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Enhancing the Tracking of Partials for the Sinusoidal
Modeling of Polyphonic Sounds
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Abstract—This paper addresses the problem of tracking par-
tials, i.e., determining the evolution over time of the parameters
of a given number of sinusoids with respect to the analyzed audio
stream. We first show that the minimal frequency difference
heuristic generally used to identify continuities between local
maxima of successive short-time spectra can be successfully gener-
alized using the linear prediction formalism to handle modulated
sounds such as musical tones with vibrato. The spectral properties
of the evolutions in time of the parameters of the partials are next
studied to ensure that the parameters of the partials effectively
satisfy the slow time-varying constraint of the sinusoidal model.
These two improvements are combined in a new algorithm de-
signed for the sinusoidal modeling of polyphonic sounds. The
comparative tests show that onsets/offsets of sinusoids as well
as closely spaced sinusoids are better identified and stochastic
components are better avoided.

Index Terms—Partial-tracking algorithms, polyphonic audio
analysis, sinusoidal modeling.

1. INTRODUCTION

MONOPHONIC sound produced by the vocal tract or a

musical instrument may be decomposed into a stationary
pseudoperiodic part, often named the deterministic part of the
signal (voiced speech signal, sustain and release phases of tones
produced by resonant instruments) and a stochastic part (turbu-
lences, unvoiced speech signals). The deterministic part can be
conveniently decomposed into partials. Each partial is usually
corresponding to a mode of vibration of the producing sound
system and is modeled as a sinusoid with given amplitude,
phase, and frequency.

Observing that the distinction between deterministic and sto-
chastic processes may not be necessary for speech signal modi-
fication and reconstruction purposes, McAulay and Quatieri de-
veloped in [1] an analysis/synthesis system with applications
to time-scale, pitch-scale modifications, and mid-rate speech
coding. Voiced signals are represented as sums of sinusoids with
frequencies nearly harmonically related, and unvoiced signals
are represented as sums of sinusoids sufficiently close in fre-
quency so that the Karhunen-Loeve expansion [2] constraint is
satisfied.
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Although this system achieves good signal reconstruction
quality even in case of polyphonic audio signals, this system
is not intended to identify the underlying structure of the
pseudoperiodic part of the analyzed sound. As it will be
demonstrated in the paper, this underlying structure can be
better modeled with a relevant design of a part of the system
called the partial-tracking (PT) algorithm.

Some PT algorithms were proposed in the literature to better
identify the partials of the sound with harmonic assumptions [3],
[4]. Additionally, some post-processing methods were proposed
again with harmonic assumptions to overcome the problem of
partials with close or crossing frequencies [5]-[7] that occurs in
polyphonic recordings.

Since many pseudoperiodic sounds are not harmonic, more
generic PT algorithms were proposed by considering a statis-
tical framework as in [8] and in our previous work introduced
in [9]. However, our experience is that the relatively loose rela-
tionship between the problem and its mathematical formulation
leads to a difficult parameterization of this type of algorithms.
Their relatively high complexity can also be an issue for spe-
cific applications. The proposed approach distinguishes from
previous ones by relying solely on the physical properties of
the sinusoidal model. The estimated partials are ensured to re-
spect constraints of the model and can therefore be safely used
as a front-end representation for auditory scene analysis appli-
cations, such as low bit-rate coding [10], [11] or audio content
indexing [12].

Without any assumption about the sources that compose the
mixture, a perfect identification of each partial of each source
can generally not be achieved. For example, partials of unison
notes or notes with musical pitch relationship can hardly be sep-
arated due to time/frequency resolution issues, leading to a con-
taminated representation of the spectral content of the sound.
We will show that the proposed PT algorithm is useful to lo-
cally overcome these contamination problems by assuming that
the uncontaminated portion of the spectrum reflects fairly per-
ceptively important parts of the analyzed sound. Furthermore,
the sinusoidal modeling of this uncontaminated part can also
be used to recover contaminated parts of wider range using
post-processing methods as proposed in [7] and [13].

This paper is organized as follows. The estimation of the pa-
rameters of the partials at discrete time locations is first de-
scribed in Section II. The resulting short-term sinusoidal (STS)
model is used by PT algorithms to determine the continuous
evolutions of the parameters of the partials. After a presentation
of the long-term sinusoidal (LTS) model and a review of several
existing PT algorithms in Section III, the general structure of
the proposed PT algorithm is introduced in Section IV.
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The performance of this algorithm relies on the precise pre-
diction of the evolutions of the frequency and amplitude param-
eters of the partials in untracked STS frames and the selection
of a continuation with parameters close to the predicted ones
that comply with the slow time-varying constraint of the LTS
model. These two key elements were previously addressed, re-
spectively, in [14] and in [15]. We advance in this work by ex-
tensively developing theoretical and implementation issues in
Sections V and VI of this paper.

The gain of using and combining these prediction and selec-
tion methods in an enhanced PT framework is next studied. Ex-
periments are first presented in Section VII using some test-case
studies, each reflecting a particular issue in the sinusoidal mod-
eling of polyphonic sounds. The performances are then evalu-
ated using an original methodology in Section VIII that aims at
evaluating PT algorithms independently of any other elements
of the analysis/synthesis chain.

II. SHORT—TERM SINUSOIDAL ANALYSIS

Sinusoidal modeling aims at representing a sound signal as
a sum of sinusoids having given amplitudes, frequencies, and
phases. It is rooted in Fourier’s theorem, which states that any
periodic function can be modeled as a sum of sinusoids at var-
ious amplitudes and harmonic frequencies. Since considering
these parameters as constant through the whole signal duration
is not perceptually relevant, a first approach segments the signal
into small successive frames. The size of these—often overlap-
ping—frames N as well as the hop size H are determined ac-
cording to the local stationarity of the signal. The discrete signal
2% (n) at frame index k is then modeled as follows:

a*(n) =) af cos (%fﬁ ~n+¢§“> (1)

=1

where F is the sampling frequency, and qﬁf is the phase at the
beginning of the frame of the /th component of L* sine waves,
fF and a} are, respectively, the frequency in Hertz and the am-
plitude considered as constant within the frame.

A set of sinusoidal parameters S* = {pf, ..., p%,}isused to
model each frame k. The system parameters of this STS model
Sk are the L* triplets p¥ = (fF,aF,$r), often called peaks.
These parameters can be efficiently estimated by picking some
local maxima from a short-term Fourier transform (STFT) using
spectral techniques detailed next.

A. Time/Frequency Analysis

To estimate each set of peaks S¥, the spectrum X* is com-
puted using a discrete Fourier transform (DFT) operated on the
windowed samples of frame k. For a robust estimation of the
phase [16], in the case of the use of a periodic Hann window
with an even N, the weighted samples can be circularly shifted
by N/2 samples before the computation of the DFT (zero-phase
windowing).

The number of samples necessary for the computation of the
DFT is constrained by the spectral structure of the analyzed
sound. Since the frequencies of the sinusoidal components of an
harmonic monophonic sound are separated by the fundamental
frequency, the size of the DFT can be adapted according to a
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Fig. 1. Spectral peaks (spectrum local maxima) of a singing voice sampled at
44100 Hz and analyzed with a hop size of H = 512 samples and a window
size of N = 2048. Since the window size is four times larger than the hop size,
some spurious peaks appear with modulated partials (around frame 85).

pitch estimate [1]. The frequency resolution is then sufficient
to separate harmonics and the time resolution is close to op-
timal. On the contrary, the frequency distribution of the sinu-
soidal components of polyphonic sounds is not known in ad-
vance. The size of the window should then be set arbitrarily.
If the frequency resolution is too small, two sinusoidal compo-
nents may lay in the same frequency bin and may be misde-
tected. On the other hand, the loss of temporal resolution and
short-term stationarity may lead to poor—averaged—estimates.

In order to reduce interpretation problems due to the bad tem-
poral resolution, the hop size can be set significantly shorter
than the window length. This method is far from perfect though
because even if the spectrum is estimated at a given rate, the
number of samples used to estimate the spectrum is significantly
larger. This leads to a temporal “smearing” of the representation
as shown in Fig. 1.

During our experiments, the STFT of a signal sampled at
Fs; = 44100 Hz is done with a window length of N = 2048
points since a shorter window length is not convenient for the
analysis of polyphonic sounds, and a larger one gives very poor
estimates in case of modulations. The parameters of the under-
lying sine waves are evolving with time and the analysis of these
evolutions will be a key factor for the enhancements proposed
in this article. The hop size is set to H = 512 points to provide
a sufficiently dense sampling of these modulations (=86 Hz).
The window size and the hop size are then respectively of 46.4
and 11.6 ms.

B. Peak Parameters Estimation

Next, the parameters of the elements of S* as well as its car-
dinal are estimated given X k the complex values of the DFT
spectrum. The frame index £ is omitted in the remainder for
clarity sake. Supposing that the absolute difference between the
frequencies of two sinusoidal components is at least the width
of the spectrum main lobe of the window (F/N if the rect-
angular window is used), each component gives rise to a local
maximum in the power spectrum, located at the DFT index m;
so that (m; — 0.5)F5/N < f; < (m; + 0.5)F;/N.
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The value of the index m;, the magnitude, and the phase of
the spectrum bin give, respectively, rough estimates of the fre-
quency, amplitude, and phase of p;

Fs

N le = AX(ml)

Ji=my o = % | X ()| @
Since we consider real signals, the power spectrum value is mul-
tiplied by 2 to estimate the amplitude and due to the shifting
of the samples, ¢, is the estimated phase at the center of the
window.

To increase the precision of the frequency estimate, we can
consider the relationship between the amplitude of the signal

and the one of its derivative

fr= B aresin (2 X=(mol
v 2F; | X (my)

3)

where X _ denotes the spectrum of difference z:(n + 1) — z(n),
approximating the first derivative of x, see [17], [18] for further
explanations. This estimator relies on a precise estimation of
the amplitude of the sinusoidal signal and the one of its deriva-
tive. The analysis window should be chosen to achieve good
asymptotic side lobe attenuation because these amplitudes are
estimated with the DFT bins of the spectra X_ and X . The pe-
riodic Hann window has proven to give the best results [19] and
thus is used in all our experiments.

During the analysis of natural sounds, bin contamination or
noise may lead to incoherent estimates. If the frequency fl of a
local maximum located at DFT bin m; is closer to the frequency
of another DFT bin, the local maximum should have been lo-
cated at this bin. Therefore, a local maximum with an estimated
frequency that does not satisfy the following condition is dis-
carded: |le/FS —my| <0.5.

Next, considering that the power spectrum of a sinusoid is the
shifted power spectrum of the window, the increase of frequency
precision can be used to estimate more precisely the amplitude:

| X ()|

i =2 !
Wa(fi — muFs/N)

“)

where Wy (f) is the frequency response of the Hann window,
f being the frequency in Hertz.

The frequency and amplitude estimators of (3) and (4) im-
prove the rough estimates provided by the DFT given in (2).
As asserted by comparison methodologies, these estimators are
very precise under the idealized assumption of stationarity re-
quired by the DFT [18], [20].

However, the problems inherent to the use of the STFT re-
main in the analysis of polyphonic recordings. The lack of fre-
quency resolution leads to bin contamination if two sinusoidal
components have their frequencies too close. In such a case, at
least one peak is missing and the second one is corrupted. The
lack of temporal resolution and the presence of noise lead to
the appearance of noisy peaks that do not correspond to sinu-
soids. By considering the evolutions of the parameters of the si-
nusoids over numerous frames, the long-term sinusoidal model
described in the next section can be considered to address these
issues.

III. LONG-TERM SINUSOIDAL ANALYSIS

For stationary pseudoperiodic sounds, the correlation
between parameters of peaks of successive frames can be ex-
ploited. A “long-term” sinusoidal (LTS) model can be applied,
where amplitudes and frequencies parameters continuously
evolve slowly with time, controlling a set of pseudosinusoidal
oscillators commonly called partials. The audio signal s can be
calculated from the additive parameters using (5) and (6), where
L is the number of partials and the functions Fj, A;, and ®; are
the instantaneous frequency, amplitude, and phase of the [th
partial, respectively. The L triplets P, = (Fi(¢), Ai(t), ®i(t))
are the parameters of the LTS model noted £

L

s(t) = Au(t) cos (®4(t))

=1

&)

q)[(t) = (I)Z(O) + 27 /Fl(u)du (6)

For natural sounds, the continuous functions Fj, A;, and &,
are unknown. Alternatively, a STS representation of the sound
is used to identify the values of these functions at discrete time
locations. In the considered LTS model, we assume that the con-
trol signals corresponding to the evolutions of the frequency
and amplitude parameters of the partials are deterministic—thus
predictable—and that they are slow time-varying and more pre-
cisely inaudible (to avoid modulations, for the perceptive coher-
ence of the model). Thus, we have two constraints on the model
parameters: predictability and inaudibility.

Once the partials are carefully extracted from the STS repre-
sentation so that these two constraints are met, a partial may be
represented by a triplet of discrete time signals

P = (FK’I’L),A[(R),@[(TL)), ne [bl'/dl] (7N
where b; and d; denote, respectively, the frame indices of “birth”
and “death” of the partial. The continuous functions Fj, A;, and
®; may be approximated from the parameters of the successive
peaks of the partial P, using interpolation schemes presented in
[1] and [21].

As discussed above, the STS representation has drawbacks,
some peaks may be missing due to the detection of only one
peak during the crossing of two underlying sinusoids or the re-
jection of peaks with incoherent parameters. If a partial is de-
cided to be prolongated at a given frame where no peak issued
from the STS frame can be used, a “virtual” peak with interpo-
lated parameters can be used.

A partial can be regarded as a series of successive
peaks which may be interpolated or issued from the STS
representation:

Pl:(pblvplerlv'"7ﬁbl+m7"'7pdl) (8)
where p denotes an interpolated peak. The main issue is then
to determine which elements of the STS model (the peaks) be-
long to which elements of the LTS model (the partials). Par-
tial-tracking (PT) algorithms achieve such a task mostly in a



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

streaming manner. The peaks of S,, 1 are used for the continu-
ation of £,,, the set of partials tracked until frame 7. This alloca-
tion process, detailed in the next section, is repeated iteratively
until no untracked frame S,,, remains.

IV. PROPOSED PT ALGORITHM

The time evolution of a musical tone can generally be de-
composed in three steps: attack, sustain, and release. During the
attack that typically lasts for up to 40 ms [22], the partials that
compose this tone are small and the evolutions of their param-
eters are generally chaotic. Therefore, once a partial is born, it
staysina “young” state for about 120 ms and then becomes “ma-
ture” until its death. As it will be detailed further, the behavior
of these two types of partials will be different in the three steps
that compose the proposed PT algorithm.

Given a set of partials tracked until frame n, the first step de-
termines which partial of £,, should seek for continuation with
the highest priority. Partials are sorted in decreasing order ac-
cording to the s; criterion, so that the partials having the highest
amplitude and the mature—most reliable—ones can select their
continuations first

{ Ai(n)/K,, if P, is mature
S =

— |t F,(n)| /Ky, otherwise ©)

where A;(n) and Fj(n) are the amplitude and the frequency
values of the partial P, at the last tracked frame indexed n, and
K, and K are normalizing constants. The amplitude A;(n) is
always positive so that K, and Ky can be safely set to 1 in
this article, since only the relative order—and not the absolute
values—is important here. The frequency f ! is the frequency

3

of a peak verifying the following condition:

|f1h = F(n)| < |7 = Fi(n)|, V) #i.

Next, the continuation of the partials is searched out in de-
creasing s; order. The evolutions of the frequency and ampli-
tude parameters of a partial P; are predicted and peaks of S;, 41
with parameters close to the predicted ones are considered. One
of these peaks is selected for the continuation of the partial ac-
cording to a given relevance criterion. If satisfied, this peak is
removed from S,,; and inserted in P;.

If the partial is young, the continuation peak is selected ac-
cording to (10). This peak is effectively used for the continuation
of the partial if the absolute frequency difference between this
peak and the last inserted peak is below a given threshold Ay.
An interpolated peak is used otherwise.

Once a partial is mature, a prediction of the frequency evolu-
tion of the partial in the next L frames is computed using the
prediction module described in the next section. Some peaks are
chosen in these frames so that the frequency difference between
the frequency of the peak and the interpolated one is below a
threshold A, see Fig. 2(a). An original smoothness criterion
introduced in Section VI is then used to select one of all pos-
sible trajectories that go through peaks of STS frames (dots) or
predicted ones (diamonds), see Fig. 2(b). The peak used to pro-
longate the partial is the first peak of this selected trajectory.

This prediction/selection process is iterated until no untreated
partial remains. Finally, the remaining peaks of S,,11 are used

(10)
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Fig. 2. Selecting peak candidates in the future frames and exploring possible
trajectories. On top, the predicted frequencies are plotted with stars. Some STS
peaks are chosen so that the frequency difference between the frequency of the
peak and the predicted one is below A ;. At bottom, possible trajectories that go
through these selected measured peaks (dots) and interpolated ones (diamonds)
are tested. The first peak of the chosen trajectory is added to the partial.

to initiate new partials. A young partial is labeled dead if inter-
polated peaks are successively inserted in a young partial for a
given time (around 50 ms in our experiments). For mature par-
tials, a specific maximal time when successive insertion of inter-
polated peaks are allowed (1) is assigned to each mature partial
P, and this time may change from frame to frame. If a peak from
an STS frame is inserted, this number is incremented by the du-
ration of the hop size and decremented otherwise. In the exper-
iments, I; is initialized to 50 ms and cannot exceed 500 ms. If
the number of interpolated peaks successively inserted is above
1I;, the partial is labeled dead. Those dead partials are removed
from the tracking process, and the interpolated peaks lastly in-
serted in these partials are removed.

The prediction and selection steps of mature partials are cru-
cial and will be extensively detailed in the two next sections.

V. PREDICTING THE EVOLUTIONS OF THE PARTIALS

In the McAulay—Quatieri (MQ) algorithm [1], a constant pre-
dictor is implicitly used, meaning that the predicted frequency
is the frequency of the last inserted peak

A

F(n+d)=F(n) (11)
where d is the distance between the predicted sample and last
observed sample. Assuming that the STS representation is of
high quality, we can consider that the best evolution for fre-
quency is the constant one. However, in degraded STS repre-
sentation as in Fig. 1, a better prediction is crucial to identify
the correct continuation of a partial among several noisy peaks.
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An improved predictor is used in the HMM algorithm [8], by
considering the slope between the two last inserted peaks

A

F(n+d)=2F(n)—F(n—d) (12)
where d is often set to 1. We propose to further improve the
prediction capability by considering a more complex predictor
suitable for the modeling of a wide variety of natural mod-
ulations. The evolution of partials in the time/frequency and
time/amplitude planes can be constant, exponentially increasing
or decreasing (portamento in the time/frequency plane and fade
in/out in the time/amplitude plane) or sinusoidal (vibrato in the
time/frequency plane and tremolo in the time/amplitude plane).

It is proposed in [23] to model the evolutions of the partials
of instrumental sounds of the brass family by means of Kalman
filtering using pre-extracted statistical informations. In order to
gain generality, we showed in [24] that these evolutions can be
modeled by an autoregressive (AR) model. The linear predic-
tion (LP) is then used to predict the evolutions of the parameters
of partials in future frames. The current sample z(n) is approxi-
mated by a linear combination of past samples of the input signal

K

a(k)z(n — k). (13)

z(n) =
k=1

Given VxR successive past samples considered as observations,
the a(k) coefficients are calculated using a specific error-mini-
mization method.

We have shown in [24] that the Burg method must be chosen
against other, more commonly used methods such as the au-
tocorrelation or the covariance methods [25], [26]. It only re-
quires Nar > 2K and the minimum phase property is ensured,
leading to stable filters.

The prediction step of the PT algorithm is processed as fol-
lows. Given the last Nag frequency samples of a mature partial
P, tracked until frame n, the prediction coefficients a(k) are
calculated using the Burg method. The predicted frequencies
FEp(n+1),..., Fp(n+ Ly) are then obtained by successive
filtering iterations of (13) using the a(k) coefficients. The same
process is applied for the computation of the predicted ampli-
tudes A,,(n +1),..., A, (n + Lr). Considering that the pa-
rameters of the partials are locally stationary, these prediction
coefficients are used to estimate the parameters of the interpo-
lated peaks, represented with diamonds in Fig. 2(b). During the
experiments presented in this paper, Ly is set to 6.

In order to demonstrate the capability of this predictor and
to determine its best parameterization, some experiments were
conducted. The testing material is the frequencies of some par-
tials of a saxophone tone with vibrato from the Iowa database
[27]. These frequency samples are identified using the STS anal-
ysis module described in Section II with a DFT size adapted
to the pitch of the tone and tracked correctly using the MQ
algorithm.

For each predictor, a given number of past samples of a fre-
quency trajectory are used to predict next samples from the ad-
jacent one (d = 1) to the more distant one (d = 4). We consider
the mean error (expressed in Hertz) obtained by considering the
whole frequency trajectory of all the partials of the saxophone

TABLE I
MEAN (AND MAXIMAL) PREDICTION ERRORS OF THE CONSTANT, LINEAR,
AND LP PREDICTORS WHILE PREDICTING THE FREQUENCY EVOLUTION OF
PARTIALS OF A SAXOPHONE TONE WITH VIBRATO FOR DIFFERENT VALUES OF
d (THE DISTANCE IN FRAME INDICES BETWEEN LAST OBSERVATION AND THE
PREDICTED VALUE). THE ORDER OF THE LP PREDICTOR GROWS FROM TOP TO
BOTTOM AND, FOR EACH SQUARE, THE NUMBER OF SAMPLES CONSIDERED
IS 16 AND 32. THE PREDICTION ERRORS OF THE LP PREDICTOR ARE LOWER
THAN THOSE OF THE BEST SIMPLE PREDICTOR, AND THE IMPROVEMENT IS
GETTING MORE AND MORE SIGNIFICANT WHEN d IS INCREASING

d: 1 2 3 4
Constant 0.35(0.9) | 0.69 (1.8) | 1.01 2.5) | 1.31 (3.1)
Linear 0.16 (0.8) | 042 (1.4) | 0.76 (2.4) | 1.18 (3.7)
0.16 (0.6) | 0.41 (1.3) | 0.72 (2.2) | 1.09 (3.5)
LP order 2 || 0.16 (0.7) | 0.41 (1.3) | 0.72 (2.1) | 1.06 (3.3)
0.14 (0.6) | 0.35(1.3) | 0.62 (2.0) | 0.92 (3.3)
LP order 4 || 0.13 (0.6) | 0.32 (1.2) | 0.52 (1.7) | 0.77 (2.5)
0.14 (0.6) | 0.34 (1.4) | 0.57 2.2) | 0.83 (3.1)
LP order 6 || 0.13 (0.7) | 0.29 (1.1) | 0.46 (1.7) | 0.65 (2.3)
0.14 (0.6) | 0.34 (1.3) [ 0.57 (2.1) | 0.81 (3.0)
LP order 8 || 0.12 (0.6) | 0.28 (1.1) | 0.43 (1.4) | 0.58 (1.9)

tone. The error obtained for each partial is normalized by the
harmonic rank of the considered partial prior to summation. The
maximal error is also considered because it indicates the robust-
ness of the predictor.

The results of these experiments are summarized in Table 1.
The constant and linear predictors of (11) and (12) are first con-
sidered. As far as the mean error is considered, the linear pre-
dictor achieves better performance than the constant one when
d is small but this improvement decreases when d grows. Con-
sidering the maximal error, the robustness improvement is not
as significant.

The performance of the LP predictor depends on the choice
of a relevant number of observations N g and model order K.
The number of observations should be large enough to extract
the signal periodicity, and short enough not to be too constrained
by the past evolution. Since we want to handle natural vibrato
with a frequency about 4 Hz and the frequency and amplitude
trajectories are sampled at ~86 Hz, we need at least 20 sam-
ples to get the period of the vibrato. Since we want to model
exponentially increasing or decreasing evolutions (portamento)
and sinusoidal evolutions (vibrato), K should not be below 2. In
practice, the order should be set at a higher value [24] because
observations suffer from imprecision of the estimation of the
spectral parameters as shown by the experimental results sum-
marized at the bottom of Table I. In these experiments, the LP
predictor is considered with an increasing order, from 2 to 8
and for each square and the number of samples considered are
16 and 32. It shows that if the number of samples is close to 20,
the LP predictor reduces the mean error by a factor of 2 and the
maximal error by a factor of 1.3 over the constant predictor.

The Burg method considers an error minimization on a finite
support, thus the model order should not be greater than half the
number of observations. In the experiments reported in the last
section of the paper, the prediction of the frequency and ampli-
tude of each partial is done using a maximum of 20 observations
if available and a model order K = 8. Otherwise, all observa-
tions and a model order of half the number of observations are
considered.

We have shown that the continuation of modulated partials in
the next frames can then be identified more precisely using the
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Fig. 3. Three evolutions of the frequency of partials tracked with the MQ algo-
rithm and their corresponding magnitude spectra computed with a Hann-win-
dowed DFT. From top to bottom, a harmonic of a saxophone tone with a local
burst around frame 50, a well-tracked harmonic vibrato, and a partial tracked by
error from a white noise signal. Only the well-tracked partial has a low HFC.

LP predictor by selecting peaks with parameters close to the pre-
dicted ones. The next problem to address is to determine which
of the trajectories that go through these peaks is most satisfying
the constraints of the LTS model expressed in Section III.

As we proposed in a previous work [14], one can consider the
peak whose frequency is the closest to the predicted one and ef-
fectively prolongate the partial with this peak if the absolute dif-
ference between its frequency and the predicted one is below a
given threshold. This simple smoothness criterion was not found
satisfying because the higher frequency partials are more mod-
ulated than the lowest ones. The threshold should therefore be
adaptive which cannot be safely done without any assumption
about relationships between partials of the same source such as
harmonicity. A more robust selection method is considered in
the next section.

VI. SELECTING THE CONTINUATION OF PARTIALS

The definition of the LTS model given in Section III states that
the frequency and the amplitude of a partial must evolve slowly
with time. From a perceptual point of view, we can consider that
these parameters evolve slowly with time if they do not show
noticeable energy level in frequency bands upper than 20 Hz.
Otherwise, the induced distortion can be heard and the extracted
representation becomes no longer relevant because it does not
follow perception anymore.

We then propose to study spectral properties of possible con-
tinuations of partials to detect if they satisfy the constraints of
the LTS model. In a first attempt, slow time-varying evolutions
can be discriminated from the others by considering the power
of a Hann-windowed DFT spectrum of the evolutions of the fre-
quency of the partials. As shown in Fig. 3, only the well-tracked
partials have a high-frequency content (HFC) around —30 dB.
Noisy evolutions, local burst, and change of harmonic rank in-
duce a higher HFC.

Such a spectral analysis can only be used at a post processing
stage because the number of samples required to compute the
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DFT with a sufficient frequency resolution is too consequent.
Furthermore, the removal of wrong partials after the tracking
process may lead to an incomplete sinusoidal representation be-
cause the partials with a local discontinuity will be removed
erroneously.

Thus, the HFC estimation must be integrated within the
tracking process itself to determine whether the use of a given
continuation will lead to audible distortions or not. The HFC
estimation method should then be as responsive as possible.
We use low-delay elliptic infinite response (IIR) high-pass
filters to estimate the HFC. The high-pass filtered version of
the frequencies of partial P, is

Fo(n) = dDz(1) =Y e(y() (14)
=0

=1

where z(l) and y(!) are the memories of the filter and c(()
and d(l) are, respectively, related to the poles and the zeros of
the IIR filter. They are mainly determined by the desired cut-
ting frequency and the order of the filters which depend on the
frame rate. For frequency and amplitude parameters sampled at
~86 Hz, order-4 filters having normalized cutting frequency of
0.25 are convenient. The following coefficients are used in the
experiments:

(0,...,L) =(1,0.7358,1.0762, 0.5540, 0.2346)
d(0,. .., L) =(0.06,—0.2274,0.335, —0.2274, 0.06).

At the beginning of a partial, two filters are respectively dedi-
cated to the estimation of the HFC in the evolutions of frequency
and amplitude. The memories of these filters z:(1) and y(l) are
first set to 0 and updated as follows:

(1) = F(n — 1) — Fy(b)

y(l) = Fm(n = 1)
each time a peak p” is inserted, b being the birth index of the
partial. An efficient implementation of this high-pass filter is
done using IIR order-2 cells [28].

As can be seen on Fig. 4, the output of the proposed high-pass
filter is quite responsive. The insertion of a peak with parameters
inducing noticeable HFC in the evolutions of the parameters can
be detected very rapidly, with a response delay around two to
three samples.

The problem to address now is the definition of a metric that
considers the HFC both in the frequency and the amplitude evo-
lutions to determine the best continuation. Considering that a
partial is correctly tracked, its frequency and amplitude are slow
time-varying, so as the trajectory composed of predicted peaks
plotted with stars in Fig. 2(a). Moreover, the frequency or the
amplitude of a trajectory made up with peaks of STS frames
will have more HFC than the predicted trajectory mostly made
of predicted—thus virtual—peaks.

A small HFC difference between these two types of trajecto-
ries may be due to measurement imprecision of the STS repre-
sentation or a smooth change of dynamic. In this case, the non-
interpolated trajectory should be used for continuation. On con-
trary, a larger HFC difference indicates that the noninterpolated
trajectory contains spurious peaks or peaks of another partial
and should therefore be avoided.

15)
(16)
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Fig. 4. Output of the high-pass filter (plain) given three different evolutions of
the frequency parameter of the partials (line). The discontinuities are noticeable
with the output of the high-pass filter with a small delay.

The chosen trajectory should then contain the highest number
of peaks of STS frames possible while maintaining a small HFC
both in frequency and amplitude. To identify this trajectory, we
propose to use an empirically defined cost function associated
to each trajectory. This function considers the HFC both in fre-
quency and amplitude and is divided by a factor I" €]0, 1] each
time an interpolated peak is used to reflect the constraints cited
above:

L
(1>N"' leTl
Oy = ( = )

’2

s S i)

i K} a7

r

where G (1) and fr(1) are, respectively, the high-frequency fil-
tered amplitude and frequency of the [th peak of trajectory T" of
length L. This filtering is done using memories of the filters as-
sociated to the current partial. N is the number of interpolated
peaks in the trajectory, K| and K } are normalizing constants.
The choice of the best trajectory leads to constraints on the rela-
tive order between costs and not on their absolute values, so that
K, and K, can be safely set to 1 in this paper.

VII. EXPERIMENTS

To study the properties of the proposed algorithm, we use
the following methodology. A signal s(n) is synthesized from
a LTS source £ and a perturbation p(n) is added which is
either a Gaussian white noise or an artificial LTS source. A
STS representation S is extracted using the method described
in Section II. The evaluated PT algorithm is used to estimate
L from S. This LTS representation is then synthesized to
obtain §(n). The closeness of £ and L is evaluated according
to the reconstruction signal-to-noise ratio (R-SNR) versus the
degradation signal-to-noise ratio (D-SNR) defined as

Sng 5%(n) ) s
S sl —smy)

N—-1 9
D—SNR = 101logy, (w) (19)
2in=o P*(1)

Three PT tracking algorithms are compared using these met-
rics. The first is the MQ algorithm with a A; of 80 Hz, used
as a reference. The second one, called the LP algorithm [14],
only uses the prediction module presented in Section V. Every
peak of the next untracked STS frame whose distance between
its frequency and the predicted one is below a A ¢ of 40 Hz are
selected. The one with the amplitude closer to the predicted one
is then chosen for continuing the partial. The third PT algorithm
is the proposed tracking method, called the HFC algorithm, with
I"setto 0.9 and trajectory length L1 = 6. All the partials shorter
than 100 ms are discarded.

The criteria introduced in [15] are used. Let £ be a reference
LTS representation and L be the LTS representation computed
with the tested PT algorithm from a synthesized version of L.
First, £ has to be efficient, meaning that a partial of £ should
be represented with only one partial of L. In case of polyphonic
recording, L should also be precise, meaning that a partial of
L represents only one partial of £. Moreover, the PT algorithm
should be able to discriminate between deterministic and sto-
chastic components.

In the following experiments, audio inputs of increasing com-
plexity are considered, each modulated by a vibrato since this
kind of modulation is a worst-case scenario as far as tracking is
concerned.

A. Deterministic/Stochastic Separation

Efficiency and discriminating capabilities of the three algo-
rithms are evaluated using a synthetic constant-amplitude vi-
brato tone of 2-kHz base frequency, with a vibrato depth and
rate of, respectively, 50 and 4 Hz, mixed with a white noise of
increasing level.

In a first experiment, to evaluate the efficiency, only the partial
having the highest mean amplitude was synthesized to compute
the R-SNR. At D-SNR below —7 dB, the MQ algorithm pro-
duces partials that are a combination of noisy peaks and tonal
peaks so that the tones are split into several partials. The LP
method and the HFC method are both able to track correctly
the tone with vibrato and thus perform similarly, as can be seen
on Fig. 5(a). In the second experiment, to evaluate the discrimi-
nating capability of the two algorithms, all retained partials that
lay in the [1900, 2100] Hz band are synthesized to compute the
R-SNR. As shown in [14], the LP method provides a signifi-
cant improvement over the MQ method. Compared to the LP
method, the HFC method achieves an additional improvement
of the same magnitude, see Fig. 5(b).

B. Management of Polyphony

The problem of crossing partials arises when dealing with a
mixture of nonstationary sounds. The tracking algorithm has to
be able to identify the evolutions of the partials and to inter-
polate missing spectral data. In order to test the management
of crossing, a natural A 440-Hz saxophone tone is corrupted
by a synthetic constant-amplitude sinusoid beginning 500 ms
later and whose frequency is increasing linearly from 200 Hz
to 4 kHz. Only the extracted partials starting before 500 ms
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Fig. 5. Evaluation of the efficiency (top) and discrimination capabilities
(bottom) of the three methods: MQ method (dashed line), LP method (dotted
line), and the HFC method (solid line) using a synthetic vibrato tone embedded
in white noise.

were synthesized to compute the R-SNR. Having a model of
the evolutions of the parameters leads to an easier management
of crossing partials, by being more selective and by having a
better interpolation capability. Furthermore, the presented algo-
rithm sorts the partials in decreasing amplitude, so that the par-
tial with the lower degradation is processed first. This reduces
the probability of handling the crossing incorrectly, leading to
better results as can be seen in Fig. 6(a).

The time/frequency analysis of polyphonic sounds requires
a high frequency resolution, but the tradeoff between time and
frequency in a musical context leads to the use of analysis win-
dows of reasonable lengths. Pitch relation between harmonic
tones leads to DFT bin contamination and closely spaced si-
nusoids in most natural cases. To evaluate the management of
the closely spaced sinusoids, a natural saxophone tone with vi-
brato is mixed with a set of synthetic constant-frequency and
constant-amplitude sinusoids harmonically related, beginning
20 frames later. The fundamental frequency of this synthetic set
is the same than the one of the saxophone tone, but all the fre-
quencies within this set have been shifted by 70 Hz towards the
low frequencies in order to obtain the same DFT bin contam-
ination for all the harmonics of the original source. Only the
extracted partials starting before frame 20 were synthesized to
compute the R-SNR. When the synthetic tone begins, the spec-
tral informations are blurred, and some noisy peaks are present
between the two close harmonics. The LP method is unable to
avoid bad links and performs as the MQ method does, whereas
the HFC one performs quite well even at high SNR levels as can
be seen on Fig. 6(b).

C. Readability of the LTS Representation

In applications such as indexing or source separation of
stationary pseudoperiodic sounds, a good LTS representation
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Fig. 6. Evaluation of the closely spaced sinusoids (top) and crossing manage-
ment (bottom) capabilities of the three methods: the MQ method (dash-dotted
line), the LP method (dotted line), and the HFC method (solid line).

should provide a higher level of description, useful to iden-
tify sources or to robustly detect informations such as note
onset/offset, or pitch. In this experiment, we have chosen as
input a three-tone violin sequence. The hissing of the bow leads
to many noisy peaks and since the three tones are played legato,
the transitions can hardly be identified.

In order to robustly detect the note onset/offset, a partial
should belong to only one source, and in order to detect the
pitch and to identify the sources, the partials should show
clear time/frequency and time/amplitude evolutions in order
to be able to cluster partials using common variation cues
[29]. As can be seen on Fig. 7, the LP method better identifies
the vibrato than the MQ method does, but the representation
is not satisfying because many partials belong to more than
one source. The proposed method (HFC) shows better results
in time separation and the vibrato of the second tone is also
clearer.

VIII. EVALUATION

The experiments presented in the preceding section show the
properties of the different algorithms while used in a complete
analysis/synthesis chain. In contrast, the evaluation method-
ology introduced here aims at evaluating PT algorithms solely,
i.e., the degradation should be added at the STS level and the
evaluation criteria should be defined at the LTS level.

Typical perturbations of the STS representation due to the
addition of noise or other sources in the polyphonic case are,
respectively, the addition of noisy peaks, the degradation of the
precision of the parameters of the peaks, or even the removal of
relevant peaks.

From a given STS representation S of only one partial, such
degradations are simulated by, respectively, adding peaks with
random parameters, randomizing the parameters of randomly
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Fig. 7. Partials extracted from three successive violin tones by (a) the MQ
method, (b) the LP method, and (c) the HFC one. The partials are represented
by solid lines, starting and ending with circles matching the birth and the death
of the partials. The proposed method better identifies the vibrato of the second
tone as well as the onset/offset of each partial.

selected peaks of S, or removing peaks from S. The strength of
the degradation is expressed as the ratio between added, modi-
fied, or removed peaks versus the size of S. The randomized pa-
rameters are set to be in the same range as those of peaks of S,
i.e., the frequency is randomly chosen between the minimal and
maximal values of the frequencies in S set, respectively noted
Smin and fiax. The amplitude is chosen similarly. From this de-
graded STS representation, a set of partials L is extracted using
a PT algorithm.

TABLE II
PERFORMANCE OF THE FOLLOWING PT ALGORITHMS: MQ (M),
LP (L) AND HFC (H) VERSUS INCREASING DEGRADATION

Addition of Peaks
Efficiency Completeness FP (AP)
M| L|H|M|L|H M L H
20% | 56 | 98 | 99 | 99 | 99 | 99 | 98 (98) | 99 (99) | 99 (99)
50% | 32|51 6398 |99 |99 | 887 | 90(93) | 92 (96)
80% | 15 | 34 | 35 [ 98 | 99 | 99 | 61 (72) | 62 (78) | 70 (82)
Randomization of the Frequency Parameter
Efficiency Completeness FP (AP)
M|L|H|M|L | H M L H
20% | 61 | 63 | 98 | 99 | 99 | 99 | 98 (91) | 99 (91) | 99 (99)
50% | 47 | 53 | 51 | 98 | 99 | 99 | 90 (82) | 91 (82) | 98 (85)
80 % | 28 | 48 | 47 | 98 | 98 | 98 | 88 (79) | 89 (80) | 92 (83)
Removal of Peaks
Efficiency Completeness FP (AP)
M L H M L H MLH
10% | 99 | 99 | 99 | 98 | 99 | 99 | 100 (100)
30% | 53197 | 8 | 92 | 99 | 98 | 100 (100)
40 % | 32 | 82 | 61 | 88 | 96 | 93 | 100 (100)

The performance is next evaluated using some criteria defined
in the previous section. To evaluate the efficiency, we set the
first criterion as the inverse of the number of partials in L or 0 if
Lis empty. To evaluate the completeness, the second criterion
is defined as the number of frames where there is at least an
active partial in L. The precision is evaluated by means of the
frequency and amplitude errors defined as

Np—1 Cardl )
FP:(fmax_fmin)NT/ Z ‘F(L)—Fk(l) ek(z')
=0 k=1

where N is the number of frames, F'(7) is the frequency of the
original partial at frame T}, and ey (7) is equal to 1 if the partial
k exists at frame 7; and O otherwise. The amplitude precision
(AP) is defined similarly.

Those criteria are evaluated using a large set of partials
extracted using the MQ algorithm from monophonic individual
tones of every musical instruments of the lowa database [27].
The mean results expressed in percentages are presented in
Table II. The results show that the use of the LP method
provides a significant improvement over the MQ method.
Compared to the LP method, the HFC method achieves most
of the time an additional improvement of the same magnitude
in terms of precision by successfully discarding partials with
noisy evolutions.

IX. CONCLUSION

A new partial tracking algorithm dedicated to the analysis of
polyphonic sounds has been proposed. The linear prediction of
the parameters of the partials is used to select more precisely
the continuation of partials and to reliably interpolate this con-
tinuation if necessary. Next, a perceptually defined smoothness
criterion is used to ensure that the prolongated partial satisfies
the slow time-varying constraint of the LTS model. The combi-
nation of these two improvements allows the proposed PT algo-
rithm to extract more reliably the pseudoperiodic part of poly-
phonic sounds.
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