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a b s t r a c t

Hidden Markov chains (HMC) are a very powerful tool in hidden data restoration and

are currently used to solve a wide range of problems. However, when these data are not

stationary, estimating the parameters, which are required for unsupervised processing,

poses a problem. Moreover, taking into account correlated non-Gaussian noise is

difficult without model approximations. The aim of this paper is to propose a

simultaneous solution to both of these problems using triplet Markov chains (TMC)

and copulas. The interest of the proposed models and related processing is validated by

different experiments some of which are related to semi-supervised and unsupervised

image segmentation.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

The aim of this paper is to propose different workable
extensions of the hidden Markov chain (HMC) model,
which is well known and widely used. Hundreds of papers
dealing with different subjects using HMC are published
each year; let us mention general books [9,28] and papers
[21,47] containing rich bibliographies. The HMC is a
pairwise stochastic process Z ¼ ðX,YÞ ¼ ðXn,YnÞ

N
n ¼ 1 in

which X is hidden and Y is observable. In this paper, each
Xn will take its values from a finite set of classes
O={o1,y,oK} and each Yn will take its values from R. In
such a model X is assumed to be a Markov chain and the
distribution of Z is given by pðzÞ ¼ pðz1Þ

QN
n ¼ 2 pðzn9zn�1Þ,

with p(zn9zn�1)=p(xn9xn�1)p(yn9xn). It allows one to
estimate a realization X=x from the observed data Y=y
ll rights reserved.

eu (W. Pieczynski).
in different Bayesian ways. When the parameters of
the model are unknown, they have to be estimated from
Y=y by methods like, for example, ‘‘Expectation-
Maximization’’ (EM [9,35,47]). To achieve it, Z is assumed
to be stationary: p(zn�1,zn) do not depend on 2rnrN.
However, when p(zn�1,zn) do depend on 2rnrN, the
estimation algorithm gives a stationary model which can
lead, when used in signal segmentation, to very poor
results. The main aim of this paper, which extends the
ideas proposed in [29,32], is to model such a lack of
stationarity by introducing, in a quite general context, an
auxiliary hidden process.

The general idea comes from the fact that the very
classical stationary HMC Z=(X, Y) can be interpreted as a
way of modelling a switching chain Y, which is performed
by adding an auxiliary chain X whose stochastic
‘‘switches’’ model different stationarities of Y. Thus we
can deal with switching Z=(X, Y) using exactly the same
idea; it can be modelled by adding an auxiliary chain U,
whose stochastic ‘‘switches’’ model different stationarities
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of Z=(X, Y). Then we arrive at a chain T=(X, U, Y) which,
while assumed Markovian, becomes a ‘‘triplet Markov
chain’’ (TMC) introduced in [40]. TMCs form a very rich
family of models and can be used in different problems
[1,45]. In particular, an original link between TMCs and
the ‘‘theory of evidence’’ [53,55], established in [30,43],
provides a way of performing the ‘‘Dempster–Shafer
fusion’’ in a Markovian context. More recently, a particular
TMC introduced in [44] allows one to exactly calculate the
conditional expectation in the presence of ‘‘Markov
switches’’, while the classical models need approximate
calculation methods.

Let us notice that in our model there is precise
information about the non-stationarity: there are M

different stationarities. This is different from the non-
stationarity dealt with in [30], where such information is
not given, and this is different from the situation
described in [54], where the non-stationarity is studied
through the dependence of the transitions of the hidden
Markov chain on the duration process.

The basic idea of modelling the non-stationarity of
Z=(X, Y) by a TMC T=(X, U, Y) proposed in [29] is extended
here and benefits from two novelties.

First, we propose a general result (Proposition in
Section 2.1) specifying the conditions under which
different marginal chains X, U, Y, (X, Y), (X, U), (U, Y) of a
TMC T=(X, U, Y) remain Markovian. This result has
different practical implications. It allows us to better
understand what the large generality of TMC consists of.
Subsequently, it allows us to propose different particular
and original TMC, which can be not much more complex,
when the number of parameters defining the model is
concerned, than the classical HMC. Another practical
implication is the fact that it remains valid in the
‘‘mixed-states’’ case, in which the distribution of each Xn

can simultaneously contain Dirac masses and a part which
is continuous with respect to the Lebesgue measure. Such
Markov models were first introduced in the context of
hidden Markov fields to model ‘‘fuzzy’’ segmentation in
[50], and showed how useful it was in different situations
[48,49]. Afterwards, an extended version of such mixed-
states models was proposed in [4], with application to
motion texture modelling. Finally, mixed-state hidden
Markov chains, first proposed in [10], found similar
applications [11,13,24,33,51,52].

Second, we propose to use copulas to model possibly
non-Gaussian and correlated noises. The interest of non-
Gaussian marginal distributions of the noise p(y9x) is well
known; in particular, it is vital in modelling and proces-
sing of radar data [15,16,23,37,38]. It can also be useful for
color object tracking [27]. Here we add a new possibility
to model such situations. In fact, two marginal distribu-
tions of p(y9x) of a given shape can be correlated in
different ways. For example, two Gaussian margins p(yi9x),
p(yj9x) can be correlated in a ‘‘Gaussian way’’ – then the
couple (Yi, Yj) is Gaussian conditionally on X=x – but they
can also be correlated in a different way - then we have
Gaussian margins with non-Gaussian couple. Such situa-
tions are modelled with ‘‘copulas’’ [39]. The introduction
of copulas in hidden Markov chains is relatively recent
and has provided promising results [7]. This allows us to
deal with non-Gaussian correlated noise and here we
extend this idea to TMC in the context of switching chains
Z=(X, Y).

In addition, we propose a parameter estimation
method, based on the general ‘‘iterative conditional
estimation’’ (ICE [46]) principle, which has already been
successfully used in similar contexts [2,19,22,23] and
which makes feasible different unsupervised Bayesian
segmentation methods of non-stationary data. Let us
remark that some relationships between ICE and EM have
been studied in [17].

Finally, we can sum up the proposed novelties, which
are of interest in any problem in which the classical HMCs
are of interest, in four points:
i.
 specification of general conditions under which dif-
ferent marginal chains X, U, Y, (X, Y), (X, U), (U, Y) of a
TMC T=(X, U, Y) remain Markovian;
ii.
 general modelling of switching chain Z=(X, Y), which
is Markov or not, by a triplet Markov chain T=(X, U, Y);
iii.
 introduction of copulas in TMC;

iv.
 parameter estimation and unsupervised segmentation

of switching data hidden with non-Gaussian corre-
lated noise.

The interest of these different novelties is attested by
some experiments. In particular, the unsupervised image
segmentation is addressed. To achieve it, the bi-dimen-
sional set of pixels is transformed into a mono-dimen-
sional sequence via a Hilbert–Peano scan, as used in
[22,23], and then the different Markov chain based
methods can be applied in the image processing context.
Such methods have been successfully used in different
problems, like multi-sensor image segmentation [23],
hyperspectral image segmentation [36], multi-scale im-
age segmentation [18], fuzzy image segmentation [24,51],
or even three-dimensional image segmentation, where a
three-dimensional Hilbert–Peano scan is used [5].
Although the hidden Markov field based methods are
intuitively better adapted to image processing, the hidden
Markov chains based ones, which are much less time-
consuming, can be competitive [22]. However, let us
underline the fact that Markov chain based methods are
more a complement than a rival to Markov field based
ones and both of them present advantages and draw-
backs. Let us also mention that some results concerning
unsupervised segmentation of non-stationary images
using triplet Markov fields can be seen in [2,42].

Finally, let us underline that the image segmentation
domain is just an example of possible application and any
area in which the classical HMC is used can be concerned
by the proposed models and related processing.

2. Modelling switching pairwise chains with triplet
Markov chains

2.1. Triplet Markov chains

Let Z ¼ ðX,YÞ ¼ ðXn,YnÞ
N
n ¼ 1 be a pairwise random chain

in which X is searched for and Y is observed. In a triplet
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Markov chain (TMC) one introduces a third stochastic
process U ¼ ðUnÞ

N
n ¼ 1, and assumes that T=(X, U, Y) is a

Markov chain. TMCs are a very rich model and their
generality goes far beyond the classical HMC. This greater
generality is specified in the Proposition below. Although
its proof is strongly inspired by the proofs in [41,43], its
generality is new. There are two aspects of this greater
generality. The first one is that the chain G introduced in
the proposition can be equal to X, U, Y, (X, U), (X, Y), or
(U, Y), and the same for H which completes G to give
T=(X, U, Y). The second one is the fact that the s-additive
measures g and Z introduced in the proposition can be of
different kind, including the )mixing* kind, which allows
one to deal with the fuzzy models.

Thus let W ¼ ðG,HÞ ¼ ðGn,HnÞ
N
n ¼ 1 be a random chain,

where each Wn=(Gn, Hn) takes its values from G�H. Let g
be a s-additive measure on G, and let Z be a s-additive
measure on H. Let us assume that W is a Markov chain and
let us denote by the same letter p different densities with
respect to different measures linked with g and Z. In
practice, each g and Z measure is either the classical
counting measure or the Lebesgue measure, but other
measures, such as mixed-states measures mentioned in
the introduction, can also be considered. We will say that
W is stationary and reversible if p(wn, wn + 1) does not
depend on 1rnrN�1 and p(wn=a, wn+ 1=b)=p(wn=b,
wn + 1=a) for each 1rnrN�1, a, and b.

We can state the following:

Proposition. Let W ¼ ðG,HÞ ¼ ðGn,HnÞ
N
n ¼ 1 be a stationary

and reversible Markov chain, whose realizations are
denoted by w¼ ðg,hÞ ¼ ðgn,hnÞ

N
n ¼ 1. The three following

conditions:
(i)
 G is a Markov chain (i.e., W=(G, H) is a hidden Markov
chain);
(ii)
 for each 2rnrN, pðhn9gn,gn�1Þ ¼ pðhn9gnÞ; and

(iii)
 for each 1rnrN, pðhn9gÞ ¼ pðhn9gnÞ,
are equivalent.

The proof is in the Appendix.
The condition (ii) is very practical when evaluating the

generality degree of a given model. For example, in this
paper we are interested in TMC T=(X, U, Y) such that each
Xn takes its values from O={o1,...,oK}, each Yn takes its
values from the set of real numbers R, and each Un takes its
values from a finite set L={l1,...,lM}. When T is stationary,
its distribution is given by p(t1,t2). We can wonder whether
(X, U) is a Markov chain or not; to see this, we can apply the
Proposition to G=(X, U), with g counting measure on
G=O�L, and H=Y, with Z Lebesgue measure on R.
Assuming the Proposition hypotheses verified and writing
p(t1,t2) as p(t1,t2)=p(x1,u1,x2,u2)p(y1,y29x1,u1,x2,u2) we can
say that (X, U) is a Markov chain if and only if
p(y19x1,u1,x2,u2)=p(y19x1,u1). We can also wonder whether
X is a Markov chain or not; to see this, we can apply the
Proposition to G=X, with g counting measure on G=O,
and H=(U, Y), with Z the product of counting measure on L
and by Lebesgue measure on R. Writing p(t1,t2) as
p(t1,t2)=p(x1,x2)p(u1,y1,u2,y29x1,x2) we can say that X is a
Markov chain if and only if p(u1,y19x1,x2)=p(u1,y19x1).
Of course, there are numerous other possibilities. Roughly
speaking, as each variable among Xn, Un, and Yn can be
either discrete or continuous, there are eight different basic
cases. We say ‘‘basic’’ because each of these variables can
be a vector with some components continuous, and some
others discrete. Moreover, counting measure and Lebesgue
one can be replaced, as stated in the introduction, by a
mixed-state measure, which adds numerous new possibi-
lities. Let us also notice that condition (iii) shows that
complex noises cannot be taken into account in the
classical hidden Markov chains, in which the hidden chain
is a Markov one.

2.2. Bayesian segmentation using TMC

Let T=(X, U, Y) be a TMC with the distribution written
pðtÞ ¼ pðt1Þ

QN
n ¼ 2 pðtn9tn�1Þ. To simplify the notation, let

V ¼ ðVnÞ
N
n ¼ 1 ¼ ðXn,UnÞ

N
n ¼ 1. Therefore each Vn takes its

values from O�L, and T=(V, Y) is a Markov chain. Thus
(V, Y) is a ‘‘pairwise Markov chain’’ (PMC) and we can
introduce the ‘‘Forward’’ quantities an(vn)=p(vn, y1, ..., yn),
and the ‘‘Backward’’ quantities bn(vn)=p(yn +1, ..., yN9
vn, yn), which are both calculated by the following forward
and backward recursions ([19,41]):

a1ðv1Þ ¼ pðv1, y1Þ;

anþ1ðvnþ1Þ ¼
X

vn2X�L

anðvnÞpðvnþ1,ynþ19vn,ynÞ; ð2:1Þ

bNðvNÞ ¼ 1;

bnðvnÞ ¼
X

vnþ 12X�K

bnþ1ðvnþ1Þpðvnþ1,ynþ19vn,ynÞ: ð2:2Þ

Let us remark that the ‘‘Forward’’ probability above is
the same that the one in the classical HMC, and the
‘‘Backward’’ probability above is an extension of the
‘‘Backward’’ probability in the classical HMC, the latter
being defined by bn(vn)=p(yn + 1,...,yN9vn). In addition the
related recursions (2.1), (2.2) extend to PMC the well
known ‘‘Forward’’ and ‘‘Backward’’ recursions of classical
HMCs.

The marginal posterior distributions of the hidden
state can be calculated by

pðvn9yÞ ¼
anðvnÞbnðvnÞP

vn2X�KanðvnÞbnðvnÞ
, ð2:3Þ

and the transitions of the posterior Markov distribution
p(v9y) are calculated by

pðvnþ19vn,y1, :::, yNÞ ¼
pðvnþ1,ynþ19vn,ynÞbnþ1ðvnþ1ÞP

vnþ 12X�Kpðvnþ1,ynþ19vn,ynÞbnþ1ðvnþ1Þ
:

ð2:4Þ

Having calculated pðvn9yÞ, one can then compute
pðxn9yÞ and pðun9yÞ with

pðxn9yÞ ¼
X
un2K

pðvn9yÞ, pðun9yÞ ¼
X
xn2X

pðvn9yÞ: ð2:5Þ

These three marginal posterior probabilities
being computable, it is then possible to use different
Bayesian methods to estimate v=(x, u). For example,
knowing the posterior marginal distributions p(xn9y),
one can use the Bayesian Maximum Posterior Mode
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(MPM) segmentation method ŝMPMðy1, :::, yNÞ ¼ ðx̂1, :::, x̂NÞ,

with x̂n ¼ argmax
xn2X

pðxn9yÞ. The realization u=(u1, ..., uN) of

U=(U1, ..., UN) can be estimated from p(un9y) in a similar
way. These estimates will be used in the experiments
below.

2.3. Modelling switching pairwise chain by a triplet

Markov one

Let Z=(X, Y) be a pairwise Markov chain, where Y is
observed and X is hidden. Let us assume that for each
n=1, y, N�1 the transition distribution p(xn+1, yn+19xn, yn)
is one distribution among M possible ones, which means
that there are M sets of parameters and the chain Z=(X, Y)
can switch from one to another at random unknown time.
We propose to model this non-stationarity by introducing
a third stochastic process U ¼ ðUnÞ

N
n ¼ 1, with each Un

taking its values from a set of M values L={l1, ..., lM},
such that T ¼ ðZ,UÞ ¼ ðZn,UnÞ

N
n ¼ 1 is a homogeneous Mar-

kov chain. Thus the distribution of T=(Z, U) is given by
p(x1,y1,u1) and the transitions p(xn +1, yn +1, un + 19xn, yn, un),
which can be written

pðxnþ1,ynþ1,unþ19xn,yn,unÞ ¼ pðunþ19xn,yn,unÞ

�pðxnþ1,ynþ19unþ1,xn,yn,unÞ

ð2:6Þ

The first transition p(un + 19xn, yn, un) models the
apparitions of switches, while the second one
p(xn + 1, yn + 19un + 1, xn, yn, un), which will be taken equal
to p(xn + 1, yn +19un +1, xn, yn) because of there are exactly M

possible transitions, given by un + 1. Let us remark that
when, in addition, p(zn, un, zn + 1, un +1) does not depend on
n the homogeneous chain T=(Z, U) is stationary.

Finally, as already specified in Introduction, we model
a switching Z=(X, Y) by a stationary T=(Z, U).

2.4. Learning Gaussian TMC with SEM

Let us consider the following particular stationary
T=(X, Y, U), which will be used in experiments below. The
chain V=(X, U) is a stationary Markov chain, and the
distribution p(y9u) of Y conditional on V=(X, U) is Gaussian
and verifies

pðy9uÞ ¼ pðy9xÞ ¼
YN

n ¼ 1

pðyn9xnÞ ð2:7Þ

Let us notice that in spite of the simplicity of p(y9v), the
couple (X, Y) is not necessarily a HMC, because, according
to the Proposition in Section 2.2, X is not necessarily a
Markov chain. Otherwise, we assume that the Gaussian
distributions p(yn9xn) are independent from n=1,...,N. Thus
for K classes O={o1,...,oK}, we have to estimate K means
m1,y,mK, and K variances s2

1, :::, s2
K of the K Gaussian

densities p(yn9xn=o1),y,p(yn9xn=oK). Furthermore, each
Un taking its values from L={l1,...,lM}, the distribution of
the stationary Markov chain V=(U, X) is given by (KM)2

parameters pij=p(v1= i, v2= j) (to simplify, we consider the
set O�L as being {1,2,.....,KM}), which is a probability on
[O�L]2.
In Section 3 we will use the Stochastic ‘‘Expectation-
Maximization’’ (SEM [12]) method, which is a stochastic
approximation of the ‘‘Expectation-Maximization’’ (EM)
method [35,47], and which runs as follows:
(i)
 consider an initial value y0
¼ ðp0

ij,m
0
k ,ðs0

kÞ
2
Þ, for 0r i,

jrKM, and 1rkrK obtained in some classical way
specific to a given application;
(ii)
 for each q 2 N*:

� simulate V=vq according to the Markov chain
p(v9y) based on yq;
� calculate yqþ1

¼ ðpqþ1
ij ,mqþ1

k ,ðsqþ1
k Þ

2
Þ with

pqþ1
ij ¼

1

N�1

XN�1

n ¼ 1

1½uq
n ¼ i,uq

nþ 1
¼ j�, ð2:8Þ

mqþ1
k ¼

PN
n ¼ 1 yn1½xq

n ¼ ok�PN
n ¼ 1 1½xq

n ¼ ok �

, ð2:9Þ

ðsqþ1
k Þ

2
¼

PN
n ¼ 1 ðyn�mqþ1

k Þ
21½xq

n ¼ ok �PN
n ¼ 1 1½xq

n ¼ ok�

; ð2:10Þ
p the procedure when the sequence (yq) has
sto
became ‘‘steady’’ according to some criteria, specific
to a given application.
3. Semi-supervised segmentation of switching chains
and ‘‘non-stationary’’ images hidden with Gaussian
noise.

Let (X, Y) be the classical Gaussian hidden Markov
chain with independent noise (HMC), with the distribu-
tion of the noise given by pðy9xÞ ¼

QN
n ¼ 1 pðyn9xnÞ. We will

compare the HMC and the proposed TMC model in the
context of semi-supervised MPM segmentation, where
the model parameters are estimated with SEM and the
number of classes are set manually.

We present three series of experiments. In the first
series, the data (X, Y) are simulated according to a chosen
U=u. In the second series, the hidden data X=x are given
and the Gaussian noise is simulated. In the third series we
deal with a collage of Brodatz [6] patterns segmentation.
It these experiments, the number of real and auxiliary
classes will be supposed to be known or will be set
manually such that the segmentations will be semi-
supervised. However, it is possible to automatically
compute these numbers by using Bayes Information
Criterion [3] as it will be shown in Section 4.2.3, which
will lead to unsupervised segmentation.

Let us consider two classes O={o1, o2} and three
stationarities L={l1,l2,l3}. The length of the chain before
conversion using a Hilbert–Peano path is N=128�128.
The realization U=u is fixed arbitrarily: the first half of
u=(u1,...,uN) is l1 (grey), the third quarter is l2 (black), and
the last quarter is l3 (grey-dark). Using the Hilbert–Peano
scan this gives an image U=u as shown in Fig. 1. The
sequence X=x is simulated in the following way. X1=x1 is
sampled from O={o1, o2} (with o1 ‘‘white’’ and o2 black)
according to the distribution (0.5, 0.5), and X2=x2,y,
XN/2=xN/2 are sampled using the transition matrix M1.



Table 1
Estimates of noise parameters.

m1 s2
1

m2 s2
2

True 1.00 1.00 3.00 1.00

HMC 0.98 1.03 2.33 1.91

TMC 1.02 1.01 2.98 0.94
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Then X(N/2) +1=x(N/2) +1,y,X3N/4=x3N/4 are sampled using
the transition matrix M2, and, finally, X3N/4=x3N/4,y,
XN=xN are sampled using the transition matrix M3. In
the experiment, the matrices considered are

M1 ¼
0:98 0:02

0:02 0:98

� �
, M2 ¼

0:5 0:5

0:5 0:5

� �
, and

M3 ¼
0:02 0:98

0:98 0:02

� �
:

The observed Y=y is sampled according to p(y19x1), y,
p(yN9xN), where p(yn9xn=o1) is Gaussian with mean 1 and
variance 1, and p(yn9xn=o2) is Gaussian with mean 3 and
variance 1. The realization X=x is then estimated by the
Bayesian MPM method from Y=y in two different ways. The
first segmentation is obtained using the parameters esti-
mated with the SEM algorithm assuming that (X, Y) is a
classical HMC with two real classes, with the hidden chain
assumed stationary, which gives X̂

1
¼ x̂

1
(HMC), t=26% (see

Fig. 1, where t is the error ratio). The second segmentation is
obtained using the parameters estimated with the SEM
algorithm assuming that (X, U, Y) is a TMC presented above
with two real classes and three auxiliary classes, which gives
X̂

2
¼ x̂

2
(TMC), t=5%. We also show in Fig. 1 the estimates

Û ¼ û of the auxiliary process U=u. We clearly see how the
use of TMCs can improve the results obtained with the
classical HMC model by considering three different statio-
narities. Of course, the results are good because the data are
not strongly noisy; however, this example shows that the
lack of stationarity of X can have heavy negative con-
sequences on the efficiency of the classical HMC based
methods, and this result also shows that these negative
consequences can be avoided using a TMC.
Fig. 1. Different images corresponding to the first experiment and
In addition, different parameters are well estimated
(Tables 1 and 2), which shows the good behavior of the
SEM associated with TMCs; while the classical SEM
associated with the classical HMCs gives poorer results.

In the second series, let us consider the binary image of
a zebra presented in Fig. 2, with N=256�256. The skin of
the zebra has got stripes of uneven size and shape. For
instance, the stripes on the neck and on the legs of the
zebra are thinner than those on the body. The observed
Y=y is then sampled in the same way as in the first
experiment and the realization X=x is estimated by the
Bayesian MPM method from Y=y using the parameters
estimated with the SEM algorithm considering the HMC
and the TMC models. We can see in Fig. 1 that the stripes
are not well restored while using HMC. The result X̂

1
¼ x̂

1

involves the error ratio of t=7.2% (see Fig. 2). When using
a T=(X, U, Y) with 3 auxiliary classes, we can take three
different stationarities into account (Fig. 2) on the
estimates Û ¼ û of the auxiliary processes: black labels
are assigned to the background, grey labels to the body,
which presents large stripes and white labels are assigned
to the neck and to the legs of the zebra which present thin
stripes. By considering different stationarities, we
improve the parameters estimation (Tables 3 and 4) and
their semi-supervised HMC and TMC based segmentations.



Table 2
Estimates of the transition matrix p(un9un�1) (A) and p(u1) (B).

(A) n1 ¼ ðo1 , l1Þ n2 ¼ ðo2 , l1Þ n3 ¼ ðo1 , l2Þ n4 ¼ ðo2 , l2Þ n5 ¼ ðo1 , l3Þ n6 ¼ ðo2 , l3Þ

ðo1 , l1Þ 0.98 0.02 �0 2e-4 �0 �0

ðo2 , l1Þ 0.02 0.98 �0 �0 0.01 �0

ðo1 , l2Þ �0 5e-4 0.50 0.49 0.02 �0

ðo2 , l2Þ �0 �0 0.52 0.47 �0 �0

ðo1 , l3Þ �0 �0 �0 �0 �0 1

ðo2 , l3Þ �0 �0 5e-4 �0 0.95 0.04

(B) 0.26 0.24 0.13 0.12 0.09 0.13

Fig. 2. Different images corresponding to the second experiment and their semi-supervised HMC and TMC based segmentations.

Table 3
Estimates of noise parameters.

m1 s2
1

m2 s2
2

True 1.00 1.00 3.00 1.00

HMC 1.47 1.31 2.99 1.00

TMC 1.02 1.02 2.99 1.00
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the segmentation quality result (X̂
2
¼ x̂

2
involves the error

ratio of t=3.5%) as well.
The third series of experiments deals with the semi-

supervised segmentation of Brodatz patterns [6] which
are often used in texture segmentation. We built an image
Y=y according to U=u presented in Fig. 3 by considering
three different Brodatz textures. We assume that T=
(X, U, Y) is a TMC model with 3 auxiliary classes and 4 real
classes. The segmentation results are presented in Fig. 3.
The interesting point is the fact that Û ¼ û is well
estimated with t=2.5%, which shows that TMC models
can be useful in the context of texture segmentation. Let
us notice that we do not have the true X=x.
4. Semi-supervised segmentation of switching hidden
Markov chains with copulas

4.1. Copulas in triplet Markov chains

Copulas are particular cumulative distribution func-
tions (cdf), which allow one to easily propose different
correlate variables distributions. Let C:[0,1]2-[0,1] be a
continuous cdf on [0,1]2 such that the corresponding
marginal distributions are uniform distributions on [0,1].
Such a cdf is called ‘‘copula’’.

Let Y1, Y2 be two real random variables, F1, F2 the cdfs of
their laws, and F the cdf of the law of Y=(Y1, Y2). For F1, F2

continuous, there is a single copula C:[0,1]2-[0,1], such



Table 4
Estimates of the transition matrix p(un9un�1) (A) and p(u1) (B).

(A) n1 ¼ ðo1 , l1Þ n2 ¼ ðo2 , l1Þ n3 ¼ ðo1 , l2Þ n4 ¼ ðo2 , l2Þ n5 ¼ ðo1 , l3Þ n6 ¼ ðo2 , l3Þ

ðo1 , l1Þ 0.98 �0 �0 0.01 �0 �0

ðo2 , l1Þ �0 0.99 �0 �0 �0 �0

ðo1 , l2Þ �0 �0 0.85 0.14 �0 �0

ðo2 , l2Þ 0.02 �0 0.10 0.88 �0 �0

ðo1 , l3Þ �0 �0 �0 �0 0.6 0.4

ðo2 , l3Þ �0 �0 �0 �0 0.34 0.65

(B) 0.06 0.68 0.06 0.08 0.05 0.07

Fig. 3. Image corresponding to the third experiment and its semi-

supervised TMC based segmentations.
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that [39] (also see [7,8,14,20,34] and the references therein):

8ðy1,y2Þ 2 R2, Fðy1,y2Þ ¼ CðF1ðy1Þ,F2ðy2ÞÞ ð4:1Þ

Let Y=(Y1, Y2) be a random vector with the distribution
defined by the cdf F(y1,y2)=C(F1(y1),F2(y2)). An important
property is that if we consider j1, j2 two continuous
strictly increasing functions from R to R, the distribution
of W=(W1, W2) defined from Y=(Y1, Y2) by W1=j1(Y1),
W2=j2(Y2), admits different marginal distributions but is
defined by the same copula C. This means that one can use
a given distribution F to define any another distribution F0

having the same copula than F and having any desired
marginal distributions F 01, F 02. In fact, it is sufficient to take
W1 ¼j1ðY1Þ ¼ F 01ðF

�1
1 ðY1ÞÞ and W2 ¼j2ðY2Þ ¼ F 02ðF

�1
2 ðY2ÞÞ.

This is a simple way of creating correlated variables
distributions within the desired margins.

Let us assume that the cdf F of the random variables Y1,
Y2 is derivable. Derivating (4.1) gives

pðy1,y2Þ ¼ pðy1Þpðy2Þc½F1ðy1Þ,F2ðy2Þ� ð4:2Þ

Let us consider two examples which will be used in the
experiments of the next sub-section.
Example 4.1. Gaussian copula

The Gaussian copula CG is the copula associated to a
Gaussian distribution p(y1, y2) with (4.2). As the copula CG

does not depend on marginal distributions p(y1), p(y2), let
us assume them to be of mean 0 and of variance 1. Let us
denote by F its cdf. Setting in (4.2) u1=F(y1), and
u2=F(y2), we find

cGðu1,u2Þ ¼
fGðF�1

ðu1Þ,F�1
ðu2ÞÞ

pGðF�1
ðu1ÞÞpGðF�1

ðu2ÞÞ
, ð4:3Þ

where fG is the density of the Gaussian distribution

N ð0, 0Þ,
1 r
r 1

 !" #
on R2 and pG the density of the

Gaussian distribution N(0,1) on R. We see that the Gaussian
copula on [0,1]2 is defined by one real parameter r.

Example 4.2. Student copula

Let W be a strictly non-negative real random variable
and let A be a Gaussian random vector with the distribu-
tion N[(0,0), S] on R2. Let mAR2, and Y ¼mþW�ð1=2ÞA.
Such a model, which can be seen as a Gaussian distri-
bution with stochastically affected covariance matrix, is
used in radar signal processing, where W is called ‘‘texture’’
and A the ‘‘speckle’’. The distribution of Y can then
be calculated for some particular distributions of W.
Denoting by g(a, b) the gamma distribution given by

the density f ðyÞ ¼ ba

GðaÞ e
�byya�11yZ0, where a, b40 and

GðaÞ ¼
R þ1

0 ya�1e�y dy, we can state that if the distribution

of W is gðn2 , n
2Þ, then the distribution of Y is the following

‘‘Student law with n degrees of freedom’’

fSðy1, y2Þ ¼
Gððnþ2Þ=2Þ Sj j�ð1=2Þ

pnGðn=2Þ
1þ

2ðy1�mÞ0S�1
ðy2�mÞ

n

 !�ðnþ2Þ=2

,

ð4:4Þ

and the marginal distribution of (4.4) is (with s2 denoting
the variance of Gaussian marginal variable of A)

pSðy1Þ ¼
Gðnþ1=2Þffiffiffiffiffiffiffiffiffiffiffi
pns2
p

Gðn=2Þ
1þ

2ðy1�mÞ2

ns2

 !�ðnþ1Þ=2

ð4:5Þ

The Student copula is then obtained from (4.4) and
(4.5) using (4.2), in a similar way as was done for the
Gaussian copula. Denoting by FS the cdf of the standar-
dized (mean equal to 0 and variance equal to 1) Student
distribution on R and setting u1=FS(y1), u2=FS(y2),
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we have

cSðu1,u2Þ ¼
fSðF�1

S ðu1Þ,F�1
S ðu2ÞÞ

pSðF�1
S ðu1ÞÞpSðF�1

S ðu2ÞÞ
, ð4:6Þ

where fS is given by (4.4) with m=0 and R¼
1 r
r 1

 !
, and

pS is given by (4.5) with m=0 and s2=1. We see that the
Student copula on [0,1]2 is defined by two real parameters
r and n.

Let T=(X, U, Y) be a stationary reversible TMC. Setting
V=(X, U) to simplify, the distributions of T is then defined
by p(t1, t2)=p(v1, v2)p(y1, y29v1, v2). The distributions
p(y1, y29v1, v2) can then be defined using different margins
and different copulas. To our knowledge, such models were
first proposed in the context of the classical hidden Markov
chains in [7], and different experiments have validated their
interest. Thus here we extend this kind of model to TMCs,
with application to switching hidden chains.

Let us notice the great richness of such a family of
models. If there are K possible values for each Xn and M

possible values for each Un, there are KM possible values
for each Vn=(Xn, Un), and thus there are K2M2 possible
values for (v1, v2). Because of the reversibility, there are
therefore ðKMðKM�1ÞÞ=2 possible distributions p(y1, y29
v1, v2) on R2, and each of them is defined by two marginal
distributions and a copula. For example, if there are three
stationarities and two classes, there are fifteen possibly
different marginal distributions on R, and fifteen possibly
different copulas on R2. Let us also notice that consi-
dering different margins can be necessary in real situa-
tions; as shown in [15], different classes can present
different shapes of noise in the same radar image.

4.2. Experiments

The aim of the experiments presented below is to test
whether using the true copula is of importance. Let us
consider two copulas: the Gaussian copula and the Student
one. In all experiments the marginal distributions of the
observed chain conditionally on the hidden data will be
Gaussian. Thus when the copula used is the Gaussian copula
we are faced with the classical Gaussian case. When the
copula used is the Student copula, we have an original
model with Gaussian margins and a Student copula.

The number of classes is set manually and the
parameters are estimated with the ‘‘Iterative Conditional
Estimation’’ (ICE [2,19,22,23,46]). Let y=(y1, ..., ym) be the
set of parameters. To apply ICE, we need an estimator
ŷðv, yÞ from complete data (V, Y)=(v, y). Likely to EM, ICE
is an iterative method and runs as follows:
(i)
 Initialize y0;

(ii)
 compute yqþ1

i ¼ E½ŷiðV , YÞ9Y ¼ y, yq
� for the compo-

nents yi for which this computation is workable;

(iii)
 for other components yi, simulate vq

1, :::, vq
l according

to p(v9y,yq) and put yqþ1
i ¼ ðŷiðv

q
1, yÞþ ::: þ ŷiðv

q
l , yÞÞ=l.
The marginal distributions are Gaussian in our model
and, as (ii) cannot be used for all components, we sample
one realization vq (we take l=1) of V and we use (iii), with
the estimates defined by (2.9) and (2.10), to re-estimate
the means and the variances. To re-estimate the copulas,
we use the classical estimate of correlations

rqþ1
km ¼

PN�1
n ¼ 1ðyn�mqþ1

k Þðynþ1�mqþ1
m Þ1½xn ¼ ok ,xnþ 1 ¼ om �PN�1

n ¼ 1 1½xn ¼ ok ,xnþ 1 ¼ om �

ð4:7Þ

Applying (4.7) to the sampled vq gives the re-estimated
correlation, which gives Gaussian or Student copula,
according to which case we are in.

The parameters pij are estimated from the complete
data by (2.8); applying the principle (ii) of ICE gives

pqþ1
ij ¼

1

N�1

XN�1

n ¼ 1

pðvn ¼ i,vnþ1 ¼ j9yÞ, ð4:8Þ

knowing that p(vn, vn + 19y)=p(vn9y)p(vn + 19vn, y) is com-
putable with (2.3)–(2.4).

We propose two series of experiments. In the first one,
the data are either simulated with a Gaussian copula or
simulated with a Student copula. We estimate the hidden
realization and the parameters by using both models. The
aim of these experiments is to know which of these two
models is robust and which of these two models is worth
using if the data are not simulated with the appropriate
model.

In all experiments, Un takes its values from L={l1, l2} and
its transition matrix is R=[rij]1r i, jr2, with r11=r22=0.9999
and r12=r12=0.0001. The two transition matrices correspond-
ing to the two states of Un are M1 ¼ ½m1

ij �1r i, jr2, with

m1
11¼m1

22¼0:99 and m1
12¼m1

21 ¼ 0:01, and M2=[m2
ij]1r i,jr2,

with m2
11=m2

22=0.90 and m2
12=m2

21=0.10. The marginal dis-
tributions are Gaussian N(0,1) and N(2,1). The sample size is
256�256.

4.2.1. Data with Student copula

In this first series we will consider the Student copula
with the parameters (r,n)=(0,1). We sample the TMC
T=(X, U, Y) and the sampled realizations are presented in
Fig. 4 as being three images, using the Hilbert–Peano scan.
The same Fig. 4 contains the estimates of (X, U)=(x, u)
based on the true parameters, which is thus the reference
one. Of course, it is just a representation and this
experiment is not about ‘‘image segmentation’’ problem.
Fig. 5 contains the results of unsupervised segmentation
of the data Y=y, once with the true Student copula and
once with the wrong Gaussian copula. Tables 5 and 6
contain the parameters estimates.

According to the results we can say that there are
situations in which taking into account the true copula is
vital, and considering Gaussian copula instead of the
true Student one leads to very poor results. Let us recall
the distributions of the chain (X, U) are exactly the same in
the both models, and, what is more, the marginal
distributions p(yn9x, u) are also exactly the same.
We can see how important the nature of copulas alone
can be.

4.2.2. Data with a Gaussian copula

Let us consider the Gaussian copula defined by r=0.9.
As the marginal distributions are Gaussian, we have a



Fig. 4. Simulated data with Student copula and true parameters based estimation of X=x and U=u. t is the error ratio.

Fig. 5. Semi-supervised segmentation, parameters estimated with ICE given in Tables 5 and 6. (a) and (b) use the correct Student copula. (c) and (d): use

of the Gaussian copula. (a) SC X̂ ¼ x̂, t¼7.32%; (b) SC Û ¼ û, t¼0.51%; (c) GC X̂ ¼ x̂, t¼43.14%; and (d) GC Û ¼ û, t¼37.8%.

Table 5
Parameters estimated with ICE. True parameters, with Student copula,

are m1 ¼ 0, m2 ¼ 2, r1 ¼r2 ¼ 0, s2
1 ¼ s2

2 ¼ 1.

m1 s2
1

r1 m2 s2
2

r2

GC 0.10 2.39 0.85 1.93 2.32 0.89

SC 0.10 2.40 0.12 1.90 2.37 0.10
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correlated Gaussian noise. Thus the aim here is to test
whether some Student copula based model can compete.
The sampled realizations of the TMC T=(X, U, Y) and the
estimates of (X, U)=(x, u) based on the true parameters are
presented in Fig. 6, while Fig. 7 contains the results
of unsupervised segmentation of the data Y=y, once with
the true Gaussian copula and once with the wrong
Student copula. Tables 7 and 8 contain the parameter
estimates.

As in the previous sub-section, we can say that there
are situations in which taking into account the true copula
is vital, and considering Student copula instead of the true
Gaussian one can lead to very poor results. As above, the
distributions of the chain (X, U) and the marginal
distributions p(yn9x, u) are exactly the same in both the
models. As above, we see how important the nature of
copulas alone can be.



Fig. 6. Simulated data with Gaussian copula and true parameters based estimation of X=x and U=u. t is the error ratio.

Table 6
Parameters estimated with ICE.

Transition pðunþ1 unÞ
�� Transition pðxnþ1 xn ,unþ1Þ

��
GC

R¼
0:9627 0:0373

0:0373 0:9627

� �
M1 ¼

0:934 0:066

0:066 0:934

� �
, M2 ¼

0:632 0:368

0:368 0:632

� �
SC

R¼
0:9999 0:0001

0:0001 0:9999

� �
M1 ¼

0:993 0:007

0:007 0:993

� �
, M2 ¼

0:925 0:075

0:075 0:925

� �
True parameters

R¼
0:9999 0:0001

0:0001 0:9999

� �
M1 ¼

0:99 0:01

0:01 0:99

� �
, M2 ¼

0:90 0:10

0:10 0:90

� �

Fig. 7. Semi-supervised segmentation, parameters estimated with ICE given in Tables 7 and 8. (a) and (b) use the correct Gaussian copula, while (c) and

(d) use the Student copula. (a) GC X̂ ¼ x̂, t¼1.36%; (b) GC Û ¼ û, t¼0.53%; (c) SC X̂ ¼ x̂, t¼49.57%; and (d) SC Û ¼ û, t¼36.71%.
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Table 7

Parameters estimated with ICE. True parameters, with Gaussian copula, are m1 ¼ 0, m2 ¼ 2, r1 ¼ r2 ¼ 0:9, s2
1 ¼s2

2 ¼ 1.

m1 s2
1

r1 m2 s2
2

r2

GC �0.01 1.00 0.90 1.98 1.02 0.90

SC 0.92 1.95 0.93 1.74 2.02 0.93

Table 8
Parameters estimated with ICE.

Transition pðunþ1 unÞ
�� Transition pðxnþ1 xn ,unþ1Þ

��
GC

R¼
0:9999 0:0001

0:0001 0:9999

� �
M1 ¼

0:991 0:009

0:009 0:991

� �
, M2 ¼

0:900 0:100

0:100 0:900

� �
SC

R¼
0:9990 0:0010

0:0010 0:9990

� �
M1 ¼

0:995 0:005

0:005 0:995

� �
, M2 ¼

0:96 0:04

0:04 0:96

� �
True parameters

R¼
0:9999 0:0001

0:0001 0:9999

� �
M1 ¼

0:99 0:01

0:01 0:99

� �
, M2 ¼

0:90 0:10

0:10 0:90

� �

Fig. 8. (a) Real Tokyo image, (b) unsupervised MPM segmentation

based on the classical stationary HMC model with 4 real classes,

(c) unsupervised MPM segmentation based on the Gaussian TMC

(Gaussian margins and Gaussian copula) with two stationarities, and

(d) unsupervised MPM segmentation based on the TMC with Gaussian

margins and Student copula.
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4.2.3. Unsupervised segmentation of real image

We now consider the segmentation of a real 256�256
size satellite image of Tokyo, which is presented in
Fig. 8(a). It is segmented by an MPM method based on
three models: the classical Gaussian HMC, the TMC with
Gaussian margins and a Gaussian copula, and a TMC with
Gaussian margins and a Student copula.
To estimate the number of real classes and auxiliary
switching classes, we compare the models using the Bayes
Information Criterion (BIC) [26]. This criterion is defined
as BIC=�2LL+p log(N) where LL is the log-likelihood of
the model, p its number of independent parameters and N

the number of data. We do not take into account
parameters estimated to be zeros according to the
convention established in [3]. The best model is the one
with the lowest BIC. We successively segment the image
considering the TMC, Gaussian margins, and a Gaussian
copula with different numbers or real and auxiliary states
and compute the BIC value until it reaches a minimum
value. Results are presented on Table 9. Among the
different models we tested, the one with 4 classes and 2
auxiliary states is the best according to BIC. It is also
interesting to note that the model with 3 real classes and
2 auxiliary classes is better than the one with 4 real
classes and 1 auxiliary class which means that in some
case, it is better to consider several stationarities than to
increase the number of classes.

The segmentation results considering 4 classes are
presented in Fig. 8(b–d), respectively. We notice that
using TMC with 2 stationarities (c) instead of the classical
HMC-IN (b) obviously improves the segmentation. The
difference between (c) and (d) is less striking; however, (d)
seems to restore fine details better in many spots. Thus
using a Student copula instead of the Gaussian one, which
here is equivalent to using the classical Gaussian distribu-
tion, can be of interest in real image segmentation.

5. Conclusion and perspectives

We proposed a new model based on the triplet Markov
chains, which allows one to deal with the hidden switch-
ing data noisy with non-Gaussian correlated noise.
Different experiments validated the interest of the new
model, in the case of simulated as well as real data.

Let us mention some directions as perspectives to further
work. Extending Markov chains to Markov trees, or even



Table 9
Comparison between models according to BIC criterion. The case of Gaussian margins and Gaussian copula.

Number of real states Number of auxiliary states LL Number of parameters BIC

2 1 �338,750 7 677,580

2 2 �337,460 13 675,060

2 3 �337,360 23 674,980
3 1 �334,310 14 668,780

3 2 �332,070 27 664,440

3 3 �331,760 55 664,130
4 1 �333,020 21 666,280

4 2 �331,210 43 662,610
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more general Bayesian networks [25], seems to be the natural
way for further investigations. Another possibility would be
to investigate different uses of the mixed-states measure.
This has been done in the context of hidden fuzzy chains in
[52], and similar applications to motion texture models
should be of interest. Let us also mention that the mono-
sensor case dealt within this paper can be extended to the
multisensor case, in which copulas are used to model the
dependence among sensors [8]. Thus in the multisensor case
copulas could be used twice: first to model the ‘‘temporal’’
dependence, and second to model the sensors’ dependence.
Finally, the use of copulas and non-Gaussian correlated noise
in the context of long-memory noise models recently
proposed in [31] should also provide interesting perspectives
for further works.
Appendix. Proof of the Proposition
(i)
 implies (ii). W being a Markov chain, we can write
pðwÞ ¼
pðw1, w2Þ ::: pðwN�1, wNÞ

pðw2Þ ::: pðwN�1Þ
¼

pðg1, g2Þ ::: pðgN�1, gNÞ

pðg2Þ ::: pðgN�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
aðgÞ

pðh1, h29g1, g2Þ ::: pðhN�1, hN9gN�1, gNÞ

pðh29g2Þ ::: pðhN�19gN�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
bðhÞ

ð1Þ
In particular, (W1, W2, W3) also is a Markov chain and
thus (1) is valid for N=3. Therefore, let us consider (1)
with N=3. As G is a Markov chain according to (i),
ðpðg1, g2Þ pðg2, g3ÞÞ=pðg2Þ in (1) is the distribution of G,
which means that the integral of b(h1, h2, h3) in (1) is
equal to one:

R
H3 bðh1, h2, h3ÞdZðh1ÞdZðh2ÞdZðh3Þ ¼ 1.

After having integrated b(h1, h2, h3) with respect to h1

and h2, we obtainZ
H

pðh29g1, g2Þpðh29g2, g3Þ

pðh29g2Þ
dZðh2Þ ¼ 1 ð2Þ

Let us consider the scalar product /f 1, f 2S¼R
Hðf

1ðh2Þf
2ðh2Þ=pðh29g2ÞÞdZðh2Þ and the associated

norm :f:¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/f ,fS

p
. According to (2) we have

:pðh29g1, g2Þ�pðh29g2, g3Þ:
2
¼ :pðh29g1, g2Þ:

2
þ

:pðh29g2, g3Þ:
2
�2
R

Hðpðh29g1, g2Þpðh29g2, g3Þ=pðh29g2ÞÞ

dZðh2Þ ¼ 0, and thus p(h29g1, g2)=p(h29g2, g3) for every
g1, g3. This means that p(h29g1, g2) is independent from
g1, which gives (ii).
(ii)
 implies (i) and (iii). As p(hn9gn�1, gn)=p(hn9gn,
gn+1)=p(hn9gn), the integration of b(h) with respect to
h1, y, hN gives a(g), which means that p(g)=a(g) and
thus G is a Markov chain. Moreover, the integration of
b(h) with respect to h1, y, hn�1, hn+1, y, hN gives
p(g, hn)=a(g)p(hn9gn)=p(g)p(hn9gn). Thus pðhn9gÞ ¼
pðg, hnÞ

pðgÞ ¼
pðgÞpðhn9gnÞ

pðgÞ ¼ pðhn9gnÞ, which gives (iii).
(iii)
 implies (ii). We have

pðhn9gn, gn�1Þ ¼

Z
HN�2

pðg1, :::, gn�2, gnþ1, :::, gNÞ

�pðhn9g1, :::, gNÞdgðg1Þ:::, dgðgn�2Þ

�dgðgnþ1ÞdgðgNÞ

¼

Z
HN�2

pðg1, :::, gn�2, gnþ1, :::, gNÞ

�pðhn9gnÞdgðg1Þ :::, dgðgn�2Þdgðgnþ1ÞdgðgNÞ

¼ pðhn9gnÞ

Z
HN�2

pðg1, :::, gn�2, gnþ1, :::, gNÞ

�dgðg1Þ :::, dgðgn�2Þdgðgnþ1ÞdgðgNÞ ¼ pðhn9gnÞ,

which ends the proof.
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