
INTEROPERABILITY AND THE MARSYAS 0.2 RUNTIME

G.Tzanetakis, R.Jones, C.Castillo
Computer Science

University of Victoria
Canada

!gtzan@cs.uvic.ca

L.G Martins, L.Teixeira
INESC Porto, Porto

Portugal

M. Lagrange
Music Technology
McGill University

Canada

ABSTRACT

Marsyas is a software framework for building efficient
complex audio processing systems and applications. Al-
though originally designed for Music Information Retrieval
(MIR) tasks in the past few years it has been expanded
to include any type of audio analysis or synthesis. Com-
plex Audio processing systems are defined hierarchically
through composition using implicit patching. Both the
specification of the processing network and the control
of it while data is flowing through can be performed at
runtime without requiring recompilation. Compilation is
required only when new processing objects need to be de-
fined. Therefore the Marsyas runtime provides consider-
able functionality and flexibility. In this paper we demon-
strate how the Marsyas runtime can be accessed using a
variety of different ways allowing non-trivial interactions
with common software frameworks and environments.

1. INTRODUCTION

Marsyas is an open source software framework for de-
signing and building audio processing systems and ap-
plications. It is based on a dataflow model of computa-
tion in which any audio processing system is represented
as a large network of interconnected basic audio process-
ing units. This basic idea is familiar from a variety of
computer music systems that use the unit generator ab-
straction including the Max/PD family [1], Chuck [2] and
CSound [3]. One important difference is that in Marsyas
the dataflow network is constructed using implicit patch-
ing [4] though hierarchical object composition. The be-
havior of the network can be controlled dynamically while
data is flowing through it using controls. Both the net-
work construction and control are runtime operations and
recompilation is only required when new processing units
are added to the framework. This runtime provides con-
siderable expressive power while retaining high audio pro-
cessing performance and in this paper we demonstrate how
it can be accessed using a variety of different languages
and software environments. Before describing these con-
nections we first review the basic architecture of Marsyas.

1.1. Implicit Patching

To assemble audio processing systems, modules are im-
plicitly connected using hierarchical composition. Spe-
cial “Composite” modules such as Series, Fanout, Par-
allel are used for this purpose. For example, modules
added to a Series composite will be connected in series,
following the order they were added - the first module’s
output is shared with the second module’s input and so
on. Moreover, the “tick” method is called sequentially
following the same order. Figure 1 shows an example of
how composite and non-composite modules can be used.
This paradigm differs from typical processing tools based
on explicit patching such as CLAM [5], MAX/MSP or
PD [1]. In explicit patching the user would first create
the modules and then connect them by explicit patching
statements. The interested reader may find a comprehen-
sive discussion about the differences between implicit and
explicit patching in [4]. A large variety of complex net-
works performing interesting audio processing tasks can
be constructed this way. Examples that have been created
with Marsyas include: a polyphonic real-time harmonizer
based on multiple instances of a phasevocoder, a feature
extraction and classification system for musical genre, and
a sound source separation system.

Series (network)

Series (series1) Fanout (fanout1)

Series
(series2)

...

Module
(module1)

Module
(module2)

Series (series2)

...
Fanout (fanout2)

...

Module
(module3)

Legend: Controls

Processing

Control link

Figure 1. Building blocks in Marsyas 0.2.

For example, consider a small network consisting of
Series module which contains three other modules: a source,
a processing module and a sink. When a tick is called in
the Series, implicitly the tick method is called in all three
modules as shown in Figure 2.

Series

Source Algorithm

Tick

Sink

File
process

read
chunk

not used copy
input

1) tick source 2) tick algorithm 3) tick sink

slice slice slice slice

Figure 2. Processing chunks of data in Marsyas.

1.2. Dynamic access to modules and controls

In Marsyas, each module in a processing network can be
accessed by querying the system with a path-like string.
Taking the example shown in Figure 1, if we wanted to
reach the processing module named module1, the query
path would be :
/Series/network/Series/series1/Module/module1.
The first “/” indicates the outermost module and the rest
of the path is always composed by the concatenation of
Type/Name strings. This naming scheme was inspired
from the way messages are exchanged in Open Sound
Control (OSC) [6].It is possible to have access to some
of the internal parameters of the modules using controls.
Each module exports a list of controls which may be of
different types (e.g. integers, floats, strings, vectors, or
arbitrary user-defined types). They can be accessed for
reading or writing by specifying the path to their parent
module plus the Type/Name corresponding to the control.

Controls can be linked as shown in Figure 1, so that
changes to the value of one control are automatically prop-
agated to all the others. There are plenty of interesting
uses for this feature: parameter values that must be passed
to more than one module in a system; feedback loops
where results from modules ahead in the processing net-
work are sent back to the first modules in the chain; short-
cuts for other links, etc. Links can be defined (both at
compile-time and at run-time) for controls with the same
value type, either belonging to a same module, or to any
other module in the network. Links can also be used to
create proxy controls – in order to create a shortcut to a
control from a module deep inside other composite mod-
ules, it is possible to link it to a proxy control in the out-
most module, created on demand for this task. This way
multiple and easy to understand views for the control of
the same algorithm can be created.

2. INTEGRATION WITH THE QT FRAMEWORK

Trolltech’s Qt 1 is a comprehensive development toolkit
that includes features, capabilities and tools that enable
the development of cross-platform C++ applications. Such
features include multi-platform APIs and classes for the
development of Graphic User Interfaces (GUIs), signal-

1 http://www.trolltech.com/products/qt/

Figure 3. Common and specialized GUIs for Marsyas
modules.

ing, and multi-threaded execution. In its 4th version, Qt
is available as a dual-license software toolkit for all the
supported platforms (i.e. Linux, MacOSX and Windows).
For open source applications such as Marsyas one of the
licenses is open-source GPL. Marsyas, although not bound
specifically to Qt, uses this toolkit as its preferred solution
for the development of GUIs. Its use is however totally
optional, allowing the developer to choose any other li-
brary, or even including no GUI support at all (missing
in this case all of the GUI extra features already imple-
mented in some Marsyas classes and applications). There
are currently two approaches available for GUI develop-
ment using Qt4 in Marsyas.

The first way is using a delegation design pattern, where
the core C++ Marsyas classes in charge of the actual pro-
cessing are wrapped by an entity that takes care of all
the message passing between the GUIs and the process-
ing network. Additionally, using Qt’s multithread fea-
tures, this wrapper makes sure that GUIs and the process-
ing code are executed in independent threads. This allows
the implementation of responsive GUIs and the best use of
the last generation multi-core processors. This approach is
most suited for the development of customized GUI front-
ends for Marsyas based applications. It allows interacting
with the processing network (by means of reads/writes to
its module’s controls) in an intuitive and real-time manner.

The second way is conditionally making all Marsyas
modules inherit from Qt’s base class QObject. This au-
tomatically embeds Qt’s most advanced features (such as
signals and slots) into most Marsyas core classes avoiding
the use of middle-layers for message exchange. Addition-
ally to improving efficiency, this approach facilitates the
implementation of more advanced functionalities for GUI
and multi-threaded processing. As a drawback, this im-
plies a tighter compile-time bind between Marsyas and Qt,
which makes independence between the two frameworks
more difficult to maintain. This approach allows the im-
plementation of GUIs for all Marsyas modules, such as
widgets for viewing/modifying the list of controls from
any module, or the creation of specialized GUIs for data
plotting or parameter modification (see Figure 3).

2.1. Open Sound Control

Open Sound Control (OSC) [6] is a protocol for commu-
nication among computers, sound synthesizers, and other
multimedia devices that is optimized for modern network-
ing technology. There many implementations of OSC and
most computer music environments (such as Max/MSP,
PD, Chuck, CSound) have the ability to send and receive
open sound control messages.

The control mechanism in Marsyas was inspired from
OSC so the mapping of controls to OSC messages is very
straightforward. The path notation is used to specify the
full name of the control and the value of the message is
directly mapped to the value of the control. The map-
ping of OSC messages to Marsyas controls is part of the
Qt4/Marsyas integration code. OscMapper is the inter-
face between OSC, Marsyas and Qt4. It acts as both an
OSC server and client and allows particular OSC hosts
and clients to be associated with particular MarSystems.
The communication is abstracted as signals and slots fol-
lowing the way Qt4 structures communication between in-
terface components. The user interface programmer only
needs to specify the information about where the OSC
messages will be coming from and all the rest is taken
care directly by the mapping layer. For example, this way
it is straightforward to use PureData to send OSC mes-
sages to modify the parameters of a phasevocoder running
in Marsyas. The data flowing through a Marsyas network
is also accessible through controls so audio information
can also be exchanged.

3. MATLAB ENGINE

MATLAB is a powerful and widely used tool in several ar-
eas of research and development, with a large community
of users and available routines for math and multimedia
analysis and processing algorithms. Additionally, MAT-
LAB provides easy to use and advanced plotting facilities,
a major asset for researchers developing algorithms for au-
dio, image and video processing. Until recently, develop-
ers always had to make a hard choice regarding their de-
velopment language: either opt for the flexibility and ease
of use of MATLAB or decide in favor of efficiency and
performance as provided by an OOP language like C++.
In its latest versions, MATLAB includes the ability to ex-
change data in run-time with applications developed in
Fortran, C or C++, through and API named MATLAB En-
gine 2 . Marsyas implements a singleton wrapper class for
the MATLAB Engine API, enabling Marsyas developers
to easily and conveniently send and receive data (i.e. in-
tegers, doubles, vectors and matrices) to/from MATLAB
in run-time. It is also possible to execute commands in
MATLAB from calls in the C++ code as if they have been
called in the MATLAB command line. This enables the
execution of MATLAB scripts and the access to all MAT-
LAB functions and toolboxes from within Marsyas C++
code. The MATLAB wrapper class in Marsyas provides

2 http://www.mathworks.com

three basic methods:
1. PUTVAR(Marsyas var, MATLAB var name);
2. GETVAR(Marsyas var, MATLAB var name);
3. EVALUATE(MATLAB cmd);
By means of function overloading, these three meth-

ods allow exchanging different types of variables from
Marsyas/C++. They can be called from anywhere in the
Marsyas C++ code without any need of changes in the
Marsyas interfaces, making it simple to send data struc-
tures to MATLAB for convenient inspection and analy-
sis, calculations and plotting, and then get them back in
Marsyas for additional processing. These features are only
available when MATLAB is installed in the system and
Marsyas is built with MATLAB Engine support. Any
MATLAB Engine calls in Marsyas code are automatically
ignored otherwise. Next is presented a code snippet in
C++ illustrating how a vector of real values can be pro-
cessed and exchanged with MATLAB, using the Marsyas
MATLAB Engine wrapper class:

// create a std::vector of real numbers
std::vector<double> vector_real(4);
vector_real[0] = 1.123456789;
vector_real[1] = 2.123456789;
vector_real[2] = 3.123456789;
vector_real[3] = 4.123456789;

// send a std::vector<double> to MATLAB
PUTVAR(vector_real, "vector_real");

// do some dummy math in MATLAB
EVALUATE("mu = mean(vector_real);");
EVALUATE("sigma = std(vector_real);");
EVALUATE("vector_real = vector_real/max(vector_real);");

// get values from MATLAB
double m, s;
GETVAR(m, "mu");
GETVAR(s, "sigma");
GETVAR(vector_real, "vector_real");

4. MARSYAS RUNTIME AS A MAX/MSP
EXTERNAL

Max/MSP allows the creation of so called “external” pro-
cessing units which can be written in C/C++ following a
specific API. These externals can then be used as build-
ing blocks in the visual programmming environment. We
have implemented a general external that can be used to
load any audio processing system expressed in Marsyas.
The main challenge was to completely decouple the audio
buffer rate of Max/MSP from the audio buffer size used
by the Marsyas runtime. This is achieved through a dy-
namic rate adjusting sound source and sound sink for the
input and output to the Marsyas part of the patch. For
example if the audio buffer size of the Max/MSP patch
is 64 samples and Marsyas requires buffers of 256 sam-
ples then four buffers of 64 samples will be accumulated
before sent to Marsyas for processing. Similarly at the
Marsyas output the 256 samples will be broken into 64
sample buffers to be sent back to Max/MSP. Arbitrary
sizes are supported and there is no requirement that one
buffer should be smaller than the other. This is achieved
by using circular buffers with dynamically adjustable length.
Controls can be read and written through control outlests
and inlets of the external.

5. SWIG BINDINGS

There are only a few commands that need to be supported
in order to interface the Marsyas runtime. They basically
consist of commands for assembling the dataflow network
through hierarchical composition (create, addMarSystem)
and commands for linking, updating and setting controls
(linkctrl, updctrl, setctrl). SWIG http://www.swig.
org is a software development tool that connects pro-
grams written in C and C++ with a variety of high-level
programming languages. It includes support for both script-
ing and non-scripting languages and can be used to cre-
ate high-level interpreted programming environments. We
have used it to provide Marsyas bindings for several pro-
gramming languages (currently Lua, Ruby, Python, Java).

The following piece of code shows a simple soundfile
player written in Ruby using the bindings:
msm = Marsyas::MarSystemManager.new
file = msm.create "SoundFileSource","file"
sink = msm.create "AudioSink","sink"
gain = msm.create "Gain", "gain"
net = msm.create "Series","net"
net.addMarSystem file
net.addMarSystem gain
net.addMarSystem sink

fn = net.getctrl "SoundFileSource/file/mrs_string/filename"
ne = net.getctrl "SoundFileSource/file/mrs_bool/notEmpty"
filename.setctrl_string "test.wav"

while ne.to_bool
net.tick

end

A more complex examples shows how feature extrac-
tion can be written in Python:
import marsyas_python
Create top-level patch
mng = marsyas_python.MarSystemManager()
fnet = mng.create("Series", "featureNetwork");

functional short cuts to speed up typing
create = mng.create
add = fnet.addMarSystem
link = fnet.linkControl
upd = fnet.updControl
get = fnet.getControl

Add the MarSystems
add(create("SoundFileSource", "src"));
add(create("TimbreFeatures", "featExtractor"));
add(create("TextureStats", "tStats"));
add(create("Annotator", "annotator"));
add(create("WekaSink", "wsink"));

link the controls to coordinate things
link("mrs_string/filename",

"SoundFileSource/src/mrs_string/filename");
link("mrs_bool/notEmpty",

"SoundFileSource/src/mrs_bool/notEmpty");
link("WekaSink/wsink/mrs_string/currentlyPlaying",

"SoundFileSource/src/mrs_string/currentlyPlaying");
link("Annotator/annotator/mrs_natural/label",

"SoundFileSource/src/mrs_natural/currentLabel");
link("SoundFileSource/src/mrs_natural/nLabels",

"WekaSink/wsink/mrs_natural/nLabels");

upd("mrs_string/filename", "bextract_single.mf");
upd("WekaSink/wsink/mrs_string/labelNames",

get("SoundFileSource/src/mrs_string/labelNames"));

while (get("mrs_bool/notEmpty")):
fnet.tick();

As an example of using the bindings with a compiled
language we show how the same network as the Ruby
example can be created and used to play sound in Java.

This approach utilizes the JNI (Jave Native Interface) and
therefore would not be portable across different operating
systems. However it allows Java programs to utilize the
Marsyas functionality which has much higher run-time
performance than a full Java port would have.
import edu.uvic.marsyas.*;

class Test {
static {

System.loadLibrary("marsyas");
}

public static void main (String [] args){
MarSystemManager msm = new MarSystemManager();

MarSystem file = msm.create("SoundFileSource","file");
MarSystem gain = msm.create("Gain", "gain");
MarSystem sink = msm.create("AudioSink","sink";)
MarSystem net = msm.create("Series","net");
net.addMarSystem(file);
net.addMarSystem(gain);
net.addMarSystem(sink);

MarControlPtr filename =
net.getControl("SoundFileSource/file/mrs_string/filename");
MarControlPtr notempty =
net.getControl("SoundFileSource/file/mrs_bool/notEmpty");

filename.setValue_string("test.wav");
while (notempty.to_bool()) net.tick();

}

6. SUMMARY

Marsyas 0.2 (http://marsyas.sness.net) is a soft-
ware audio framework that provides a lot of flexibility
and control to the programmer at run-time without requir-
ing recompilation. At the same time it retains the high
computational performance of compiled code for the pro-
cessing units. We demonstrate the power of this runtime
functionality through several examples of different inter-
actions within a large software ecology.

7. REFERENCES

[1] M. Puckette, “Combining event and signal processing
in the MAX graphical programming environment,”
Computer Music Journal, vol. 15, no. 3, pp. 68–77,
1991.

[2] G. Wang and P. Cook, “Chuck: A programming lan-
guage for on-the-fly, real-time audio synthesis and
multimedia,” in ACM Multimedia, New York, USA,
2004.

[3] R. Boulanger, The Csound book, MIT Press, 2000.

[4] S. Bray and G. Tzanetakis, “Implicit patching for
dataflow-based audio analysis and synthesis,” in
In Proceedings of International Music Conference
(ICMC), 2005.

[5] X. Amatriain, “CLAM, a framework for audio and
music application development,” IEEE Software, vol.
24, no. 1, pp. 82–85, Jan./Feb. 2007.

[6] M. Wright, A. Freed, and A. Momeni, “Opensound
control: State of the art 2003,” in International Con-
ference on New Interfaces for Musical Expression
(NIME’03), Montreal, Canada, 2003.

