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Statistical image segmentation using Triplet Markov fields
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ABSTRACT

Hidden Markov fields (HMF) are widely used in image processng. In such models, the hidden randam field of interest
X =(X,)¢sis a Markov field, and the distribution d the observed randam field Y = (Y,)s (condtiona on X) is

given by p(y|x) :r! P(Y4|X,) - The posterior distribution p(Xy) is then a Markov distribution, which affords different
s

Bayesian processing. However, when dealing with the segmentation of images containing numerous classes with
different textures, the simple form of the distribution p(y|x) above is insufficient and has to be replaced by a Markov
field distribution. This poses problems, because taking p(y|x) Markovian implies that the posterior distribution p(xly) ,

whose Markovianity is needed to use Bayesian techniques, may no longer be a Markov distribution, and so different
model approximations must be made to remedy this. This drawback disappears when considering directly the

Markovianity of (X,Y); in these recent "Pairwise Markov Fields (PMF) models, both p(y|x) and p(xy) are then

Markovian, the first one allowing us to model textures, and the second one alowing us to use Bayesian restoration
without model approximations.

In this paper we generalize the PMF to Triplet Markov Fields (TMF) by adding a third random field U = (U,)ys and
considering the Markovianity of (X,U,Y). We show that in TMF X is till egtimable from Y by Bayesian methods.

The parameter estimation with Iterative Conditional Estimation (ICE) is specified and we give some numerical results
showing how the use of TMF can improve the classical HMF based segmentation.

Keywords: Hidden Markov field, Pairwise Markov field, Triplet Markov field, Iterative Conditiona Estimation,
statistical image segmentation, unsupervised classification.

1. INTRODUCTION

The modeling by hidden Markov fields (HMF) is widely used in various image processing problems. It consists of
considering of two stochastic fields X =(X;)gs and Y =(Y,) s, Where the unobservable realizations X = x are of

interest and have to be estimated from the observed Y =y. In this paper we will focuse on the image segmentation
problem and so we will consider that each X takes its values in a finite set of classes Q ={w,,...,w,}, and eath Y,
takes its values in the set of red numbers R. The spelling “hidden Markov’ means that the hidden process X has a
Markov dstribution. When the distributions p(y|x) of Y condtional on X = X are simple enough the pair (X,Y)

keeps the same Markovian form of distribution, and it is the same for the distribution p(x|y) of X condtiona on
Y =y. The Markovianity of p(x|y) is crucial because it alows one to estimate the unobservable X =x from the
observed Y =y even in the cae of very large set S. One posshble form of p(y|x), which is frequently used in
pradice, is p(y|x) = Q p(ys|x;) [1, 3,11, 16, 19, 20, 21, 31]. In spite of its smplicity segmentation results obtained

are corred in numerous stuations, which indicate agoodrobustnessof such HMF. However, when deding with images
containing nunerous textures, such asimple form of p(y|x) turnsout to bein sufficient. In fad, ead of textures has to

! E-mail s : Wojciedh.Pieczynski @int-evry.fr, http://www-citi .int-evry.fr/~pieczyng, Dalil a Benbougema@int-evry.fr,
Pierre.Lanchantin@int-evry.fr
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be modeled by a mode! taking spatial correlation d the variables (Y,) s into acourt. One posshle way it to model
ead texture by a Gausdan Markov field. So, for k classes we have k Gaussan Markov fields Y* =(Y*) g, -..)
Y% =(Y*)gs, where the distribution o Y* =(Y*),s is the distribution d Y condtional on
X=x*=(X, =w,)gs, ---» and the distribution d Y* =(Y*),s is the distribution o Y condtiona on
X =x% =(x, =w, )¢5 - The observation field is then written Y = (Y,) ¢, with Y, =Y. . Such a model is intuitively
satisfadory and can be simulated; however, athough p(x) and p(y|x) are Markov dstributions, neither
p(X, ) = p(X) p(Y}X) nor p(xy) = p(x) p(y|x)/ p(y) is aMarkov dstribution. RougHy spesking, the introduction o

the Markovianity of p(y|x) removes the Markovianity of p(x|y) . This phenomenon tes been panted out in numerous

papers [9, 12, 23], with a recent synthesis presented in [18]. It is a drawbad becaise the use of Bayesian methods is
not posshble in the strict frame of the model and the latter has to be simplified. To remedy this, an ariginal model cdled
Pairwise Markov Field (PMF) has been proposed in [23]. In a PMF model one diredly asaimes the Markovianity of

(X,Y) . The latter implies the Markovianity of p(y|x) , which allows one to model textures, and the Markovianity of

p(x|y) , which allows one to use different Bayesian segmentation methods. However, a PMF is not necessarily a HMF
becaise p(x) isnot necessarily a Markov dstribution.

In this paper, we propose to generalize PMF to more general models cdled “Triplet Markov Fields’ (TMF). The
generalization consists of introducing a third process U = (U, ) s and considering that (X,U,Y) is a Markov field.
The process U has not necessarily a physicd existence and the problem remains the same & above: estimate X = x
from Y =y . The Triplet models are more general that the Pairwise models because the distribution o (X,Y), which is
a margina distribution o (X,U,Y), is not necessrily a Markov dstribution. However, we show that the dasscd

Bayesian segmentation methods remain workable in the TMF context. Some first experiments, performed in a
supervised and an ursupervised way, show some situations in which the new model is of interest.

The paper is organized as follows. The next sedion is devoted to recdling the dasscd Hidden Markov Field (HMF)
model. Triplet Markov Field (TMF) model is presented in Sedion 3and the possbiliti es of Bayesian segmentation o
images image using TMF are discussed, with some results related to simulated images. Sedion 4 is devoted to the
parameter estimation problem. We spedfy how the general parameter estimation method cdled Iterative Condtional
Estimation can be used in TMF context and some unsupervised segmentation results, concerning a smulated image
images and a red radar one, are described. The last Sedion 5contains sme cncluding remarks and perspedives for
further works.

2. HIDDEN MARKOV FIELDS

Let S bethe set of pixels,and X, Y two stochastic processs defined on S introduced above. The variables X and
Y, take their values in Q:{wl,...,wk}, and R, respedively. The problem of the statisticd segmentation is the
problem to recmver unobservable X = x from the observed Y =y . Let us assume that the distribution o X isa Gibbs
distribution with resped to the neighbaing system (A,)os (for example, A, is the set of four neaest neighbas of

sOS). Denating by C the set of cliques (a dique being either a singleton a a set of pixels mutually neighbas), the
ditribution d X isthen written :

p(X) =y expr Zcbc(xc)ﬁ 21)
O & O

X is then a Markov field with resped to (A)y; it is to say, it verifies p(x

X307 8) = p(X|Xq, U A) -
Furthermore, let p(y|x) be of theform p(y|x) = l_! P(Ys|x.) - The distribution p(xy) isthen classically written

el



SHE's International Symposium on Remote Sensing, September 22-27, Crete, Greece 2002

0
= - L 2.2
p(Xy) y(y)expgémzmxc) SD} og(p(yslxs))% (2.2)

Important is that the distribution d X condtional on Y =y is gill aGibbsdistribution. The latter al ows us ssmpling
of redizaions of X acarding to this distribution (one can use Gibbs smpler or Metropdis algorithm), which makes
possble the estimation o the marginal distributions p(x, :wi|y) . The latter having been estimated, one can perform

the Bayesian MPM segmentation gven by

Swem () = (%) g1 » With X = argﬂrgax p(Xs = w|Y) (23

3. TRIPLET MARKOV FIELDS

3.1 General Properties
Let S bethe set of pixels,and X, U, Y threestochastic processes defined on S. For ead sO S, the variables X,

U,, and Y, take their valuesin Q :{wl,...,wk}, A :{/\1,...,/\m}, and R, respedively. Furthermore, let T =(X,U,Y),
Z=(X,Y), and V =(X,U) be the stochastic processes linked with X, U, and Y. As above, the problem is to
recover unotservable X =x fromtheobserved Y =y . Let usassumethat the distribution o T =(X,U,Y) isaGibbs

distribution with resped to the neighbaing system. Dencting by C the set of cliques the ditribution o T is then
written :

R0 =yexpT ¥ 9.t 6
0 & O

asabove, T isaMarkov field with resped to (A,)¢s: P(ts

t,,d#S) = p(tsft,,q0A) . One can then seethat p(v|y) is

written
p(VY) = YY) expT 3 $(ve, Vo) (32)
H Zc o Jelb '

which il is a Markov dstribution. As above, the latter implies that p(v; :(wl,)\j)|y) can be estimated from

sampling o V , acwording to p(v|y), in some way. The probabilities p(v, = (w, ,Aj)|y) having been estimated, one

caculates p(x, =w,|y) by p(xs=w1.|y)=; p(X, =w;,u;=Aly). Findly, p(x,=w|y) are cdculable and the
LA

formula (2.3) can be used to perform the Bayesian MPM segmentation method

Example 3.1
Let U be aMarkov field with resped to four nearest neighbas. We have then threekinds of cliques: singletons, pairs

of pixels horizontally neighbas, and pairs of pixels verticdly neighbas. The distribution p(u) in then of the form
(2.1). Let us asume that the functions ¢, in (2.1) are null on singletons and egual on dher cliques, with
#.(ug,u,)=-a if u,=u,, and ¢(u,,u,)=a if u,#u,. Let Q:/\={w1,w2} and let us assuime that the random
variables (Y,) and the randam variables (X,) are independent condtionaly on U , with p(ys|u): p(ys|ui) and
(X |u) = p(x,|u;) . The distribution o T iswritten
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O
p(t) = p(u) |'1 P(X|us)p(yslus) = vexpEr E;qb(uc) - Z Log( p(|us) p(yslus)% (33)

We remark that V =(X,U) is a dasscd hidden Markov field; however, as the distribution d X is a margina
distribution d V =(X,U), it isnot necessrily a Markov field, and thus (X,Y) it is not necessrily a hidden Markov
field. Of course, if p(xs|us):1 for x,=u,, the proceses X and U are eual and thus the TMF considered
degenerates on a hidden Markov field.

Remark 3.1

We described above how HMF can be generalized to PMF, and hov PMF can be generalized to TMF. An analogows
manner allows one to generalize the Hidden Markov Chains (HMC) model to Pairwise Markov Chains (PMC) model
[7, 8, 24], and to generalize the PMC to Triplet Markov Chain model [26, 27]. Furthermore, the so-cdled Hidden
Markov Trees (HMT), which can appea as a fast concurrent to the HMF in image segmentation problems [15], can
also be generalized to a Pairwise Markov Tree(PMT) model [25].

3. 2 Simulated image segmentation

Let us consider a TMF T =(X,U,Y), with Q :{wl,wz} and A ={)\1,A2}. So, we have two red classes and two

auxiliary ones. Let the distribution d T = (X,U,Y) be defined by a Markov distribution d V = (X,U), which will be

assumed Markovian with resped to four neaest neighbas, and the distribution o Y condtional on V given by

p(yv) = [ P(Ys[v;) . The randam variables V, can take four possble values v, =(w;,A;), Vv, =(w,,4,),
EES)

Vs = (@,,4,), and v, =(w,,A,), and thus we have four posshle densties p(yg|ve =v;), P(YsVs =V,),
p(ys|vS =v,), and p(ys|vs =v,). The latter densities, which will be essumed Gaussan and independent from sO S,
define thus the distributions p(y|v) .

Finaly, thedistribution d T =(X,U,Y) isgiven by

p(t) = (V) p(ylv) = yexpgr C;epc(vc)i! AR (34)

We aame that functions in ¢, in (3.4) are null on singletons and equal on dher cliques, with ¢_(v,,v,) =—a if
v, =v,,and ¢ (v,,v,) =a if v, Zv,.

We present two series of experiments. In the first one, we have two red clases Q = {wl,wz}, and two auxili ary classes
A= {Al,)\z}. The ssimulated images and their segmentation results are presented in Figure 1, with the eror ratios in
Tablel. In the seaond ore, we have threered clases Q :{wl,wz,w3}, and two auxiliary classs A :{/\l,)\z}. The

simulated images and their segmentation results are presented in Figure 2, with the aror ratiosin Table2.

We have performed numerous smulations and the results presented are chasen as representative of the study. As usual,
the quality of segmentation depend d the signal to ndse ratio. The cae 1 in Fig. 1 israther strondy naisy. According
to Tab. 1, the TMF based MPM (TMFMPM) is sgnificantly more dficient that the HMF based ore (HMFMPM). In
such cases the dasscd HMCMPM method is uselessand TMCMPM must be used. Of course, such cases are maybe
not so current in pradice however, the simulation results ow that they can, theoreticdly, exist. Case 2 is lessnoisy
and there ae very we& naise in Case 3. Both HMFMPM and TMFMPM work better in these caes and, acording to
the Bayesian theory, TMFMPM always gives better results that HMFMPM. Let us notice that the two means of two
Gausdan densities used in HMFMPM are the smallest and the largest one: they are 0 and 1in the Case 1, 0 and 3in the
case 2, and 1 and 10in the cae 3. We have tried ather means, which can improve the dficiency of HMFMPM;
however, TMFMPM remains more dficient. Same kind o remarks can be made cmncerning the threered classs, Fig.
2. The cae 2 isvery strondy naisy and bah HMFMPM and TMFMPM give poa results. The medium case 2 gives
medium results and a medium diff erence between HMFMPM and TMFMPM.
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Case 3

FieldV =v

_Triplet MPM Triplet MPM

Field X =x

X
x

- . k. ... .
Hidden MPM Hidden MPM Hidden MPM
Fig. 1: Threeredizaionsof V =v acordingto p(v) = yexp[—z ®.(v.)],with ¢ defined by a =1. All variances
clC

equal to 1, four means pedfied in Tab. 1.

Four means Casel Case 2 Case3
0,0.25,0.75,1 0,1,2,3 1,4,7,10
Error ratio Triplet MPM 14.57% 4.95% 2.97%
Error ratio Hidden MPM 44.55% 8.42% 3.4%

Tab. 1: Error ratios of the threenoise levels considered.
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Case3

FiddY=y

Triplet MPM
B

Triplet MPM
il

Field X =x

Hidden MPM Hidden MPM

Hidden MPM
Fig. 2: Threeredizaionsof V =v acwordingto p(v) = yexp[—;cpc(vc)] , with ¢ defined by o =1. All variances

equal to 1, six means pedfiedin Tab. 1.

SiXx means Casel Case?2 Case 3
0,0.2,0.4,0.6,0.8,1 0,1,2,34,5 0,3,6,9,12,18

Error ratio Triplet MPM 35.71% 8.4% 4.10%

Error ratio Hidden MPM 50.26% 27.27% 5.05%

Tab. 2 : Error ratios of the threenoise levels considered.
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4. PARAMETER ESTIMATION

The problem of parameter estimation from the only observed data Y =y bemmes a aucia one when wishing to

propose unsupervised processng. It is a well known and dfficult general problem and ore possble solution widely
used is the “Expedation-Maximizaion” (EM) method [17]. For example, EM is very efficient in classcd hidden
Markov chains model, espedally when the noise is Gausdan. Its use in the hidden Markov fields context remains
possble; however, itsimplementation is generally more difficult [4, 17, 32] - mainly because the likelihoodis difficult
to handle — and some dternative methods have then been proposed [9, 21, 22, 31]. We choose here to describe the so-
cdled “Iterative Condtional estimation” (ICE), which is fairly general and flexible method Firstly proposed in [22],
ICE has been succesdully used in dfferent applications of hidden Markov models to dfferent image procesing
problems [10, 13, 14, 19, 20]. Furthermore, first applicaions of ICE to Pairwise Markov Chains (PMC) and Pairwise
Markov Fields have dso given promising results [7, 8, 29]. ICE resembles EM and some relationships are spedfied in
[6]. So, we briefly discusshow the particular ICE method wsed in [2, 19] can be alapted to the Triplet models

4.1 Iterative Conditional Estimation
Let us consider stochastic processes V = (V,,....V,), Y =(Y.,....Y,), and T =(V,Y). Let R?, the distribution & T,
depend ona parameter 8 0©. The problem is to estimate 8 from a sample y =(y,,...,y,) . Iterative Condtional
Estimation (ICE) is based onthe foll owing assumptions :
(i) there eists an estimator of 6 from the complete data: 6= é(t) = é((vl, I (AR
(i) for eath 6 J O, either the condtional expedation Eg[é(T)|Y =y] iscomputable, or simulations of V ac®rding to
itsdistribution condtiona to Y = y arefeasible.
ICE isan iterative methodwhich runs as follows :
1. Initiaize 8 =0°;
2.for qON,
-put 69 = qu[é(T)|Y =y] if the condtional expedationis computable;
-if not, smulate | redizations v*,...v' of V (ead V' isasequence) acordingto its distribution condtional to Y = y
OV, y)+..+6(V', )

I .

and besed on 8% and pu 69" =

Remark 4.1
Let usrecdl that if P? admits adensity f? with resped to some measure, and if the Maximum Likeli hood estimator

éML (t) =argmaxlog(fy (t)) exists, thewell known EM procedure would be:
2]

1. Initiaize 8 =0°;
2.for gON, put 6 =argmaxE,,[log(f; ()Y =]
0

We ca seethat ICE is more general becaise any estimator 6= é(t) , which can pcssbly be éML (t), can beused, and it
also dften is more flexible, becaise it is often easier, at least in the Markov field case awnsidered here, to simulate
redizaions of V than to seach the maximum of a cmplex function. We dso seethat when we take in ICE 8 :éML
and when the operations “argmax” and “expedation’ can be inverted, ICE and EM are the same procedure.

4.2 1CE in Gaussian TMF
Let Z =(X,Y) be aTMF, with T =(V,Y) aPMF. Knowingthat ina TMF the distribution d V condtional on Y =y

isaMarkov field distribution, its smulations are feasible using the Gibbs sampler or Metropdi s algorithm, and thus the
condtion (ii) is always verified. So, ICE is workable in a TMC once we have an estimator 6 :é(t) . In the TMF we
use, T=(V,Y) isa dasdcd hidden Markov field and thus different classcd estimators, like Coding estimator [1],
Stochastic Gradient, or till Least Square estimator [9]. We dhose here to the Last Square (LS) estimator because it is
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rather afast one and it gave goodresults, when associated to ICE, in [2, 19]. Let us dightly complicate the distribution
p(v) = yexp[—%q}c(vc)] of the Markov field by introducing two dff erent parameters : for (s,t) horizontal neighbas

we have ¢ (vq,v,)=-a, if v, =v,, and ¢ (v,,v,) =a, if v, Zv,, and the same for perpendicular neighbas, with
a, insead of a,. So, for two red clases Q ={w,,w,}, and two auxiliary clases A ={),,A,}, we have to estimate
the parameters o =(a,,a,) , four means, and four variances of the four Gaussan distributionsin (2.3).

Finaly, if we designate by the four means and four variances to be estimated, the estimator é:é(t)
6 :é(t) :é(v, y) :(&(v),,é(v, y)), where a(v) isthe LS estimator and /§(v, y) simply is compased by the empiricd
means and \ariances (the four subsets S, ..., S, of the set of pixels S defined by S ={s:v,=v}, ..,

S, :{s:vs :v4} being knavn, the mean m, and variance o correspondng to v, are m =ﬁ(a); y, and
ar

s 1

of =———
Card(S)

..., G, of the set G of gray levels are defined by G, ={g0G/0<H(g)<0.25, G, ={g0G/0.25<H(g)<0.5},

G, ={g0G/05<H(g)<0.75, and G, ={g0G/0.75< H(g) <1} and wsed to obtain afour class v, , ..., v, image

VO by [V2=V,] = [y, 0G,]. Theimage v° is then used to oltain a® =G (v°) and B° =B(v°,y), which gves the

initialization 6 =6° .

We performed numerous smulations and TMF-ICE-MPM almost always works better than HMF-ICE-MPM. One

amongthe most striking resultsis presented in Fig. 3.

; (y; —m)?). Theinitialization d ICE is made using the aumulative histogram H . Four subsets G,

o
=D
-
]

Four classimage

. ™
Red two classimage TMF-ICE-MPM HMF-ICE-MPM

Error ratio : 6,42 % Error ratio: 11,77 %
Fig. 3: Simulated TMF, unsupervised segmentation, and error ratios. Red and estimated parametersin Tab. 3

o
Noisy imag

Red means 0,00 1,00 |2,00 |3,00
Estimated means 0, 48 0,94 |0197 [2,99
Red variances 1,00 1,00 |1,00 |1,00
Estimated variances 1,04 1,03 |1,01 (1,03
Red a =(a,,a,) (1, 1)

Estimated a = (a,,a,) |(0,80,0,92)

Tab. 3 Red and estimated parameters of TMFin Fig. 3

3.3 Real radar image segmentation
Let us consider ared radar image presented in Fig., Im. 3. This image has been studied in [5]. We know that there ae
four classes “Cultivation’=v, =(cw,,A,), “Recet pasture”=v, =(w;,A,) , “Dense forest"=v, = (w,,A,), and “Burnt

plot"=v, =(w,,A,) . Let us asume that we ae interested ontwo class ggmentation : “Human cultures’, and “ Other”.
So, “Human cultures’=(* Cultivation” or “Recent pasture”)=w,, , and “Other” =(*Burnt plot” or “Dense forest”)=w, .
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The results of TMF and HMF based segmentation into two classes are presented in Fig. 4, and the four Gaussan
distributions estimated with ICE are given in Fig. 4.

- -r
= r . |
o k-

Im. 1 . Im. 3 Im. 4 Im.5
Four class ground Two class ground Observed image TMF-ICE-MPM HMF-ICE-MPM
truth v, v,, v4, v,. truth w,, w,. Error ratio: 11,97%  Error ratio : 15,80 %

Fig. 4 : Red radar image, its groundtruth, and TMF-ICE-MPM, HMF-ICE-MPM TMF, segmentation resuts.

0.085 -

0.015 |-

o005 7

.

o z0 ao &0 80 100 120 140 160 180 200

Fig. 5 : Four Gausdan dstributions (“Cultivation’, “Recent pasture, “Dense forest”, and “Burnt plot”,
respedively) estimated with ICE from Im. 3, Fig. 4. Estimated a =(a,,a,) is(0,86; 0,85).

5. CONCLUSION

We presented in this paper a new model cdled “Triplet Markov Fields’ (TMF). The basic ideais the same that in the
recent “Triplet Markov Chains’ (TMC) model [26, 27]. For the observed randam field Y and the seached random
field X, it consists on introducing an auxiliary randam field U and onconsidering the Triplet T =(X,U,Y) as a

Markov field. Such models are very rich and flexible, becaise there ae little constraintsin choosing U . Furthermore,
the standard estimation procedures like Iterative Condtional Estimation (ICE) and the standard Bayesian segmentation
methods like Maximum Posterior Mode (MPM) are workable in the TMF context. Some experiments have been
described and the general conclusionisthat TMF can be of interest with resped to the well known HMF. Furthermore,
the latter appeas as avery particular case of the former.

A red radar image, in which ead of two seached classs contains two subclasses, has also been considered and the
Bayesian MPM method kased onthe new model turns out to work better than the same method tesed onthe dasscd
HMF model.

We can view two passble diredions for further developments : (i) more mmplex situations, in which the noise is not
known and can pcssbly be non Gaussan (which frequently occurs in radar images [5], among dhers), could be
considered (such situations have been studied in the mntext of HMF in [4, 28], and in the cntext of PMCin [7, 8], (ii)
extensions of general hidden Graphicd models[29] to Triplet Graphicd models.
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