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Abstract

The hidden Markov chain (HMC) model is a couple of random sequences (X,Y), in which X is an unobservable Markov

chain, and Y is its observable noisy version. Classically, the distribution p(y|x) is simple enough to ensure the Markovianity

of p(x|y), that enables one to use different Bayesian restoration techniques. HMC model has recently been extended to

‘‘pairwise Markov chain’’ (PMC) model, in which one directly assumes the Markovianity of the pair Z ¼ (X,Y), and which

still enables one to recover X from Y. Finally, PMC has been extended to ‘‘triplet Markov chain’’ (TMC) model, which is

obtained by adding a third chain U and considering the Markovianity of the triplet T ¼ (X,U,Y). When U is not too

complex, X can still be recovered from Y. Then U can model different situations, like non-stationarity or semi-

Markovianity of (X,Y). Otherwise, PMC and TMC have been extended to pairwise ‘‘partially’’ Markov chains (PPMC)

and triplet ‘‘partially’’ Markov chains (TPMC), respectively. In a PPMC Z ¼ (X,Y) the distribution p(x|y) is a Markov

distribution, but p(y|x) may not be and, similarly, in a TPMC T ¼ (X, U, Y) the distribution p(x,u|y) is a Markov

distribution, but p(y|x,u) may not be. However, both PPMC and TPMC can enable one to recover X from Y, and TPMC

include different long-memory noises. The aim of this paper is to show how a particular Gaussian TPMC can be used to

segment a discrete signal hidden with long-memory noise. An original parameter estimation method, based on ‘‘Iterative

Conditional Estimation’’ (ICE) principle, is proposed and some experiments concerned with unsupervised segmentation

are provided. The particular unsupervised segmentation method used in experiments can also be seen as identification of

different stationarities in fractional Brownian noise, which is widely used in different problems in telecommunications,

economics, finance, or hydrology.
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1. Introduction

Let X ¼ (Xn)1pnpN and Y ¼ (Yn)1pnpN be two
stochastic processes, where X is hidden and Y is
observable. Each Xn takes its values in a finite set of
classes O ¼ {o1,y,oK} and each Yn takes its values
in R. The problem of estimating X from Y, which
occurs in numerous applications, can be solved with
.
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Bayesian methods once one has chosen some
accurate distribution p(x,y) for Z ¼ (X,Y). The
hidden Markov chain (HMC) model is the simplest
and most well-known model [1–3]. Its applications
cover numerous fields, such as acoustics [4],
biosciences [3,5], climatology [6], ecology [7,8],
control [9], communications [10,11], econometrics
and finance [12,13], handwriting and text recogni-
tion [34], image processing and computer vision
[14–18], signal processing [1], etc. We only cite one
or two recent publications on each subject, each of
them containing a rich bibliography. Moreover, a
rich bibliography on classical HMC can also be
found in [1–3]. This model has been extended to
pairwise Markov chains model (PMC [19,38]) and
then to triplet Markov chains model (TMC [20–23]).
The PMC and TMC models, on the other hand,
have then been extended to pairwise partially
Markov chains (PPMC) and triplet partially Mar-
kov chains (TPMC) [24,25]. The interest of PPMC is
that the distribution of the noise—in other words,
the distribution p(y|x) of Y conditionally on X—is
not necessarily a Markov chain. One possible
application, addressed in this paper, is to consider
a ‘‘long-memory’’ noise, also called ‘‘long-range
dependence noise’’, which occurs in numerous
situations [26–29] and which cannot be taken into
account neither via classical HMC, nor recent PMC.

Finally, developing some first ideas proposed in
[30], the aim of this paper is to study the possibilities
of defining models including discrete random chain
hidden with long-memory noise, and the interest of
using them in unsupervised hidden discrete signal
segmentation. We propose a new parameter estima-
tion method based on the general ‘‘Iterative Condi-
tional Estimation’’ (ICE, already successfully used in
[16,17,19,31–33]) principle, and show how the Baye-
sian maximum of the posterior marginals (MPM)
method based on ICE estimated parameters can
improve the classical HMC- and ICE-based results.

Let us notice that the particular model proposed
in Section 3.3 can be interpreted as a switching
model of some phenomenon modelled with long-
memory process. The switching process is modelled
as a Markov chain, and thus one directly arrives at a
‘‘Markov chains hidden with a long-memory noise’’,
which is a generalization of the classical hidden
Markov chains, without any reference to PMC or
TMC. In particular, long-memory processes found
numerous applications into telecommunications,
economics, hydrology, or turbulence (see Part III,
pp. 369–524 in [29]). Therefore using the proposed
model makes possible to find unknown discrete
states modelling different homogeneities of ob-
served sequences.

The paper is organized as follows. Section 2 is
devoted to the classical hidden Markov chains,
pairwise and triplet Markov chains, and Bayesian
segmentation. Partially PMC and TMC are recalled
and the new models are introduced in Section 3. The
parameter estimation problem is addressed in
Section 4, where a new estimation method well-
suited to Gaussian cases is proposed. Different
experiments showing the interest of the new models
and the related unsupervised processing are pre-
sented in Section 5, while the last Sixth section is
devoted to conclusions and perspectives.

2. Hidden Markov chains and extensions

2.1. Hidden Markov chains and Bayesian

segmentation

Let X ¼ (Xn)1pnpN and Y ¼ (Yn)1pnpN be two
stochastic processes as specified above; the problem
is to estimate X ¼ x from Y ¼ y. In the whole
paper, we will use the notations x ¼ (x1,y,xN) and
y ¼ (y1,y,yN); however, we will also possibly write
xN
1 ¼ ðx1; . . . ; xNÞ and yN

1 ¼ ðy1; . . . ; yNÞ to re-em-
phasize the starting and the ending indices. More
generally, we will set x

j
i ¼ ðxi; . . . ; xjÞ (for 1pio

jpN), and the same for y
j
i. Considering the classical

HMC with independent noise (HMC-IN) consists
of considering the distribution p(x,y) of (X,Y) of the
form

pðx; yÞ ¼ pðx1Þpðy1 x1Þ
�� pðx2 x1Þ

��
�pðy2 x2Þ

�� . . . pðxN xN�1Þ
�� pðyN xN Þ

�� . ð2:1Þ

The hidden chain X ¼ (Xn)1pnpN is then a
Markov chain with the distribution p(x) ¼
p(x1)p(x2|x1)yp(xN|xN�1), and the distribution of
Y ¼ (Yn)1pnpN conditional on X ¼ (Xn)1pnpN,
which can be considered as modeling the ‘‘noise’’,
is given by p(y|x) ¼ p(y1|x1)p(y2|x2)yp(yN|xN). This
particular form of p(y|x) is equivalent to the
following two hypotheses:
(i)
 the random variables (Yn)1pnpN are indepen-
dent conditionally on X;
(ii)
 for each n ¼ 1,y,N, the distribution of Yn

conditional on X ¼ (Xn)1pnpN is equal to its
distribution conditional on Xn: p(yn|x) ¼
p(yn|xn).
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Let us notice that such a model is usually said
‘‘HMC’’, and ‘‘IN’’, which means ‘‘independent
noise’’ because of (ii), is omitted. However, we will
keep ‘‘HMC-IN’’ for the classical model (2.1) in this
paper, and we will call HMC every distribution
p(x,y) of (X,Y) such that the hidden chain X is a
Markov one.

One of the nice properties of HMC-IN we are
interested in this paper is that all the posterior
marginal distributions p(xn|y) are calculable, even
for very large N. One introduces the ‘‘Forward’’
probabilities an(xn) ¼ p(xn,y1,y,yn), and the ‘‘Back-
ward’’ probabilities bn(xn) ¼ p(yn+1,y,yN|xn),
which are both calculated by the following classical
forward and backward recursions ([1,2]):

a1ðx1Þ ¼ pðx1; y1Þ;

anþ1ðxnþ1Þ ¼
X
xn2O

anðxnÞpðxnþ1 xnj Þpðynþ1 xnþ1

�� Þ,

ð2:2Þ

bN
ðxN Þ ¼ 1,

bn
ðxnÞ ¼

X
xnþ12O

bnþ1
ðxnþ1Þpðxnþ1 xnj Þpðynþ1 xnþ1

�� Þ.

ð2:3Þ

The marginal posterior distributions of the
hidden state can then be calculated by (‘‘p’’ means
‘‘proportional to’’):

pðxn y
�� Þ / anðxnÞb

n
ðxnÞ. (2.4)

Having p(xn|y), we can use the following Bayesian
maximum posterior marginals (MPM) segmenta-
tion method

ŝMPMðy1; . . . ; yNÞ ¼ ðx̂1; . . . ; x̂N Þ,

with x̂n ¼ arg max
xn2O

pðxn y
�� Þ, ð2:5Þ

whose interest lies in the following Bayesian
optimality property. Let x ¼ (x1,y,xN) be the true
unknown sequence, and let x0 ¼ ðx01; . . . ;x

0
NÞ be

another one. Considering x0 instead of x has a cost,
which is modeled by a cost function L(x0,x). The
Bayesian estimator ŝL linked with L then minimizes
the mean cost: E½LðŝLðY Þ;X � ¼ minŝE½LðŝðY Þ;X �.
Now, the estimator (2.5) is the Bayesian estimator
defined by the cost function

L1ðx
0;xÞ ¼

dðx01; x1Þ þ � � � þ dðx0N ;xN Þ

N
,

where dðx0n;xnÞ ¼ 1 if x0n ¼ xn and dðx0n;xnÞ ¼ 0 if
x0naxn, which is simply the proportion of errors in
the sequence x0 ¼ ðx01; . . . ;x
0
N Þ. In other words, for

N large enough, estimator (2.5) minimizes the pro-
portion of wrongly classified points. Let us also
mention that HMC-IN also makes possible the use
of the loss function L2(x

0,x) ¼ d(x0,x), which gives
the Bayesian ‘‘maximum a posteriori’’ (MAP) esti-
mator ŝðyÞ ¼ argmaxx2ON pðx y

�� Þ, calculable by the
classical Viterbi algorithm.

Finally, the HMC-IN (2.1) has been widely
applied in different areas mentioned in Introduction
and, in spite of the simplicity (open to criticism) of
the hypotheses (i) and (ii), it generally gives
satisfying results.

2.2. Pairwise and triplet Markov chains

Let X ¼ (Xn)1pnpN and Y ¼ (Yn)1pnpN be two
stochastic processes as above; considering a TMC
consists in choosing a third stochastic process
U ¼ (Un)1pnpN such that T ¼ (X,U,Y) ¼ ((Xn,
Un,Yn))1pnpN is a Markov chain. In this paper,
we assume that each Un takes its values in a finite set
L ¼ {l1,y,lM}. To simplify, let us introduce V ¼

(Vn)1pnpN ¼ (Xn,Un)1pnpN. Therefore each Vn takes
its values in O�L and (V,Y) is a Markov chain.

Let us recall that X ¼ (Xn)1pnpN is the process of
interest, whose realization is hidden, and Y ¼

(Yn)1pnpN is the observed process, and thus both
of them usually have precise physical meaning. For
example, let us assume that the points (1,y,N) are
pixels of a line of a digital image in which there are
two classes ‘‘forest’’ and ‘‘water’’. Then each Xn

takes its values in O ¼ o1;o2f g, where o1 is ‘‘forest’’
and o2 is ‘‘water’’. Otherwise, each Yn takes its
values in R and thus Y ¼ (Y1,y,YN) ¼ (y1,y,yN) is
the observed line of the observed digital image.
Then (y1,y,yN) can be seen as a ‘‘noisy’’ version of
(x1,y,xN); however, the sense of the word ‘‘noise’’
is here very general. For instance, there is a natural
variability of the class ‘‘forest’’, whose aspect—and
thus the value of yn—varies with n. Concerning the
chain U ¼ (Un)1pnpN things are different and its
main interest is to enrich the family of possible
distributions p(x,y). However, it can admit some
useful precise interpretations. For example, it can be
used to model different stationarities in a non-
stationary distribution p(x,y), as studied in [35].
Another use is to model semi-Markov chains
X; in fact, the distribution p(x) of a semi-Markov
chain X can be defined as the marginal distribution
of the distribution p(x,u) of a Markov chain
(X,U). Moreover, these both chains can be used
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simultaneously: as described in [36], non-stationary
hidden semi-Markov chains can be seen as sta-
tionary TMC (X, U, Y), with U ¼ (U1, U2), where
U1 models the semi-Markovianity of X, and U2

models its different stationarities. More recently, the
model proposed in [36] has been generalized to a
‘‘long-memory noise’’ model [37], in which the noise
can be seen as a simplified version of the noise
considered in this paper.

Let us notice the great generality of the family of
TMCs. In fact, only T ¼ (X, U, Y) is assumed to be
Markov and thus none of the six chains X, U, Y, (X,
U), (U, Y), (X, Y) is necessarily Markov: see some
conditions under which some of these chains are
Markov in [38,39]. However, in spite of this great
generality, the posterior marginal distributions
p(xn|y) are still calculable in TMC and thus the
Bayesian MPM estimator (2.5) is applicable.

More precisely, we introduce the ‘‘Forward’’
probabilities an(vn) ¼ p(vn,y1y,yn), and the ‘‘Back-
ward’’ probabilities bn(vn) ¼ p(yn+1,y,yN|vn,yn),
which are both calculated with

a1ðv1Þ ¼ pðv1; y1Þ,

anþ1ðvnþ1Þ ¼
X

vn2O�L

anðvnÞpðvnþ1; ynþ1 vnj ; ynÞ, ð2:6Þ

bN
ðvN Þ ¼ 1,

bn
ðvnÞ ¼

X
vnþ12O�L

bnþ1
ðvnþ1Þpðvnþ1; ynþ1 vnj ; ynÞ. ð2:7Þ

The marginal posterior distributions of the
hidden state can be calculated by

pðvn y
�� Þ / anðvnÞb

n
ðvnÞ (2.8)

which gives

pðxn y
�� Þ ¼X

un2L

pðvn y
�� Þ. (2.9)

Let us notice that p(un|y) is also calculable with

pðun y
�� Þ ¼X

xn2O

pðvn y
�� Þ (2.10)

and can have some interesting meaning.
Finally, let us notice that p(vn, vn+1|y), which

will be needed in the parameter estimation method
discussed in Section 4, is also calculable and is
given by

pðvn; vnþ1 y
�� Þ / anðvnÞpðvnþ1; ynþ1 vnj ; ynÞb

nþ1
ðvnþ1Þ

(2.11)
and thus the transitions of the Markov chain p(v|y)
are:

pðvnþ1 vn; y
�� Þ ¼ pðvnþ1; ynþ1 vnj ; ynÞ

bnþ1
ðvnþ1Þ

bn
ðvnÞ

. (2.12)

Finally, PMCs can be seen as particular TMC,
where U ¼ X; formulas (2.6)–(2.11) remains then
valid with v replaced by x. Of course, PMC can be
introduced directly by considering that Z ¼ (X,Y) is
a Markov chain.
3. Pairwise and triplet partially Markov chains

3.1. General pairwise partially Markov chains

Let X ¼ (Xn)1pnpN and Y ¼ (Yn)1pnpN be two
stochastic processes as specified in the Introduction.

Definition 3.1. The pairwise chain Z ¼ (X,Y) is
called ‘‘pairwise partially Markov chain’’ (PPMC)
if its distribution p(z) verifies for each n ¼ 1,y,
N�1:

pðznþ1 znj Þ ¼ pðznþ1 zn; y
n�1

�� Þ. (3.1)

We see that ‘‘partially Markov’’ comes from the
fact that Z ¼ (X,Y) is Markovian with respect to the
variables X, but is not necessarily Markovian with
respect to the variables Y.

Remark 3.1. In the classical HMC-IN considered
in Section 2, we have p(zn+1|z

n) ¼ p(xn+1|xn)
p(yn+1|xn+1). Writing p(zn+1|zn,y

n�1) ¼ p(xn+1|zn,
yn�1)p(yn+1|zn,xn+1,y

n�1), we see that a PPMC
Z ¼ (X,Y) is a classical HMC-IN if p(xn+1|zn,y

n�1)
¼ p(xn+1|xn) and p(yn+1|zn,xn+1, yn�1)¼p(yn+1|xn+1).

Let Z ¼ (X,Y) be a PPMC. According to (3.1) we
have

pðzÞ ¼ pðz1Þ
YN�1
n¼1

pðznþ1 zn; y
n�1

�� Þ. (3.2)

Let us show that p(x|y) is a Markov chain with
p(x1|y) and the transitions given by

pðx1 y
�� Þ ¼ pðx1; y1Þ b1ðx1ÞP

x0
1

pðx01; y1Þ b1ðx
0
1Þ
,

pðxnþ1 xn; y
�� Þ ¼

pðznþ1 zn; yn�1
�� Þbnþ1ðxnþ1Þ

bnðxnÞ
, ð3:3Þ
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where bn(xn) are calculated by the following ‘‘back-
ward’’ recursions

bN
ðxN Þ ¼ 1,

bn
ðxnÞ ¼

X
xnþ1

pðznþ1 zn; y
n�1

�� Þbnþ1
ðxnþ1Þ

for n ¼ N � 1; . . . ; 1. ð3:4Þ

Let us notice that one could show that bn
ðxnÞ ¼

pðyN
nþ1 xn; yn

1

�� Þ—which extends to long correlation
noise the classical definition—but this is not essential
here; important is that bn(xn) are computable.

The proof of (3.3) and (3.4) consists of direct
application of the following lemma proved in [39]:

Lemma 3.1. Let X ¼ (X1,y,XN) be a random chain,

each Xn taking its values in the same finite set O.

Then X is a Markov chain if and only if there exist

N�1 positive functions q1,y,qN�1 such that the law

of X is proportional to the product q1(x1,x2)�?
� qN�1(xN�1,xN):

pðxÞ / q1ðx1;x2Þ � � � � � qN�1ðxN�1;xN Þ. (3.5)

If (3.5) is verified, p(x1) and the transitions
p(xn|xn�1) of the Markov chain X are given by

pðx1Þ ¼
b1ðx1ÞP

x0
1

b1ðx01Þ
,

pðxn xn�1Þ
�� ¼

qn�1ðxn�1;xnÞbnðxnÞ

bnðxn�1Þ

for 2pnpN, ð3:6Þ

where b1(x1),y,bN(xN) are calculated from
q1,y,qN�1 by the recursive formulas

bN ðxN Þ ¼ 1

and

bðxn�1Þ ¼
X
xn2O

bnðxnÞqn�1ðxn�1;xnÞ for 2pnpN.

ð3:7Þ

In fact, (3.2) is of the form (3.5), with q1(x1,x2) ¼
p(z1)p(z2|z1),y,qN�1(xN�1,xN) ¼ p(zN|zN�1,y

n�2).

Having p(x1|y) and the transitions p(xn+1|xn,y),
the marginal distributions p(xn|y) are classically
calculated by the recursive formulas

pðx1 y
�� Þ given

and

pðxnþ1 y
�� Þ ¼X

xn2O

pðxn y
�� Þpðxnþ1 xn; y

�� Þ for 1pnpN � 1.

ð3:8Þ
Finally, an important point is the following.
Similarly to the classical case of HMC-IN, the

posterior transitions p(xn+1|xn,y) and the posterior

marginal distributions p(xn|y) are calculable once

the transitions p(zn+1|zn,y
n�1) considered in (3.3)

are calculable for every 1pnpN�1. We will see in

the next subsection that this is feasible in a

particular PPMC case.
3.2. Long-memory noise

Let W ¼ (W1, W2, y, Wn, y) be a real random
stationary chain with zero mean and covariance
function gm ¼ E[WiWi+m]. ‘‘Long memory’’ (which
is also called ‘‘long correlation’’ or still ‘‘long-range
dependence’’), occurs when the covariances tend to
zero like a power function and so slowly that their
sum diverges. One possible definition we adopt [29,
p. 14]) is gm�m�aL(m) (g(m)�h(m) means here that
gðmÞ=hðmÞ �!

x!þ1
1), where L is a slowly varying

function at infinity, which means that L is bounded
on a finite interval and for all b40,
LðbxÞ=LðxÞ �!

x!þ1
1 (constants and logarithms are

examples of slowly varying functions). Thus a
Markov chain, in which the covariance decays
exponentially, is not a long-memory chain (it is
sometimes called ‘‘short memory’’ or ‘‘short-range
dependence’’ chain). The long-memory chains
have been shown to be useful in numerous situa-
tions, in which Markov chains turn out to be
little efficient. In particular, one of the interests of
the fractional Brownian motion (fBm) Y ¼ (Yt)tAR,
which is a classical widely used stochastic process,
is that it has stationary Gaussian increments
Wn+1 ¼ Yn+1�Yn which form a long-memory
chain called ‘‘fractional Gaussian noise’’ (fGn).
Such processes are well suited to model different
phenomena like data network traffic [29, p. 373],
macroeconomics and finance [29, p. 373], or
hydrology [29, p. 462]. Let us imagine that
there are several possible fGn to model a
phenomenon—for example, there are two
possible states of the data traffic: ‘‘high traffic’’
and ‘‘low traffic’’—and that the system can
switch from one state to another during the time.
Then an interesting question is to find, in an
automated way, in which state the system lies. We
will solve this problem in the next subsection, by
modelling the hidden switching sequence by a
Markov chain.
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3.3. Markov chains hidden with Gaussian long-

memory noise

The aim here is to propose a PPMC in which the
transitions p(zn+1|zn,y

n�1) considered in (3.3) are
calculable for every 1pnpN�1. Let us consider a
particular PPMC in which
(i)
 p(xn+1|zn,y
n�1) ¼ p(xn+1|xn);
(ii)
 p(y|x) are Gaussian.
(i)
Hypothesis (i) implies that X is a Markov chain.
To see that, we replace in (3.2) p(zn+1|zn,y

n�1) by
p(xn+1|zn,y

n�1)p(yn+1|zn,xn+1,y
n�1); then integrat-

ing (3.2) with respect to yN,y,y1, we find pðxÞ ¼

p ðx1ÞPN�1
n¼1 pðxnþ1 zn; yn�1

�� Þ ¼ pðx1ÞPN�1
n¼1 pðxnþ1 xnj Þ.

Of course, hypothesis (ii) is restrictive because of the
Gaussianity; however, it remains relatively general
for p(y|x) are of any form.

On the one hand, according to (i) we have
p(zn+1|zn,y

n�1) ¼ p(xn+1|xn) p (yn+1 |zn,xn+1,y
n�1),

and thus the problem is to calculate the transitions
p(yn+1|zn,xn+1,y

n�1), which are also written
p(yn+1|xn,xn+1,y

n
1). On the other hand, according

to (ii), these transitions are also Gaussian and thus
they can be recursively calculated using the follow-
ing classical ‘‘Property 1’’:

Property 1. Let W ¼W N
1 be a real Gaussian chain

with, for each 1pnpN, Mn
1 ¼ ðMiÞ

n
i¼1 the mean

vector and Gn ¼ ðgklÞkpn;lpn the covariance matrix
of W n

1 ¼ ðW iÞ
n
i¼1. For each n, the Gaussian density

pðyn
1Þ of the distribution of W n

1, can be written
pðyn

1Þ ¼ pðyn�1
1 Þpðyn yn�1

1

�� Þ, where pðyn yn�1
1

�� Þ is Gaus-
sian with mean Mn þ ðA

nÞ
T
ðGn�1Þ

�1
ðyn�1

1 �Mn�1
1 Þ

and variance gnn � ðA
nÞ

t
ðGn�1Þ

�1An, where An ¼

ðgi;nÞ
n�1
i¼1

� �t
. So, p(yn) is calculated from p(yn�1),

which is calculated from p(yn�2) y, and so on.
Having p(y1), y, p(yN), we also have pðyn yn�1

�� Þ for
every 2pnpN. We will say that p(yn|y

n�1) are
calculated by a ‘‘forward recursion’’.

The idea is then to apply this property K2 times
(remember that K is the number of possible values
for each xn, and thus (xn,xn+1) can have K2 different
values). More precisely, yN

1 is fixed and for each
(oi,oj) in O2, Property 1 is used to calculate
recursively (for n varying from 1 to N�1) the N�1
transitions tn;nþ1

ij ¼ pðynþ1 xn ¼ oi; xnþ1 ¼ oj ; yn
�� Þ.

Important is that knowing these transitions permits
the use of (3.4) to calculate bn(xn).
Finally, Gaussian PPMC makes possible the
calculation of the marginal distributions pðxn y

�� Þ in
the following way:
(1)
 Calculate all transitions pðznþ1 zn
1

�� Þ ¼ pðxnþ1 xnj Þ

pðynþ1 xn; xnþ1; yn
1

�� Þ using pðynþ1 xn;xnþ1; yn
1

�� Þ

computed by K2 forward recursions according
to the Property 1 .
(2)
 Calculate bn(xn) by backward recursions (3.4)
and deduce pðxnþ1 xn; y

�� Þ and p(x1|y) with (3.3).

(3)
 Calculate p(xn|y) by the classical forward recur-

sions (3.8).
We see that the points (2) and (3) are classical
and used in HMC-IN, while the point (1) is new and
is due to the ‘‘partially’’ Markov aspect of the
model.

Let us consider the problem of calculation of the
Gaussian distributions pðy xj Þ¼pðy1;. . . ;yN xj 1;. . .;xNÞ,
which will be useful, in particular, in the parameter
estimation problem considered in the next section.
As we are going to see, the main difference with the
classical models is that pðyn xj 1; . . . ;xnÞ does depend
on all x1,y,xn.

We will use the following classical properties of
Gaussian vectors (see, for example, [40]):

Property 2. For p(w) the density of a Gaussian
random vector W of mean M and convariance
matrix G, we will use the notation p(w)�N(M,G).

Let W1, W2 be two Gaussian vectors, and let
W ¼ (W1, W2). We have:
pðw1; w2Þ� N
M1

M2

" #
;

G1 G12

G21 G2

" # !
implies

pðw2 w1
�� Þ�NðM2 þ G21G�11 ðw

1 �M1Þ;G2 � G21

G�11 G12Þ; �

(ii)
 pðw1Þ � NðM1; G1Þ and pðw2 w1� Þ�NðAw1þ

B;G2=1Þ imply pðw1;w2Þ �N M1;
� 

AM1þB
�
;

G1 G1AT

AG1 G2=1 þ AG1A
T

" #!
:

We use these classical properties to establish a
relation between pðyn

1 xj n
1Þ and pðynþ1

1 xj nþ1
1 Þ, which

will allow one to compute the latter from the
former, and thus to compute pðy xj Þ ¼ pðyN

1 xj N
1 Þ. We

have pðynþ1
1 xj nþ1

1 Þ ¼ pðyn
1 xj n

1Þpðynþ1 xnþ1
1 ; yn

1

�� Þ with,
according to the model, pðynþ1 xj nþ1

1 ; yn
1Þ ¼
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pðynþ1 xn; xnþ1; yn
1

�� Þ. Finally

pðynþ1
1 xj nþ1

1 Þ ¼ pðyn
1 xj n

1Þpðynþ1 xn; xnþ1; y
n
1

�� Þ. (3.9)

For ðxn;xnþ1Þ ¼ ðoi;ojÞ, pðynþ1 xn;xnþ1; yn
1

�� Þ is
Gaussian and is obtained by applying (i) to the
Gaussian law

pðynþ1
1 Þ ¼ pðyn

1; ynþ1Þ�N
Mn

ij

Mij

" #
;

Gij
1 Gij

12

Gij
21 gij

2
4

3
5

0
@

1
A

(we have ðw1;w2Þ ¼ ðyn
1; ynþ1Þ). Thus

pðynþ1 xn; xnþ1; y
n
1

�� Þ�NðMij þ Gij
21ðG

ij
1 Þ
�1
ðyn �Mn

ijÞ,

gij � Gij
21ðG

ij
1 Þ
�1Gij

12Þ. ð3:10Þ

Let pðyn
1 xj n

1Þ�NðMxn

;Gxn

1 Þ. As the mean in (3.10)

is Gij
21ðG

ij
1 Þ
�1yn

1 þMij � Gij
21ðG

ij
1 Þ
�1Mij ¼ Ayn

1 þ B,

applying (ii) to pðyn
1 xj n

1Þ and pðynþ1 xn;xnþ1; yn
1

�� Þ

gives:

pðynþ1
1 xj nþ1

1 Þ�N
Mxn

Mij þ Gij
21ðG

ij
1 Þ
�1
ðMxn

�Mn
ijÞ

2
4

3
5

0
@ ,

Gxn

1 Gxn

1 ½G
ij
21ðG

ij
1 Þ
�1
�T

Gij
21ðG

ij
1 Þ
�1Gxn

1 gij � Gij
21ðG

ij
1 Þ
�1
½Gij

12 � Gxn

1 ½G
ij
21ðG

ij
1 Þ
�1
�T�

2
4

3
5
1
A.

ð3:11Þ

In particular, we see according to (3.11) that the

mean mxnþ1

and the variance gxnþ1

of the Gaussian
marginal distributions pðynþ1 xj 1; . . . ;xnþ1Þ depend

on all x1,y,xn,xn+1 and verify

mxnþ1

¼Mij þ Gij
21ðG

ij
1 Þ
�1
ðMxn

�Mn
ijÞ,

gxnþ1

¼ gij � Gij
21ðG

ij
1 Þ
�1
½Gij

12 � Gxn

1 ½G
ij
21ðG

ij
1 Þ
�1
�T�.

ð3:12Þ
3.4. Triplet partially Markov chains

Let T ¼ (X,U,Y) be a triplet random chain, where
X ¼ (Xn)1pnpN and Y ¼ (Yn)1pnpN are two sto-
chastic processes as above, and U ¼ (Un)1pnpN is a
third random chain, each Un taking its values in a
finite set L ¼ {l1,y,lM}. As in Section 2.2, let us
introduce V ¼ (Vn)1pnpN ¼ (Xn,Un)1pnpN with
each Vn taking its values in O�L.

Definition 3.2. The triplet chain T ¼ (X,U,Y) is called
‘‘TPMC’’ if the pairwise chain T ¼ (V,Y), where
V ¼ (X,U), is a PPMC defined in Definition 3.1.

Therefore all the results discussed in Sections 3.1
and 3.2 remain valid once X has been replaced with
V. Then we arrive at a more general model; in
particular, considering the model developed in the
previous subsection in which the chain X has been
replaced with V, we see that V is a Markov chain,
but X can no longer be Markov. Otherwise, in such
TPMC models U can have an intuitive meaning.
For example, U can model the semi-Markovianity
of X as indicated in [23,36], which leads to a ‘‘semi-
Markov chain hidden with long-memory noise’’.
Another use of U could be to model different
stationarities of Z ¼ (X,Y) [35,41], resulting in a
‘‘non-stationary PPMC’’. Such TPMC can then be
used in Bayesian segmentation as indicated in
Section 2; furthermore, the parameter estimation
method proposed in the next section can be
extended to such TPMC leading to unsupervised
segmentation methods.
4. Parameter estimation

4.1. Iterative conditional estimation

Let us consider two random processes (X,Y)
whose distribution depends on a parameter
y ¼ (y1,y,ym)R

m. The problem is to estimate y
from Y. The most known and used method is the so-
called ‘‘expectation–maximization’’ (EM [42]) meth-
od, whose aim is to iteratively maximize the
likelihood p(y|y). The ‘‘iterative conditional estima-
tion’’ (ICE [43]) principle we propose to use is
somewhat different from EM and is often easier to
perform in complex situations. The intuitive reason
behind ICE is the following. To simplify, let yAR.
In general, one can estimate all parameters from
complete data (X,Y) with some estimator ŷðX ;Y Þ,
whose efficiency is often measured by the mean
square error Ey½ðy� ŷðX ;Y ÞÞ2�. As X is not avail-
able, the idea is to approximate ŷðX ;Y Þ by some
function of Y. The best approximation, in the sense
of mean square error, is the conditional expectation
~yðY Þ ¼ Ey½ŷðX ;Y Þ Y �

�� . Thus, on the one hand,
ŷðX ;Y Þ is close to y in the mean square error sense
and, on the other hand, ~yðY Þ is close to ŷðX ;Y Þ
according to the same criterion. In other words, the
possible good ‘‘mean square error’’ properties of
ŷðX ;Y Þ are saved as far as possible by using ~y. Of
course, ~y is no longer an estimator because it does
depend on y. However, this leads to an iterative
method given by (i) and (ii) below, which is expected
to keep, at least when the current yq is close to y, the
good properties of ŷðX ;Y Þ.
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Finally, ICE is an iterative method based on the
following principle. Let ŷðx; yÞ be an estimator of y
from complete data (X,Y) ¼ (x,y) and let us assume
that we can sample realizations of X according to
p(x|y). ICE runs as follows:
(i)
 initialize y0;

(ii)
 using Y ¼ y and the current value of the

parameter yq, compute yqþ1
i ¼ E½ŷiðX ;Y Þ Y ¼j

y; yq
Þ: for the components yi for which this

computation is feasible;

(iii)
 for other components yi, simulate x

q
1; . . . ; x

q
l

independent realizations of X according to
p(x|y,yq) and set yqþ1

i ¼ ðŷðxq
1; yÞ þ � � � þ

ŷðxq
l ; yÞÞ=l.
Let us notice that in (iii) one simply approx-
imates, using the law of large numbers, the
expectation by the empirical mean. In principle,
the greater is l the better is the approxi-
mation; however, in practice taking small l, or
even l ¼ 1, can have little influence on the final
estimation results. Otherwise, we will see that
in the problem we are concerned with in this
paper, the point (ii) can be applied to the
components yi defining the distribution p(x), while
we have to use the point (iii) for the components yi

defining p(y|x).
We see that ICE is applicable under two very

slight hypotheses: existence of an estimator ŷðx; yÞ
from the complete data, and the ability of simulat-
ing X according to p(x|y). The first hypothesis is not
really a constraint because if we are not able to
estimate y from complete data (x,y), there is no
point in searching an estimator from incomplete
ones given by y. The second hypothesis is always
verified for PPMC Z ¼ (X,Y) (or TPMC
T ¼ (X,U,Y)); in fact, p(x|y) (or p(x,u|y)) is a
Markov chain distribution.

Let us notice that since its introduction in [43]
ICE has been successfully applied in many
problems of unsupervised statistical signal or image
segmentation [15,16,19], sometimes using complex
models, like hidden fuzzy (also said ‘‘mixed-states’’)
Markov fields [33], hidden evidential Markov fields
[32], or triplet Markov fields [31]. Otherwise, some
relationships between ICE and EM has been
specified in [44], and some preliminary results
concerning the asymptotic behaviour of ICE in
the case of independent data have been proposed
in [45].
4.2. ICE in Markov chains hidden with Gaussian

long-memory noise

The results presented in Section 3 above remain
valid for any forms of the K2 Gaussian chains (given
by K2 mean vectors MN

1 and K2 variance–
co-variance matrices GN ¼ ðgklÞ1pkpN;1plpN). In
this subsection we will consider a particular case.
The first simplification consists of taking pðynþ1 xn;j
xnþ1; ynÞ: ¼ pðynþ1 xnþ1; ynÞ

�� , which means that
pðynþ1 zn; xnþ1; yn�1Þ

�� depends on xn+1 but not on
xn. Thus we have K Gaussian chains instead of K2.
This is not a very significant simplification and the
parameter estimation method proposed in this
subsection remains valid in the general case; we
make it just because such a simpler model is used in
experiments below. Furthermore, for each Gaussian
chains considered the means vector MN

1 will have all
its components equal, and the variance–covariance
matrix will have the following form:

gkl ¼ gð k � lj j þ 1Þ�a with a 2�0; 1½. (4.1)

Otherwise, the Markov chain X will be assumed
stationary, which means that p(xn,xn+1) does not
depend on n ¼ 1,y,N�1.

Such a model will be called ‘‘HMC with long-
memory noise’’ (HMC-LMN). Let us specify the
real parameters defining, for K classes, such a
model. First, the distribution p(x) of the stationary
Markov chain X is defined by K2 parameters
pij ¼ p(x1 ¼ oi, x2 ¼ oj), 1pi,jpK. Second, each
of the K Gaussian chains included in the model is
defined by three parameters (M,g,a), where M is the
common value of the components of MN

1 , and (g,a)
are the parameters defining the covariance matrix
with (4.1). Finally, we have 3K parameters
(M1,g1,a1), y, (MK,gK,aK). Therefore the number
of components of y, which is the global number of
parameters, is K2+3K. According to the notations
of the previous subsection, yq will designate the
current parameters in ICE procedure, which are the
parameters obtained after q iterations.

According to the ICE principle, we have to
consider an estimator ŷðX ;Y Þ from complete data
(X, Y). Concerning the parameters pij, their estima-
tion from the complete data can be ensured by the
classical estimator

p̂ijðx; yÞ ¼
1

N � 1

XN�1
n¼1

1½xn¼oi ;xnþ1¼ojÞ. (4.2)
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Knowing that for a given set A the expectation of
the function 1A is the probability of A (the same is
true for conditional expectation and conditional
probability), we see that the conditional expectation
in the point (ii) of the previous subsection applied to
(4.2) gives

p
qþ1
ij ¼ E½p̂ijðX ;Y ÞjY ¼ y; yq

Þ

¼
1

N � 1

XN�1
n¼1

pðxn ¼ oi;xnþ1 ¼ ojjy; y
q
Þ. ð4:3Þ

It is important to note that each p(xn ¼ oi,
xn+1 ¼ oj|y) is computable; in fact, we have p(xn,
xn+1|y) ¼ p(xn|y)p(xn+1|xn, y), where all p(xn+1|xn,
y) are computable using (3.3), and all p(xn|y) are
computable using (3.8). Therefore, p

qþ1
ij are compu-

table. Finally, the conditional expectation in (ii) in
the previous subsection is computable for the
components of y of the form pij.

Concerning the parameters (Mi,gi,ai), which are
the remaining components of y, things are more
complicated because their estimation from the
complete data is not immediate. To see the
difficulty, let us consider the following example.

Example 4.1. Let K ¼ 2 and N ¼ 10. Thus we
observe x10

1 ; y10
1 and the problem is to estimate

(M1,g1,a1) and (M2,g2,a2). According to (4.1),
we have two Gaussian chains defined by the
distributions

N
M1

M1

" #
;

g1 r1
r1 g1

" # !
and N

M2

M2

" #
;

g2 r2
r2 g2

" # !
,

where r1 ¼ 2�a1g1 and r2 ¼ 2�a2g2, and thus the
problem is to estimate the means M1, M2, the
variances, g1, g2 and the covariances r1, r2 from
x10
1 ; y10

1 . As an example, let us consider x10
1 ¼

ðo1;o1;o2;o2;o1;o1;o2;o2;o2;o2Þ. The classical
hypothesis (as, for example, in the classical HMC-
IN) is to assume that pðyijx

10
1 Þ ¼ pðyijxiÞ. Under

such hypothesis the problem is quite simple; in fact,
we can classically set

M̂1ðx
10
1 ; y

10
1 Þ ¼

y1 þ y2 þ y5 þ y6

4
,

M̂2ðx
10
1 ; y

10
1 Þ ¼

y3 þ y4 þ y7 þ y8 þ y9 þ y10

6
, ð4:4Þ
Ĝ1ðx
10
1 ; y

10
1 Þ ¼

ðy1 � M̂1; y2 � M̂1Þ
y1 � M̂1

y2 � M̂1

 !
þ ðy5 � M̂

2

and similar formula for Ĝ2ðx
10
1 ; y

10
1 Þ, with M̂1

replaced by M̂2 and (y1, y2), (y5, y6) replaced by
(y3, y4), (y7, y8), (y9, y10) (there would be three
terms in the sum defining Ĝ2ðx

10
1 ; y

10
1 Þ). Using

formula (4.5) is possible in classical models because
pðyi; yiþ1 x1; . . . ;xiþ1Þ

�� ¼ pðyi; yiþ1jxi; xiþ1Þ and the
difficulty comes from the fact that the latter equality
is no longer true in the HMC-LMN considered in
this paper. In fact, returning to our example and
considering x4

1 ¼ ðo1;o1;o2;o2Þ, y4
1 ¼ ðy1; y2; y3; y4Þ

extracted from x10
1 ; y10

1 above, we see that

G1 ¼
g1 r1
r1 g1

" #

is the covariance matrix of p(y1,y2|x1,x2), but

G2 ¼
g2 r2
r2 g2

" #

is not the covariance matrix of pðy3; y4jx
4
1Þ. In fact,

to obtain the covariance matrix of the latter
distribution, we have to use the Property 2 in
Section 3. The searched covariance matrix G* of
pðy3; y4jx

4
1Þ is a sub-matrix of the covariance matrix

G1;4 ¼
G1;2 D

D Gn

" #
.

of pðy1; y2; y3; y4jx
4
1Þ.

Let

G ¼

g2 2�a2g2 3�a2g2 4�a2g2
2�a2g2 g2 2�a2g2 3�a2g2
3�a2g2 2�a2g2 g2 2�a2g2
4�a2g2 3�a2g2 2�a2g2 g2

2
66664

3
77775 ¼

G2 A2

AT
2 G2

" #

(4.6)

be the covariance matrix of the distribution of the
Gaussian chain corresponding to x3 ¼ x4 ¼ o2.
According to the point (i) of the Property 2 (with

M1 ¼M2 ¼
M2

M2

" #
, w1 ¼ y2

1 and w2 ¼ y4
3), the

distribution pðy3; y4 x4
3; y1; y2Þ

�� ¼ pðy4
3jx

4
3; y

2
1Þ is Gaus-

sian with mean M2 þ AT
2G
�1
2 ðy

2
1 �M2Þ ¼ AT

2G
�1
2 y2

1

þM2�AT
2G
�1
2 M2 ¼ Ay21 þ B and covariance matrix

G2 � A2G�12 AT
2 . The searched pðy4

1jx
4
1Þ is then
1; y6 � M̂1Þ
y5 � M̂1

y6 � M̂1

 !
(4.5)
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obtained by applying the point (ii) of the Property 2,

with w1 ¼ y2
1; w2 ¼ y4

3, pðw1Þ ¼ pðy2
1jx

2
1Þ; pðw2jw1Þ

¼ pðy4
3jx

4
3; y

2
1Þ, M1¼

M1

M1

" #
;A¼ AT

2G
�1
2 ; B ¼M2�

AT
2G
�1
2 M2, and G2=1¼G2�AT

2G
�1
2 ; A2. Recalling

that we search the mean M* and the covariance

matrix G* of pðy3; y4jx
4
1Þ, we have

Mn ¼M2 þ AT
2G
�1
2 ðM

1 �M2Þ, (4.7)

Gn ¼ G2 � AT
2G
�1
2 A2 þ AT

2G
�1
2 G1½A

T
2G
�1
2 �

T. (4.8)

Finally, pðy4
3jx

4
1Þ�NðMn;GnÞ and we see that it is

not possible to apply (4.4) and (4.5) as in classical
models. Then the idea is to find a linear transforma-

tion y4
3! ðy

4
3Þ
0 in such a way that pððy4

3Þ
0 x4

1Þ
�� �

NðM2;G2Þ, which will make possible the use of
classical estimation. Considering C and D such that

G2 ¼ CCT and Gn ¼ DDT, we verify that

ðy4
3Þ
0
¼ CD�1ðy4

3 �MnÞ þM2 (4.9)

is the searched transformation. Of course, C and D

do depend on unknown parameters and thus doing
so does not provide an estimator. However, we will
see below that such a way can be used inside ICE,
where at each iteration q the matrices C and D

will be computed using the current value of para-
meters yq.

Let us return to the general situation and let us
generalize the calculations presented in Example 4.1
above. Let yN

1 be the observed data, and let x
N;q
1 be

the sampled xN
1 according to p(x|y,yq), as specified

in the point (iii) of the definition of ICE. To
simplify, x

N;q
1 will be denoted by xN

1 , or even by x, in
the following. Our aim is to find a linear transfor-
mation yN

1 ! ðy
N
1 Þ
0, depending on the current

parameters yq, in such a way that for each
i ¼ 1,y,K, if xj ¼ xj+1 ¼ oi, then

pðy0j ; y
0
jþ1jx

jþ1
1 Þ�N

Mi

Mi

" #
;

gi 2�aigi

2�aigi gi

" # !

¼ NðMi;GiÞ.

Then the estimation of (M1,g1,a1), y, (MK,gK,aK)
from (X, Y0) ¼ (x, y0), which will give the next
parameters yq+1 in ICE, will be similar to the
estimation specified in Example 4.1, which is quite a
classical one.

Thus let us consider the sampled x ¼ (x1,y,xN)
and a class oi. Let us set J(i) the set of j such that
xj ¼ xj+1 ¼ oi and let us assume that J(i) is not
empty and contains r elements n1on2oyonr.
Knowing that pðyn1þ1

1 jxn1þ1
1 Þ; . . . ; pðynrþ1

1 jxnrþ1
1 Þ are

Gaussian and are computable as specified in
Section 3.3, we obtain pðyn1þ1

n1
jxn1þ1

1 Þ�NðM1;n;
G1;nÞ; . . . ; pðynrþ1

nr
jxnrþ1

1 Þ�NðMr;n;Gr;nÞ as marginal
distributions of pðyn1þ1

1 jxnsþ1
1 Þ; . . . ; pðynrþ1

1 jxnrþ1
1 Þ.

Then the transformation described in Example 4.1
is applied to each yn1þ1

n1
; . . . ; ynrþ1

nr
. More precisely, let

us consider Ci such that Gi ¼ Ci(Ci)
T and

D1;n
i ; . . . ;Dr;n

i such that G1;n ¼ D1;n
i ðD

1;n
i Þ

T; . . . ;
Gr;n ¼ Dr;n

i ðD
r;n
i Þ

T and let us set

ðyn1þ1
n1
Þ
0
¼ CiðD

1;�
i Þ
�1
ðyn1þ1

n1
�M1;�Þ þMi; . . . ,

ðynrþ1
nr
Þ
0
¼ CiðD

r;�
i Þ
�1
ðynrþ1

nr
�Mr;�Þ þMi. ð4:10Þ

Then we verify that all random vectors
ðY n1þ1

n1
Þ
0; . . . ; ðY nrþ1

nr
Þ
0 are Gaussian with mean

Mi ¼
Mi

Mi

" #
,

and covariance matrix

Gi ¼
gi 2�aigi

2�aigi gi

" #
,

which makes possible the use of classical estimators.
Finally, the parameters (Mi,gi,ai) (for i ¼ 1,y,K)

are estimated from (x, y) ¼ (x1,y1, y, xN, yN),
where x ¼ (x1,y,xN) is a x

N;q
1 sampled according to

p(x|y,yq) in the following way:
(i)
 for n ¼ 2, y, N, calculate pðyn
1jx

n
1Þ using (3.11);
(ii)
 consider J(i) ¼ {n1,y,nr}, with n1oyonr, the
set of j such that xj ¼ xj+1 ¼ oi and consider
the corresponding sample ðyn1

; yn1þ1
Þ; . . . ; ðynr

;

ynrþ1
Þ. Using (i) find pðyn1þ1

n1
jxn1þ1

1 Þ�NðM1;n;

G1;nÞ; . . . ; pðynrþ1
nr
jxnrþ1

1 Þ�NðMr;n;Gr;nÞ ;
(iii)
 calculate Ci such that Gi ¼ Ci(Ci)
T and

D1;n
i ; . . . ;Dr;n

i such that G1;n ¼ D1;n
i ðD

1;n
i Þ

T; . . . ;
Gr;n ¼ Dr;n

i ðD
r;n
i Þ

T;

(iv)
 calculate ðyn1þ1

n1
Þ
0; . . . ; ðynrþ1

nr
Þ
0 using (iii) and

(4.10);

(v)
 calculate

M̂i ¼
1

r

y0n1þ1

y0n1

" #
þ � � � þ

y0nrþ1

y0nr

" # !
, (4.11)
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Ĝ
i

2 ¼
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" #
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�
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y0nr

" #
� M̂i

 !T
3
5 ð4:12Þ

giving M̂i; ĝi, and âi ¼ �LogðĝiÞ=Logð2Þ,
which are thus the next values of the para-
meters in ICE procedure.
Remark 4.1. The ICE procedure we propose is
somewhat more complicated that the classical
version. In fact, in classical application the current
value of the parameter yq is used to sample xq

according to p(x|y,yq), and the next value yq+1 is
given by yqþ1

¼ ŷðxq; yÞ. In the application de-
scribed above yq is used twice. First, xq is sampled
just like in the classical case. Second, both yq and xq

are used to calculate y0, and then yqþ1
¼ ŷðxq; y0Þ.

5. Experiments

We provide below three series of experiments. In
the first series, we show that the information
contained in the sole ‘‘long memory’’ correlation
can be sufficient to perform a viable segmentation.
In the second series we test the new model and the
related parameter estimation method in the general
case and, in particular, we compare it to the classical
. MPM segmentation of a four class image noisy with a long-mem

l for the four classes.
hidden Markov chains model. Finally, a real SAR
image is segmented with the classical HMC-IN and
with the new HMC-LMN model.
5.1. Common means and variances

In this subsection, we will assume that the means
and the variances in the Gaussian chains are equal.
To illustrate the results visually, we will consider a
four classes image presented in Fig. 1. The two-
dimensional set of pixels is transformed into a
one-dimensional set of indices via the so-called
‘‘Hilbert–Peano’’ scan, and thus the class image
X ¼ x is viewed as a realization of a mono-
dimensional stationary Markov chain X, whose
parameters are estimated from X ¼ x. Then four
Gaussian long-memory noises are considered as
described in the previous section. The four means
are equal, and it is the same for the four variances,
all equal to one. Thus the correlations are the only
discriminating parameters. All the four autocorrela-
tions are of the form r(tij) ¼ |tij+1|�a, where
tij ¼ |j�i|. Then we consider the following four
parameters: ao1

¼ 0:99 for the class ‘‘black’’, ao2
¼

0:3 for the class ‘‘dark grey’’, ao3
¼ 0:05 for the class

‘‘bright grey’’, and ao4
¼ 0:01 for the class ‘‘white’’.

Finally, the model parameters are: the distribution
p(x1,x2) on O2

¼ {o1, o2, o3, o4}
2, which is

estimated from the chain X ¼ x, and ao1
; ao2

;
ao3

; ao4
, which are known. The class image, its

noisy version, and the MPM segmentation are
presented in Fig. 1; we can see that the noise is
rather strong and the human eye cannot distinguish
the four classes. However, the segmentation result
enables one to have a relatively good idea about their
position in the image. The misclassified pixels’ ratio is
ory Gaussian noise. The means and the variances of the noise are
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equal to 6.9%. This show that the information
contained in the sole long-memory correlations can
be rich enough to enable a viable segmentation with
the proposed HMC-LMNmodel. This is all the more
Fig. 2. (a) A two classes process; (b) the noisy version with independent

discriminating parameter) and (d) noisy version with long-memory noi

Fig. 3. Segmentation of the observable realization Y ¼ y of an HMC-

values—4.1%; (b) HMC-IN with ICE estimates—5.2% and (c) HMC-
interesting that the realization X ¼ x can be hardly
considered as a stationary Markov chain, which
indicates that the HMC-LMN used is robust with
respect to the stationarity of the hidden chain X.
noise; (c) the noisy version with long-memory noise (a is the only

se (same variances).

IN considering three models: (a) HMC-IN with true parameters

LMN with ICE estimates—5.2%.
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5.2. General long-memory noise model

In this subsection, we propose three series of
experiments. For all of them, the HMC X is sta-
tionary with p(x1 ¼ o1,x2 ¼ o1) ¼ p(x1 ¼ o2,x2 ¼

o2) ¼ 0.495, and p(x1 ¼ o1,x2 ¼ o2) ¼ p(x1 ¼ o2,
x2 ¼ o1) ¼ 0.005. We consider samples of size 1000,
whose example is presented in Fig. 2(a).

In the first experiment we consider a classical
HMC-IN, with means equal, respectively, to 1 and
2, and variances equal to 1. The obtained realisation
of Y ¼ y, presented in Fig. 2(b), is then segmented
by three methods. The first one is the MPM method
based on true parameters; thus the result, presen-
ted in Fig. 3(a), is the reference one. The second
method is the MPM unsupervised method based on
the classical HMC-IN and ICE, while the third
method is the MPM unsupervised method based on
the new HMC-LMN model and the new related
ICE. The aims of this experiment are, on the one
Fig. 4. Segmentation of the observable realization Y ¼ y of an HMC

models: (a) HMC-LMN with true parameters values—2.1%; (b) HM

estimates—1.9%.

Table 1

Parameters of the HMC-IN and HMC-LMN models estimated

from the observable realization Y ¼ y of an HMC-IN (for

numerical reasons a bigger than 100 is not considered). True

parameters values are m1 ¼ 1, m2 ¼ 2, s12 ¼ s22 ¼ 1

IN HMC-IN HMC-LMN

o1 o2 o1 o2

m 0.92 1.99 0.89 1.96

s2 1 1 0.98 1.05

a – – 4100 4100
hand, to show the robustness of the HMC-LMN
model and, on the other hand, to see how the new
model manages the independent noise.

According to the results presented in Fig. 3(b)
and (c), we see that the new model gives comparable
results, which shows its good robustness. This is due
to the good behaviour of the parameter estimation
method; in fact, according to the results presented in
Table 1, means and variances are well estimated,
and the estimated a is superior to 100, which means
that the covariance decreases very quickly. These
results—and other similar results we obtained—
seem to us very important; in fact, although the
classical HMC-IN is not a particular case of the new
HMC-LMN model, the latter can be very close to
the former.

The second example is complementary to the first
one: both means are equal to 0, and both variances
are equal to 1, while a is equal to 0.1 and 1,
respectively. Therefore there is no classical HMC-
IN which could provide such data—one example of
such a sample is presented in Fig. 2(c)—and it is
interesting to see the robustness of the classical
HMC-IN with respect to data produced by MNC-
LMN. According to Fig. 4 we see that the
unsupervised segmentation result provided by
HMC-LMN is very good, while HMC-IN gives
very poor results. Concerning the parameter estima-
tion results presented in Table 2, we see, as
expected, that means and variances are poorly
estimated while considering the classical HMC-IN.
However, we also see that the results obtained
with the new ICE used in the new HMC-LMN
-LMN with same means and same variances considering three

C-IN with ICE estimates—48% and (c) HMC-LMN with ICE
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context are not as good as in the previous case. This
could be possibly due to the fact that correla-
ted noise carries less information than the indepen-
dent one.

Finally, in the third more general example, the
means are different (equal to 1 and 2, respectively),
Fig. 5. Segmentation of the observable realization Y ¼ y of an HMC-LM

(a) HMC-LMN with true parameters values—4.9%; (b) HMC-IN with

4.1%.

Table 3

Parameters of the HMC-IN and HMC-LMN models estimated

from the observable realization Y ¼ y of an HMC-LMN with

different means and different a (for numerical reasons a bigger

than 100 is not considered). True parameters values are m1 ¼ 1,

m2 ¼ 2, s21 ¼ s22 ¼ 1; a1 ¼ 0:1; a2 ¼ 0:9

IN HMC-IN HMC-LMN

o1 o2 o1 o2

m 1.06 2.25 1.33 1.73

s2 0.42 0.67 0.53 1.17

a – – 0.22 0.66

Table 2

Parameters of the HMC-IN and HMC-LMN models estimated

from the observable realization Y ¼ y of an HMC-LMN with

same means and same variances (for numerical reasons a bigger

than 100 is not considered). True parameters values are

m1 ¼ m2 ¼ 0, s21 ¼ s22 ¼ 1; a1 ¼ 0:1; a2 ¼ 1

IN HMC-IN HMC-LMN

o1 o2 o1 o2

m 0.61 �0.41 0.24 0.22

s2 0.35 0.26 0.37 0.81

a – – 0.28 1.1
and the parameters a are also different (equal to 0.1
and 0.9, respectively). According to the means and
variances estimation results presented in Table 3, we
see that the new ICE used in the HMC-LMN
context gives better results than the classical ICE
used in the HMC-IN context; however, the differ-
ence is not so striking. Now, HMC-IN cannot take
the correlations into account, when HMC-LMN
can, and this is probably the reason for the excellent
unsupervised segmentation obtained with HMC-
LMN, while the results obtained with HMC-IN are
quite poor (see Fig. 5). This means that when one
class produces a long-memory noise the unsuper-
vised segmentation based on the classical HMC-IN
model, which cannot take this fact into account,
encounters problems and is not robust.

Finally, the general conclusion involved by these
experiments—and other similar experiments we
have performed—is that using the new model and
related processing leads to superior, or equal,
performances than using the classical model and
related processing. Moreover, the advantage can
turn out to be quite significant.
N with different means and different a considering three models:

ICE estimates—32.4% and (c) HMC-LMN with ICE estimates—

Table 4

Initialization of ICE obtained with K-means method

1st model 2nd model 3rd model

o1 o2 o1 o2 o1 o2

True values m 1 2 0 0 1 2

s2 1 1 1 1 1 1

K-means m 0.52 2.24 �0.61 0.67 1.6 2.99

Estimates s2 0.39 0.42 0.26 0.23 0.26 0.27
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Table 6

Estimation of the parameters of a real image according to the

models HMC-IN and HMC-LMN
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Concerning the initialization of ICE, the K-means
method used provides means and variances given in
Table 4, while a is set equal to 0.5.

5.3. Application to a real SAR image

Let us consider a satellite SAR image, presented
in Fig. 5(a), which is a photograph of Giens’ bay
close to Antibes, France. It has been coloured
artificially and the colours represent received radar
intensity. We transform the colour image into a grey
level one by representing the 256 colours by 256
numbers uniformly separated between 0 and 10
(‘‘black ¼ 0’’ and ‘‘white ¼ 10’’). Finally, the two-
dimensional set of pixels is transformed into a one-
dimensional set via the Hilbert–Peano scan.

The image is segmented by two unsupervised
methods based on HMC-IN and HMC-LMN,
respectively. To limit algorithmic complexity in
HMC-LMN, we assume that the distribution of
each yn only depends on the previous values yk

such that xn ¼ xn�1 ¼? ¼ xk. Thus the density
of the joint process (X,Y) can still be written
pðx; yÞ ¼ pðx1Þ

QN�1
n¼1 pðxnþ1 xnj Þpðynþ1 xn;xnþ1; y1; . . . ;

��
yn:Þ, with p(yn+1|xn,xn+1,y1,y,yn) ¼ p(yn+1|xn+1) if
xn+1 6¼xn.
Fig. 6. Unsupervised segmentation of an SAR image using HMC-IN an

Table 5

Initialization of ICE using K-means

Classes m s2

1 1.91 0.35

2 3.36 0.49

3 7.03 1.36
As above, means and variances are initialized
using K-means, whereas for the long-dependence
parameter a has been taken equal to one (Table 5).

The picture is segmented into three classes: ‘‘sea’’
(class 1), ‘‘coast or islands’’ (class 2), and ‘‘land’’
(class 3), corresponding to the colours ‘‘blue’’,
‘‘green’’ and ‘‘brown’’, and the results obtained
are presented in Fig. 6. As we do not dispose of the
exact image, it is difficult to draw definitive
conclusions; however, on the whole, HMC-LMN
seems to give better results. In particular, it better
recognizes details like islands. Otherwise, HMC-IN
accounts more difficulties in distinguishing the land
and the sea. Otherwise, according to the estimated
values of the parameters given in Table 6, we see
that the three noises related to the three classes are
all ‘‘long-memory’’ noises. The class 1 (sea) presents
the ‘‘longest’’ memory, and the class 3 (land)
presents the ‘‘shortest’’ one.

Finally, it can be interesting to test if ‘‘sea area’’,
in blue in Fig. 6(c), is really of long-range
dependence. For that, we estimate the correlation
d HMC-LMN: (a) SAR image; (b) HMC-IN and (c) HMC-LMN.

Parameters HMC-IN HMC-LMN

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

m 1.69 2.75 5.93 2.29 2.36 5.67

s2 0.34 0.11 3.07 0.37 1.12 4.07

a – – – 0.02 0.08 0.31

Computer time 10 s 20min
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Fig. 7. (a) Correlation function and (b) logarithm of the correlation function and the regression’s curve d̂n ¼ �â logðnþ 1Þ got for

â ¼ 0:22.
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g ¼ (g(n)) of the training data corresponding to this
area and writing dn ¼ log(g(n)) ¼ �a log(n+1)+en,
we estimate a by the mean square method. We find
â ¼ 0:22 and we verify from the graphics presented
in Fig. 7 that the curve d̂n ¼ �â logðnþ 1Þ is very
close to log(g(n)) which is characteristic of long-
memory dependence. We notice that the estimate
â ¼ 0:22 found here is quite different from the
estimate â ¼ 0:02 found by ICE; however, this is not
contradictory because in the Hilbert–Peano scan
two points close to each other in the two-dimen-
sional set of pixels can be far from each other
obtained in the one-dimensional chain.

6. Conclusion

In this paper, we dealt with the problem of
segmentation of a discrete signal hidden by a long-
memory noise. Using the general notion of triplet
Markov chains (TMCs), we proposed a new general
model in which the distribution of the hidden signal
is the marginal distribution of a Markov chain, and
in which the observations are Gaussian. We showed
that the posterior marginal distributions of the
hidden signal are computable and thus the classical
Bayesian ‘‘Maximum of Posterior Marginals’’
(MPM) segmentation method is computable. More-
over, we proposed an original parameter estimation
method inspired by the general ‘‘Iterative Condi-
tional Estimation’’ (ICE) principle, and showed its
good appropriateness, when unsupervised MPM
segmentation is concerned, to the new model. We
provided some experiments which show the interest
of the new model and related processing with
respect to the classical hidden Markov chain with
independent noise (HMC-IN). In fact, when data
suit the classical HMC-IN the new model gives
comparable results; but when data suit the new
model, the results provided by HMC-IN can be
much worse than those provided by the new model.

Therefore, the use of new model and the
associated parameter estimation method can be
considered in every area mentioned in the Introduc-
tion, in which the classical HMC-IN already finds
interesting applications. Otherwise, the proposed
model can also be seen as an approximation of non-
stationary fractional Gaussian noise, widely used in
different ‘‘long-memory’’ phenomena [29]. Hence
the unsupervised segmentation method proposed
can be used immediately for unsupervised search of
hidden switching states.

As perspective for further work, we can mention
the possibility of using marginal distributions of the
noise different from Gaussian ones, as suggested in
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[25]. This leads to the introduction of Gaussian
copulas in the model considered in the paper, which
have already provided interesting results in the
classical hidden Markov chains model [14].
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[27] O. Cappé, E. Moulines, J.-C. Pesquet, A. Petropulu, X.

Yang, Longe-range dependence and heavy-tail modeling for

teletraffic data, IEEE Signal Process. Mag. 19 (3) (2002)

14–27.

[28] F. Chapeau-Blondeau, M. Guglielmi, Modèles de signaux à
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