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Statistical image segmentation using Triplet Markov fields
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ABSTRACT

Hidden Markov fields (HMF) are widely used in image processing. In such models, the hidden random field of interest

SssXX ∈= )( is a Markov field, and the distribution of the observed random field SssYY ∈= )(  (conditional on X ) is

given by ∏
∈

=
Ss

ss xypxyp )()( . The posterior distribution )( yxp  is then a Markov distribution, which affords different

Bayesian processing. However, when dealing with the segmentation of images containing numerous classes with
different textures, the simple form of the distribution )( xyp above is insufficient and has to be replaced by a Markov

field distribution. This poses problems, because taking )( xyp  Markovian implies that the posterior distribution )( yxp ,

whose Markovianity is needed to use Bayesian techniques, may no longer be a Markov distribution, and so different
model approximations must be made to remedy this. This drawback disappears when considering directly the
Markovianity of ),( YX ; in these recent "Pairwise Markov Fields (PMF) models, both )( xyp  and )( yxp  are then

Markovian, the first one allowing us to model textures, and the second one allowing us to use Bayesian restoration
without model approximations.
In this paper we generalize the PMF to Triplet Markov Fields (TMF) by adding a third random field SssUU ∈= )(  and

considering the Markovianity of ),,( YUX . We show that in TMF X  is still estimable from Y  by Bayesian methods.

The parameter estimation with Iterative Conditional Estimation (ICE) is specified and we give some numerical results
showing how the use of TMF can improve the classical HMF based segmentation.

Keywords: Hidden Markov field, Pairwise Markov field, Triplet Markov field, Iterative Conditional Estimation,
statistical image segmentation, unsupervised classification.

1. INTRODUCTION

The modeling by hidden Markov fields (HMF) is widely used in various image processing problems. It consists of
considering of two stochastic fields SssXX ∈= )(  and SssYY ∈= )( , where the unobservable realizations xX =  are of

interest and have to be estimated from the observed yY = . In this paper we will focuse on the image segmentation

problem and so we will consider that each sX  takes its values in a finite set of classes { }kωω ...,,1=Ω , and each sY

takes its values in the set of real numbers R . The spelli ng “hidden Markov” means that the hidden process X  has a
Markov distribution. When the distributions )( xyp  of Y  conditional on xX =  are simple enough, the pair ),( YX

keeps the same Markovian form of distribution, and it is the same for the distribution )( yxp  of X  conditional on

yY = . The Markovianity of )( yxp  is crucial because it allows one to estimate the unobservable xX =  from the

observed yY =  even in the case of very large set S . One possible form of )( xyp , which is frequently used in

practice, is ∏
∈

=
Ss

ss xypxyp )()(  [1, 3, 11, 16, 19, 20, 21, 31]. In spite of its simplicity segmentation results obtained

are correct in numerous situations, which indicate a good robustness of such HMF. However, when dealing with images
containing numerous textures, such a simple form of )( xyp  turns out to be in suff icient. In fact, each of textures has to
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be modeled by a model taking spatial correlation of the variables SssY ∈)(  into account. One possible way it to model

each texture by a Gaussian Markov field. So, for k  classes we have k  Gaussian Markov fields SssYY ∈= )( 11 ωω , …,

Sss
kk YY ∈= )( ωω , where the distribution of SssYY ∈= )( 11 ωω  is the distribution of Y  conditional on

SssxxX ∈=== )( 1
1 ωω , …, and the distribution of Sss

kk YY ∈= )( ωω  is the distribution of Y  conditional on

SsksxxX k

∈=== )( ωω . The observation field is then written SssYY ∈= )( , with sX
ss YY = . Such a model is intuitively

satisfactory and can be simulated; however, although )(xp  and )( xyp  are Markov distributions, neither

)()(),( xypxpyxp =  nor )(/)()()( ypxypxpyxp =  is a Markov distribution. Roughly speaking, the introduction of

the Markovianity of )( xyp  removes the Markovianity of )( yxp . This phenomenon has been pointed out in numerous

papers [9, 12, 23], with a recent synthesis presented in [18]. It is a drawback because the use of Bayesian methods is
not possible in the strict frame of the model and the latter has to be simpli fied. To remedy this, an original model called
Pairwise Markov Field (PMF) has been proposed in [23]. In a PMF model one directly assumes the Markovianity of

),( YX . The latter implies the Markovianity of )( xyp , which allows one to model textures, and the Markovianity of

)( yxp , which allows one to use different Bayesian segmentation methods. However, a PMF is not necessarily a HMF

because )(xp  is not necessarily a Markov distribution.

In this paper, we propose to generalize PMF to more general models called “Triplet Markov Fields” (TMF). The
generalization consists of introducing a third process SssUU ∈= )(  and considering that ),,( YUX  is a Markov field.

The process U  has not necessarily a physical existence and the problem remains the same as above: estimate xX =
from yY = . The Triplet models are more general that the Pairwise models because the distribution of ),( YX , which is

a marginal distribution of ),,( YUX , is not necessarily a Markov distribution. However, we show that the classical

Bayesian segmentation methods remain workable in the TMF context. Some first experiments, performed in a
supervised and an unsupervised way, show some situations in which the new model is of interest.
The paper is organized as follows. The next section is devoted to recalli ng the classical Hidden Markov Field (HMF)
model. Triplet Markov Field (TMF) model is presented in Section 3 and the possibiliti es of Bayesian segmentation of
images image using TMF are discussed, with some results related to simulated images. Section 4 is devoted to the
parameter estimation problem. We specify how the general parameter estimation method called Iterative Conditional
Estimation can be used in TMF context and some unsupervised segmentation results, concerning a simulated image
images and a real radar one, are described. The last Section 5 contains some concluding remarks and perspectives for
further works.

2. HIDDEN MARKOV FIELDS

Let S  be the set of pixels, and X , Y  two stochastic processes defined on S  introduced above. The variables sX  and

sY  take their values in { }kωω ...,,1=Ω , and R , respectively. The problem of the statistical segmentation is the

problem to recover unobservable xX =  from the observed yY = . Let us assume that the distribution of X  is a Gibbs

distribution with respect to the neighboring system SssA ∈)(  (for example, sA  is the set of four nearest neighbors of

Ss ∈ ). Denoting by C  the set of cliques (a clique being either a singleton or a set of pixels mutually neighbors), the
ditribution of X  is then written :









−= ∑

∈Cc
cc xxp )(exp)( ϕγ (2.1)

X  is then a Markov field with respect to SssA ∈)( ; it is to say, it verifies ),(),( sqsqs Aqxxpsqxxp ∈=≠ .

Furthermore, let )( xyp  be of the form ∏
∈

=
Ss

ss xypxyp )()( . The distribution )( yxp  is then classically written
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













−−= ∑∑

∈∈ Ss
ss

Cc
c xypLogxyyxp ))(()(exp)()( ϕγ (2.2)

Important is that the distribution of X  conditional on yY =  is still a Gibbs distribution. The latter allows us sampling

of realizations of X  according to this distribution (one can use Gibbs sampler or Metropolis algorithm), which makes
possible the estimation of the marginal distributions )( yxp is ω= . The latter having been estimated, one can perform

the Bayesian MPM segmentation given by

SssMPM xys ∈= )ˆ()(ˆ , with )(maxargˆ yxpx ss ω
ω

==
Ω∈

(2.3)

3. TRIPLET MARKOV FIELDS

3.1 General Properties
Let S  be the set of pixels, and X , U , Y  three stochastic processes defined on S . For each Ss ∈ , the variables sX ,

sU , and sY  take their values in { }kωω ...,,1=Ω , { }mλλ ...,,1=Λ , and R , respectively. Furthermore, let ),,( YUXT = ,

),( YXZ = , and ),( UXV =  be the stochastic processes linked with X , U , and Y . As above, the problem is to

recover unobservable xX =  from the observed yY = . Let us assume that  the distribution of ),,( YUXT =  is a Gibbs

distribution with respect to the neighboring system. Denoting by C  the set of cliques the ditribution of T  is then
written :









−= ∑

∈Cc
ccT ttP )(exp)( ϕγ (3.1)

as above, T  is a Markov field with respect to SssA ∈)( : ),(),( sqsqs Aqttpsqttp ∈=≠ . One can then see that )( yvp  is

written









−= ∑

∈Cc
cc yvyyvp ),(exp)()( ϕγ (3.2)

which still i s a Markov distribution. As above, the latter implies that )),(( yvp jis λω=  can be estimated  from

sampling of V , according to )( yvp , in some way. The probabiliti es )),(( yvp jis λω=  having been estimated, one

calculates )( yxp js ω=  by ∑
Λ∈

====
λ

λωω ),()( yuxpyxp sjsjs . Finally, )( yxp js ω=  are calculable and the

formula (2.3) can be used to perform the Bayesian MPM segmentation method.

Example 3.1
Let U  be a Markov field with respect to four nearest neighbors. We have then three kinds of cliques: singletons, pairs
of pixels horizontally neighbors, and pairs of pixels vertically neighbors. The distribution )(up  in then of the form

(2.1). Let us assume that the functions cϕ  in (2.1) are null on singletons and equal on other cliques, with

αϕ −=),( rsc uu  if rs uu = , and αϕ =),( rs uu  if rs uu ≠ . Let { }21,ωω=Λ=Ω  and let us assume that the random

variables )( sY  and the random variables )( sX  are independent conditionally on U , with )()( iss uypuyp =  and

)()( iss uxpuxp = . The distribution of T  is written
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













−−== ∑∑∏

∈∈∈ Ss
ssss

Cc
css

Ss
ss uypuxpLoguuypuxpuptp )()(()(exp)()()()( ϕγ (3.3)

We remark that ),( UXV =  is a classical hidden Markov field; however, as the distribution of X  is a marginal

distribution of ),( UXV = , it is not necessarily a Markov field, and thus ),( YX  it is not necessarily a hidden Markov

field. Of course, if 1)( =ss uxp  for ss ux = , the processes X  and U  are equal and thus the TMF considered

degenerates on a hidden Markov field.

Remark 3.1
We described above how HMF can be generalized to PMF, and how PMF can be generalized to TMF. An analogous
manner allows one to generalize the Hidden Markov Chains (HMC) model to Pairwise Markov Chains (PMC) model
[7, 8, 24], and to generalize the PMC to Triplet Markov Chain model [26, 27]. Furthermore, the so-called Hidden
Markov Trees (HMT), which can appear as a fast concurrent to the HMF in image segmentation problems [15], can
also be generalized to a Pairwise Markov Tree (PMT) model [25].

3. 2 Simulated image segmentation
Let us consider a TMF ),,( YUXT = , with { }21,ωω=Ω  and { }21,λλ=Λ . So, we have two real classes and two

auxili ary ones. Let the distribution of ),,( YUXT =  be defined by a Markov distribution of ),( UXV = , which will be

assumed Markovian with respect to four nearest neighbors, and the distribution of Y  conditional on V  given by

∏
∈

=
Ss

ss vypvyp )()( . The random variables sV  can take four possible values ),( 111 λω=v , ),( 212 λω=v ,

),( 123 λω=v , and ),( 224 λω=v , and thus we have four possible densities )( 1vvyp ss = , )( 2vvyp ss = ,

)( 3vvyp ss = , and )( 4vvyp ss = . The latter densities, which will be assumed Gaussian and independent from Ss ∈ ,

define thus the distributions )( vyp .

Finally, the distribution of ),,( YUXT =  is given by

∏∑
∈∈









−==

Ss
ss

Cc
cc vypvvypvptp )()(exp)()()( ϕγ (3.4)

We assume that functions in cϕ  in (3.4) are null on singletons and equal on other cliques, with αϕ −=),( rsc vv  if

rs vv = , and αϕ =),( rsc vv  if rs vv ≠ .

We present two series of experiments. In the first one, we have two real classes { }21,ωω=Ω , and two auxili ary classes

{ }21,λλ=Λ . The simulated images and their segmentation results are presented in Figure 1, with the error ratios in

Table1. In the second one, we have three real classes { }321 ,, ωωω=Ω , and two auxili ary classes { }21,λλ=Λ . The

simulated images and their segmentation results are presented in Figure 2, with the error ratios in Table2.
We have performed numerous simulations and the results presented are chosen as representative of the study. As usual,
the quality of segmentation depend of the signal to noise ratio. The case 1 in Fig. 1 is rather strongly noisy. According
to Tab. 1, the TMF based MPM (TMFMPM) is significantly more eff icient that the HMF based one (HMFMPM). In
such cases the classical HMCMPM method is useless and TMCMPM must be used. Of course, such cases are maybe
not so current in practice; however, the simulation results show that they can, theoretically, exist. Case 2 is less noisy
and there are very weak noise in Case 3. Both HMFMPM and TMFMPM work better in these cases and, according to
the Bayesian theory, TMFMPM always gives better results that HMFMPM. Let us notice that the two means of two
Gaussian densities used in HMFMPM are the smallest and the largest one: they are 0 and 1 in the Case 1, 0 and 3 in the
case 2, and 1 and 10 in the case 3. We have tried other means, which can improve the eff iciency of HMFMPM;
however, TMFMPM remains more eff icient. Same kind of remarks can be made concerning the three real classes, Fig.
2. The case 2 is very strongly noisy and both HMFMPM and TMFMPM give poor results. The medium case 2 gives
medium results and a medium difference between HMFMPM and TMFMPM.



SPIE’s International Symposium on Remote Sensing, September 22-27, Crete, Greece, 2002

Case 1 Case 2 Case 3

Field vV =         Field vV = Field vV =

Field yY =          Field yY = Field yY =

Triplet MPM         Triplet MPM Triplet MPM

Field xX =      Field xX = Field xX =

     Hidden MPM        Hidden MPM Hidden MPM

Fig. 1 : Three realizations of vV =  according to ])(exp[)( ∑
∈

−=
Cc

cc vvp ϕγ , with cϕ  defined by 1=α . All variances

equal to 1, four means specified in Tab. 1.

Four means Case 1

0,0.25,0.75,1

Case 2

0,1,2,3

Case 3

1,4,7,10

Error ratio Triplet MPM 14.57% 4.95% 2.97%

Error ratio Hidden MPM 44.55% 8.42% 3.49%

Tab. 1 : Error ratios of the three noise levels considered.
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Case 1 Case 2 Case 3

Field vV =         Field vV = Field vV =

Field yY =        Field yY = Field yY =

Triplet MPM         Triplet MPM Triplet MPM

Field xX =          Field xX = Field xX =

Hidden MPM       Hidden MPM Hidden MPM
Fig. 2 : Three realizations of vV =  according to ])(exp[)( ∑

∈
−=

Cc
cc vvp ϕγ , with cϕ  defined by 1=α . All variances

equal to 1, six means specified in Tab. 1.

Six means Case 1

0,0.2,0.4,0.6,0.8,1

Case 2

0,1,2,3,4,5

Case 3

0,3,6,9,12,18

Error ratio Triplet MPM 35.71% 8.49% 4.10%

Error ratio Hidden MPM 50.26% 27.27% 5.05%

Tab. 2 : Error ratios of the three noise levels considered.



SPIE’s International Symposium on Remote Sensing, September 22-27, Crete, Greece, 2002

4. PARAMETER ESTIMATION

The problem of parameter estimation from the only observed data yY =  becomes a crucial one when wishing to

propose unsupervised processing. It is a well known and diff icult general problem and one possible solution widely
used is the “Expectation-Maximization” (EM) method [17]. For example, EM is very eff icient in classical hidden
Markov chains model, especially when the noise is Gaussian. Its use in the hidden Markov fields context remains
possible; however, its implementation is generally more diff icult [4, 17, 32] - mainly because the likelihood is diff icult
to handle – and some alternative methods have then been proposed [9, 21, 22, 31]. We choose here to describe the so-
called “ Iterative Conditional estimation” (ICE), which is fairly general and flexible method. Firstly proposed in [22],
ICE has been successfully used in different applications of hidden Markov models to different image processing
problems [10, 13, 14, 19, 20]. Furthermore, first applications of ICE to Pairwise Markov Chains (PMC) and Pairwise
Markov Fields have also given promising results [7, 8, 29]. ICE resembles EM and some relationships are specified in
[6]. So, we briefly discuss how the particular ICE method used in [2, 19] can be adapted to the Triplet models

4.1 Iterative Conditional Estimation
Let us consider stochastic processes )...,,( 1 nVVV = , )...,,( 1 nYYY = , and ),( YVT = . Let θ

TP , the distribution of T ,

depend on a parameter Θ∈θ . The problem is to estimate θ  from a sample )...,,( 1 nyyy = . Iterative Conditional

Estimation (ICE) is based on the following assumptions :

(i) there exists an estimator of θ  from the complete data: )),(...,),,((ˆ)(ˆˆ
11 nn yvyvt θθθ == ;

(ii ) for each Θ∈θ , either the conditional expectation ])(ˆ[ yYTE =θθ  is computable, or simulations of V  according to

its distribution conditional to yY =  are feasible.

ICE is an iterative method which runs as follows :

1. Initialize 0θθ = ;
2. for Nq ∈ ,

-put ])(ˆ[1 yYTE q
q ==+ θθ θ  if the conditional expectation is computable;

- if not, simulate l  realizations lvv ...,,1  of V  (each iv  is a sequence) according to its distribution conditional to yY =

and based on qθ  and put 
l

yvyv l
q ),(ˆ...),(ˆ 1

1 θθθ ++=+ .

Remark 4.1

Let us recall that if θ
TP  admits a density θ

Tf  with respect to some measure, and if the Maximum Likelihood estimator

))(log(maxarg)(ˆ tft TML
θ

θ
θ =  exists, the well known EM procedure would be:

1. Initialize 0θθ = ;

2. for Nq ∈ , put ])([log(maxarg1 yYtfE T
q

q ==+ θ
θ

θ
θ

We can see that ICE is more general because any estimator )(ˆˆ tθθ = , which can possibly be )(ˆ tMLθ , can be used, and it

also often is more flexible, because it is often easier, at least in the Markov field case considered here, to simulate

realizations of V  than to search the maximum of a complex function. We also see that when we take in ICE MLθθ ˆˆ =
and when the operations “argmax” and “expectation” can be inverted, ICE and EM are the same procedure.

4.2 ICE in Gaussian TMF
Let ),( YXZ =  be a TMF, with ),( YVT =  a PMF. Knowing that in a TMF the distribution of V  conditional on yY =
is a Markov field distribution, its simulations are feasible using the Gibbs sampler or Metropolis algorithm, and thus the

condition (ii ) is always verified. So, ICE is workable in a TMC once we have an estimator )(ˆˆ tθθ = . In the TMF we

use, ),( YVT =  is a classical hidden Markov field and thus different classical estimators, like Coding estimator [1],

Stochastic Gradient, or still Least Square estimator [9]. We chose here to the Last Square (LS) estimator because it is
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rather a fast one and it gave good results, when associated to ICE, in [2, 19]. Let us slightly complicate the distribution
])(exp[)( ∑

∈
−=

Cc
cc vvp ϕγ  of the Markov field by introducing two different parameters : for ),( ts  horizontal neighbors

we have 1),( αϕ −=rsc vv  if rs vv = , and 1),( αϕ =rsc vv  if rs vv ≠ , and the same for perpendicular neighbors, with

2α  instead of 1α . So, for two real classes { }21,ωω=Ω , and two auxili ary classes { }21,λλ=Λ , we have to estimate

the parameters ),( 21 ααα = , four means, and four variances of the four Gaussian distributions in (2.3).

Finally, if we designate by β  the four means and four variances to be estimated, the estimator )(ˆˆ tθθ =

)),(ˆ),(ˆ(),(ˆ)(ˆˆ yvvyvt βαθθθ === , where )(ˆ vα  is the LS estimator and ),(ˆ yvβ  simply is composed by the empirical

means and variances (the four subsets 1S , …, 4S  of the set of pixels S  defined by { }11 : vvsS s == , …,

{ }44 : vvsS s ==  being known, the mean im  and variance 2
iσ  corresponding to iv  are ∑

∈
=

iSs
i

i
i y

SCard
m

)(

1ˆ  and

22 )ˆ(
)(

1ˆ i
Ss

i
i

i my
SCard

i

−= ∑
∈

σ ). The initialization of ICE is made using the cumulative histogram H . Four subsets 1G ,

…, 4G  of the set G  of gray levels are defined by { }25.0)(0/1 ≤≤∈= gHGgG , { }5.0)(25.0/2 ≤≤∈= gHGgG ,

{ }75.0)(5.0/3 ≤≤∈= gHGgG , and { }1)(75.0/4 ≤≤∈= gHGgG  and used to obtain a four class 1v , …, 4v  image
0v  by ][][ 0

isis Gyvv ∈⇔= . The image 0v  is then used to obtain )(ˆ 00 vαα =  and ),(ˆ 00 yvββ = , which gives the

initialization 0θθ = .
We performed numerous simulations and TMF-ICE-MPM almost always works better than HMF-ICE-MPM. One
among the most striking results is presented in Fig. 3.

Four class image Noisy image Real two class image TMF-ICE-MPM HMF-ICE-MPM
Error ratio : 6,42 % Error ratio : 11,77 %

Fig. 3 : Simulated TMF, unsupervised segmentation, and error ratios. Real and estimated parameters in Tab. 3

Real means 0,00 1,00 2,00 3,00
Estimated means 0, 48 0,94 01,97 2,99
Real variances 1,00 1,00 1,00 1,00
Estimated variances 1, 04 1, 03 1, 01 1,03
Real ),( 21 ααα = (1, 1)

Estimated ),( 21 ααα = (0,80;0,92)

Tab. 3 Real and estimated parameters of TMF in Fig. 3

3.3 Real radar image segmentation
Let us consider a real radar image presented in Fig., Im. 3. This image has been studied in [5]. We know that there are
four classes “Cultivation”= ),( 111 λω=v , “Recent pasture”= ),( 212 λω=v , “Dense forest”= ),( 123 λω=v , and “Burnt

plot”= ),( 224 λω=v . Let us assume that we are interested on two class segmentation : “Human cultures” , and “Other” .

So, “Human cultures”=(“Cultivation” or “Recent pasture”)= ,1ω , and “Other” =(“Burnt plot” or “Dense forest” )= 2ω .
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The results of TMF and HMF based segmentation into two classes are presented in Fig. 4, and the four Gaussian
distributions estimated with ICE are given in Fig. 4.

Im. 1
Four class ground
truth 1v , 2v , 3v , 4v .

Im. 2
Two class ground
truth 1ω , 2ω .

Im. 3
Observed image

Im. 4
TMF-ICE-MPM
Error ratio : 11,97 %

Im. 5
HMF-ICE-MPM
Error ratio : 15,80 %

Fig. 4 : Real radar image, its ground truth, and TMF-ICE-MPM, HMF-ICE-MPM TMF, segmentation resuts.

Fig. 5 : Four Gaussian distributions (“Cultivation” , “Recent pasture, “Dense forest” , and “Burnt plot” ,
respectively) estimated with ICE from Im. 3, Fig. 4. Estimated ),( 21 ααα =  is (0,86; 0,85).

5. CONCLUSION

We presented in this paper a new model called “Triplet Markov Fields” (TMF). The basic idea is the same that in the
recent “Triplet Markov Chains” (TMC) model [26, 27]. For the observed random field Y  and the searched random
field X , it consists on introducing an auxili ary random field U  and on considering the Triplet ),,( YUXT =  as a

Markov field. Such models are very rich and flexible, because there are littl e constraints in choosing U . Furthermore,
the standard estimation procedures like Iterative Conditional Estimation (ICE) and the standard Bayesian segmentation
methods like Maximum Posterior Mode (MPM) are workable in the TMF context. Some experiments have been
described and the general conclusion is that TMF can be of interest with respect to the well known HMF. Furthermore,
the latter appears as a very particular case of the former.
A real radar image, in which each of two searched classes contains two subclasses, has also been considered and the
Bayesian MPM method based on the new model turns out to work better than the same method based on the classical
HMF model.
We can view two possible directions for further developments : (i) more complex situations, in which the noise is not
known and can possibly be non Gaussian (which frequently occurs in radar images [5], among others), could be
considered (such situations have been studied in the context of HMF in [4, 28], and in the context of PMC in [7, 8], (ii )
extensions of general hidden Graphical models [29] to Triplet Graphical models.
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