performs poorly,
see Figure 3(b). This can be explained by the lack of precision in the high-
frequency region, see Figure 4.

4.2 The Real Case

Musical applications consider real sinusoids rather than complex ones. We
then consider in this section the signal s = x + y made of a sinusoid x (of
amplitude 1) in a Gaussian noise y:

x[n] = sin(2πωn + Φ) (46)

y[n] =
1√
2
10−SNR/20z[n] (47)

where ω is the frequency (in radians per sample) and z is a Gaussian noise
of variance 1. We use the 1/

√
2 normalizing factor to ensure the validity

of Equation 42, because in the real case the variance of the sinusoid is 1/2,
while we still consider, by de�nition, var(y) = σ2.

For the case of the estimation of the frequency ω of a real sinusoid in
noise, the lower Cramér-Rao bound is shown to be [31]:

CRBr =
24 σ2

a2N(N2 − 1)
=

12
N(N2 − 1)

10−SNR/10 = 2CRBc (48)

where a is the amplitude of the sinusoid (here a = 1), and the SNR is given
by Equation 42.

Due to the spectral properties of real signals, the performance of the
estimators are signi�cantly worse than those obtained with complex signals.
Indeed, the spectrum of a real sinusoid is made of two Dirac's impulses,
located at frequencies ω and −ω, see Equation 4. Since the spectrum of the
sampled signal is periodic, the more the frequency of the analyzed sinusoid
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(a) Complex case: narrow frequency range.
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(b) Complex case: whole frequency range.

Figure 3: Mathieu Lagrange and Sylvain Marchand. Performance of the

tested estimators for the analysis of a complex sinusoid signal with frequency

lying in the (0.24, 0.25) normalized frequency range (a), and in the (0, 0.5)
range (b). The CRB is plotted with a double solid line.
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(a) Complex case: whole frequency range.

Figure 4: Mathieu Lagrange and Sylvain Marchand. Performance of the

tested estimators at SNR=100 dB versus the frequency of the analyzed com-

plex sinusoid. The CRB is plotted with a double solid line.

is close to 0 or the Nyquist frequency, the more the interference between the
two complex exponentials is pronounced.

If the narrow frequency range is considered, this interference phenomenon
is therefore lightly pronounced and the results are roughly equivalent to the
complex case, see Figure 5(a). On the other hand, the precision is limited by
the interference phenomenon if the whole frequency range is considered, so
that the squared error is held asymptotically constant at SNR higher than 10
dB, see Figure 5(b). The estimators ω̂d and ω̂r perform equally, slightly worse
than ωt and ω̂a estimators. This is due to the fact that the �rst DFT bin
(S[0, n]) is by de�nition purely real when the signal is real. Since the two last
estimators only consider the magnitudes of the spectra, their performance are
not a�ected. On the other hand, the di�erence and reassignment estimators
will always estimate a frequency zero if the frequency of the analyzed sinusoid
falls into the �rst bin, i.e. ω < 1/N .

These experiments show that the in�uence of the negative frequencies
greatly disturbs the phase-based estimators.
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(a) Real case: narrow frequency range.
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(b) Real case: whole frequency range.

Figure 5: Mathieu Lagrange and Sylvain Marchand. Performance of the

tested estimators for the analysis of a real sinusoidal signal with frequency

lying in the (0.24, 0.25) normalized frequency range (a), and in the (0, 0.5)
range (b).
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Figure 6: Mathieu Lagrange and Sylvain Marchand. Performance of the

tested estimators at SNR=100 dB versus the frequency of the analyzed real

sinusoid.

4.3 The Analytic Case

We now propose to bring down the in�uence of the negative frequencies over
the positive part of the spectrum by considering the �analytic� signal instead
of the real input signal.

An analytic signal is a signal which has no negative frequency. For ex-
ample, a real sinusoid may be converted into a positive frequency complex
sinusoid by adding a quarter-cycle shifted imaginary part, since:

cos(2πωt + Φ) + j sin(2πωt + Φ) = ej(2πωt+Φ) (49)

For more complex signals, we can use a �Hilbert transform �lter� which
shifts each sinusoidal component by a quarter cycle. Ideally, this �lter has
magnitude 1 at all frequencies and introduces a phase shift of −π/2 at each
positive frequency and π/2 at each negative frequency. The impulse response
of such an ideal π/2 radians phase shifter is [32, 33]:

h[n] =
1− cos(πn)

πn
for n ∈

[
−N − 1

2
,
N − 1

2

]
(50)

Figure 7 shows how the system can be used to compute the analytic
signal sa[n] de�ned as:

sa[n] = sr[n] + jsh[n] (51)
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j

Hilbert

�lter

transform

sa[n]

sh[n]

sr[n]

Figure 7: Mathieu Lagrange and Sylvain Marchand. Block diagram represen-

tation of the creation of the analytic signal sa[n] given the real signal sr[n]
and its Hilbert transform sh[n].

where sr[n] is the analyzed real signal and sh[n] is the output of the Hilbert
transform �lter. Given the impulse response of the �lter given by Equa-
tion 50 or computed using practical Hilbert transform �lter design methods
[34, 35], the Hilbert transform is e�ciently computed using an FFT-based
convolution.

The real signal is now converted into an analytic signal before the fre-
quency estimation process. If an ideal �lter could be considered, the per-
formance of the estimators should be similar to those of the complex case.
Unfortunately, the magnitude of this �lter is not exactly unity due to the
ripple of the �lter in the passing band. This globally degrades the perfor-
mance of the estimators in the short frequency range, except for the ω̂r which
obtains slightly better results. This enhancement is due to a reduction of
the estimation bias as it will be explained in Section 5.1. The ω̂d and ω̂t

estimators perform similarly with slightly lower performance than the two
other estimators, see Figure 8(a).

If the whole frequency range is considered, all the estimators achieve
similar performance, see Figure 8(b). Due to the lower in�uence of the
negative frequencies, the performance of the estimators are globally enhanced
with respect to the ones obtained in the real case as discussed in the next
section.

5 Discussion

The previous section detailed the performance behavior of the phase-based
estimators for three signal types: complex, real, or analytic. We now globally
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(a) Analytic case: short frequency range.
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(b) Analytic case: whole frequency range.

Figure 8: Mathieu Lagrange and Sylvain Marchand. Performance of the

tested estimators for the analysis of a Hilbert transformed real sinusoid with

frequency lying in the (0.24, 0.25) normalized frequency range (a), and in the

(0, 0.5) range (b).
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Figure 9: Mathieu Lagrange and Sylvain Marchand. Performance of the

tested estimators at SNR=100 dB after applying a Hilbert transform to the

real sinusoidal signal versus its frequency.

compare these estimators depending on the type of signal, frequency range,
and SNR range. The estimation bias is studied in a �rst part and the variance
of the estimation error in a second part.

5.1 Bias of the Error

We compare the estimation bias of the evaluated estimators by considering
the log-bias. The log-bias is de�ned as the base-10 logarithm of the absolute
value of the mean error achieved at a given frequency so that this error is
maximal in the considered frequency range:

blog = log10 (maxω|ω̂ − ω|) . (52)

For each type of signal, the two frequency ranges are considered: the
narrow frequency range around 0.25 normalized frequency and the whole
frequency range (0, 0.5). Two SNR ranges are also considered: a high SNR
range {20, 40, 60, 80, 100} and a low SNR range {−20,−10, 0, 10}.

As can be seen in Table 2, ω̂r exhibits a higher bias than the others
estimators, if not masked by the interference phenomenon when real signals
are considered. However, the delta between the bias of ω̂r and the bias of
the others is consequently diminished when considering the analytic signal.

22



Signal Complex Real Analytic

Range Narrow Whole Narrow Whole Narrow Whole

di�erence -6.86 -6.82 -6.81 -2.57 -6.18 -3.15
ω̂∆ (-2.77) (-1.96) (-2.93) (-1.88) (-2.91) (-1.59)

reassignment -5.80 -5.82 -5.85 -2.57 -6.38 -3.15
ω̂r (-2.85) (-2.41) (-2.91) (-1.83) (-2.88) (-1.58)

derivative -6.72 -4.49 -6.70 -1.95 -6.06 -1.97
ω̂d (-2.81) (-1.70) (-2.73) (-1.50) (-2.79) (-1.37)

trigonometric -6.73 -6.84 -6.74 -2.81 -6.09 -3.20
ω̂t (-2.79) (-2.41) (-2.84) (-1.57) (-2.79) (-1.46)

arctan -5.78 -5.76 -5.70 -3.79 -5.42 -4.08
ω̂a (-1.81) (-1.66) (-1.81) (-1.60) (-1.81) (-1.55)

Table 2: Mathieu Lagrange and Sylvain Marchand. Mean log-bias

of the phase-based estimators for the SNR values expressed in dB:

{20, 40, 60, 80, 100}. For the mean log-bias in parentheses, the SNR values

are: {−20,−10, 0, 10}. The estimators are tested for several signal types.

From left to right, the analyzed signal is a complex tone in a narrow fre-

quency range and in the whole frequency range, so as for the real tone and

the analytic tone. Bold numbers indicate � column-wise � the minimal bias

achieved by the tested estimators for a given signal type, frequency range,

and SNR range.
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5.2 Variance of the Error

We compare the variance of the error of each estimator by considering the
log-e�ciency. The log-e�ciency of an estimator is de�ned as the base-10
logarithm of the ratio between the variance of the error [36] versus the CRB
for a given SNR:

elog = log10

(
var(ω̂ − ω)

CRB

)
. (53)

As in the previous section, the two frequency ranges are considered for
each type of signal: the narrow frequency range around 0.25 normalized
frequency and the whole frequency range. A limited range ]1/N, 0.5[ is also
considered for the real case to compare the estimators without favoring the
trigonometric and arctan estimators, see Section 4.2. Two SNR ranges are
considered: a high SNR range {20, 40, 60, 80, 100} and a low SNR range
{−20,−10, 0, 10}, in parentheses in Table 3. For each of these ranges, the
results reported are the mean value of the log-e�ciency over the considered
range.

The results of the experiments reported in the last section show that the
estimation bias is not negligible and thus strongly in�uences the variance of
the error. Therefore, a correlation between the results of the two Tables 2
and 3 is observed.

In the case of a complex signal, the di�erence and arctan estimators
achieve the best performance, so as for the narrow frequency range in the
case of real signals. The trigonometric and arctan estimators achieve the
best performance for the whole frequency range in the real case and the
reassignment performs best in the analytic case thanks to the reduction of
the estimation bias.

Considering the analytic signal instead of the real one enhances the per-
formance if the whole frequency range is considered. The use of the analytic
signal computed with the Hilbert transform �lter of Equation 50 is then rel-
evant for improving the precision of the estimation of the frequency using
phase-based estimators since this pre-processing step could also be achieved
e�ciently in the spectral domain.

5.3 Comparison with Other Classes of Estimators

The phase-based estimators are now compared to other classes of estimators.
This evaluation is only provided to roughly rank those approaches and do not
aim at a fair and in-depth comparison. The Grandke estimator [7] belongs
to the polynomial class and requires only one FFT computation per frame.
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Signal Complex Real Analytic

Range Narrow Whole Narrow Whole Limited Narrow Whole

di�erence 0.65 0.68 0.62 6.10 5.10 1.24 5.30
(2.27) (2.81) (1.94) (2.84) (2.60) (1.90) (2.84)

reassignment 1.72 1.77 1.79 6.10 5.10 1.09 5.30
(2.23) (2.66) (1.94) (2.83) (2.64) (1.90) (2.82)

derivative 0.95 3.41 0.93 7.41 7.40 1.54 7.15
(2.38) (3.19) (2.09) (3.20) (3.12) (2.05) (3.24)

trigonometric 0.94 0.78 0.91 5.87 5.15 1.53 5.32
(2.37) (2.44) (2.08) (2.79) (2.63) (2.10) (2.81)

arctan 0.65 0.68 0.63 5.87 5.15 1.24 5.32
(2.23) (2.57) (2.07) (2.79) (2.65) (1.90) (2.78)

Table 3: Mathieu Lagrange and Sylvain Marchand. Mean log-e�ciency

of the phase-based estimators for the SNR values expressed in dB:

{20, 40, 60, 80, 100}. For the mean log-e�ciency in parentheses, the SNR

values are: {−20,−10, 0, 10}. The estimators are tested for several signal

types. From left to right, the analyzed signal is a complex tone in a narrow

frequency range and in the whole frequency range, so as for the real tone and

the analytic tone. Bold numbers indicate � column-wise � the best perfor-

mance achieved for a given signal type, frequency range, and SNR range.
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Signal Complex Real Analytic

Range Narrow Whole Narrow Whole Narrow Whole

7.78 7.86 7.47 7.57 7.47 7.56
ω̂DFT (3.04) (3.27) (2.75) (3.20) (2.72) (3.28)

0.84 0.83 0.54 6.12 0.78 5.58
Grandke (2.33) (2.48) (2.03) (2.86) (2.00) (2.84)

0.65 0.68 0.62 6.10 1.24 5.30
ω̂∆ (2.27) (2.81) (1.94) (2.84) (1.90) (2.84)

0.41 0.41 0.11 0.71 3.10 5.36
ESPRIT (2.54) (3.02) (1.85) (2.50) (1.74) (2.65)

Table 4: Mathieu Lagrange and Sylvain Marchand. Mean log-

e�ciency of several classes of estimators estimators for the SNR values:

{20, 40, 60, 80, 100} dB and in parentheses: {−20,−10, 0, 10} dB.

The di�erence estimator ω̂∆ belongs to the phase-based class and require
two FFT computation per frame. The ESPRIT algorithm [4] belongs to
the High-Resolution class and requires knowledge of the number of sinusoids
to achieve the best performance. This algorithm is based on the subspace
decomposition of the autocorrelation matrix of the signal and requires two
eigenvalues decompositions. This approach is therefore much more complex.
In the complex and analytic case, the number of complex sinusoids to be
found is set to 1. In the real case, the number of complex sinusoids is set to
2.

According to the results presented in Table 4, the Grandke and ω̂∆ esti-
mators provide a considerable improvement over the rough FFT-based esti-
mator. ω̂∆ behaves better, but according to [9], the polynomial estimators
can be improved as desired by using a convenient ZP factor at the expense
of some computational complexity.

The ESPRIT algorithm takes advantages of the properties of the analyzed
signal which should be a sum of a known number of complex sinusoids with
AWGN. Using this prior knowledge, this class of algorithms outperforms the
Fourier-based methods in terms of resolution and precision. This leads to a
signi�cant improvement in the case of a real sinusoid in the whole frequency
range. However, this estimator achieves poor results in the analytical case,
probably due to the fact that the signal is �ltered and therefore cannot be
purely explained as a sum of sinusoids with AWGN and also because the
Hilbert transform does not suppress all the energy of the negative frequency
components.

26



6 Conclusion

In this article, we have studied the use of phase-based estimators to estimate
the frequency of complex and real tones.

We have �rst demonstrated their theoretical equivalence. More precisely,
the reassignment estimator was proved to be equivalent to the derivative one
in the continuous case. The discrete version of this last estimator was then
shown to be equivalent to the di�erence and the trigonometric estimators.

This equivalence was guessed in practice by Keiler and Marchand in [16],
partly demonstrated in theory by Hainsworth [17] during his Ph.D., and
recently explained in [37].

The numerical experiments reported in this article globally con�rm these
results although slight di�erences were observed, which are most probably
due to the numerical imprecision of mathematical operators. The di�erence
estimator achieves the most stable results, except in the case of real signals
with very low frequency components. In this case, the trigonometric or
arctan estimators should be preferred.

Finally, the Hilbert transform can be used as a pre-processing step to
minimize the in�uence of the negative frequencies in the case of real sig-
nals. Experiments show that the overall performance of these estimators is
enhanced, especially in the case of the reassignment estimator.
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