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ABSTRACT

The hidden Markov chains (HMC), which are widely used
in different data restoration problems, have recently been
generalised to pairwise partially Markov chains (PPMC),
in which the distribution of the observed chain conditional
on the hidden one is of any form. In particular, long-
memory noise cases can be dealt with. The aim of this
paper is to propose a parameter estimation method and to
show, via experiments, that unsupervised PPMC based
image segmentation can perform better, when the noise is
a long-memory one, than the classical HMC based
methods.

1. INTRODUCTION

Let N

nnXX 1)( == , N

nnYY 1)( ==  be  two stochastic

processes, where X  is hidden and Y  is observable. Each

nX  takes its values in }{ Kωω ,,1
�=Ω  and each nY  takes

its values in R . The problem of estimating X  from Y ,
which occurs in numerous applications, can be solved with
Bayesian methods once one has chosen the accurate
distribution for ),( YXZ = . The Hidden Markov Chains

(HMC) model is the simplest and most well known model.
This model has been extended to Pairwise Markov Chains
(PMC [4, 8]) and then to Triplet Markov Chains (TMC
[7]). The PMC and TMC models, on their hand, have then
been extended to Pairwise Partially Markov Chains
(PPMC [9]) and Triplet Partially Markov Chains (TPMC
[9]), in which the distribution of the noise – in other
words, the distribution of Y  conditionally on X  which
will be denoted by )( xyp  – is not necessarily a Markov

chain (MC) [9]. One possible application, which we deal
with in this paper, is to consider a “ long-memory” noise,
which occurs in numerous situations [1, 2, 3] and which
can not be taken into account via classical Markov models.

The aim of this paper is to show, via some
experiments, the existence of situations in which PPMC
are of interest with respect to PMC. In particular, we are

interested in the long-memory noise in which the
correlations in )( xyp  decrease in a “slow” manner.

Moreover, we show how the non stationarity of the hidden
process can be modelled in the same way as in [6] by a
third random process and the use of TPMC.

The organisation of the paper is the following. In the
next Section we briefly recall the TMC and PMC models
and we develop the PPMC and TPMC models in which
the noise is of a long memory kind. We recall how it
works and, in particular, how the Bayesian MPM method
enables us to recover the hidden process from the
observed one. Then we show how to take the non
stationarity of the hidden process into account via a
TPMC. The third section is devoted to the Gaussian case,
which makes possible explicit calculations of interest.
Section 4 is devoted to two experiments in which we
compare the recent HMC with long-memory noise (HMC-
LMN) model, which is a particular PPMC, with the
classical HMC model in supervised and unsupervised
ways.

2. PAIRWISE PARTIALLY MARKOV CHAINS

2.1 Pairwise and Triplet Markov chains

Let N

nnXX 1)( == , N

nnYY 1)( ==  be two stochastic processes,

where xX =  is unobservable and has to be estimated
from the observation yY = . The stochastic interactions

between the hidden and the observable processes are then
given by the distribution ),( yxp  of ),( YXZ = . When

)(),( zpyxp = is simple enough, many Bayesian methods

are available. In particular, HMC with independent noise
(HMC-IN), whose distribution is given by (1), have been
widely used and studied.
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We see that in HMC-IN X  is a MC with
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n nn xxpxpxp  and “independent noise”
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)()(  means that the random variables

( )N

nnY
1=  are independent conditionally on X . The

simplicity of )( xyp  is often difficult to justify. To

improve the latter, the HMC-IN model has been
generalized into the PMC model, in which one directly
assumes the Markovianity of Z , so that:
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PMC is strictly more general than HMC; in fact, X  is no
longer necessarily an MC. However, X  remains a MC
conditionally on Y , and this property enables the
development of analogous Bayesian restoration
algorithms.

PMC has further been extended to TMC. Roughly
speaking, in the TMC model the distribution of Z  is a
marginal distribution of the ),,( YUXT =  assumed to be

an MC, and N

nnUU 1)( ==  is an auxiliary process, which can

have a physical signification or not. When the random
variables N

nnU 1)( =  are not too complex (for example, finite

with not too rich set of values), it appears that
N

nnXX 1)( ==  can still be estimated from N

nnYY 1)( ==  by

Bayesian methods that are analogous to those used in the
classical HMC model. In particular, )( yxp n  is

computable, which makes the estimation of x  by the
Maximum Posterior Mode (MPM) possible. Let us notice
that TMC generalizes some classical models in the sense
that none of the chains X , U , Y , ),( UXV = ,

),( YXZ =  or ),( YU  needs to be an MC [11]. The wider

generality of PMC with respect to HMC and of  TMC with
respect to PMC, can also be seen through the expression
of )( xyp . In an HMC-IN, )( xyp  is often (too) simple

for certain applications. Since in a PMC, )( xyp  is an

MC, it is much richer, and in a TMC, )( xyp  is the

marginal distribution of the MC ),( xyup  and therefore

even richer than an MC. These increasingly complex
models are likely to meet the growing need for a better
modelling of the noise in many applications such as, for
example, image processing.

2.2 Pairwise and Triplet Partially Markov chains

Recently, PMC have been extended to Pairwise Partially
Markov Chains (PPMC), where the distribution of the

noise )( xyp  is not necessarily a MC. The pairwise chain

),( YXZ =  is a PPMC if its distribution verifies :
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where n

ii

n zz 1)( == , and ditto for nx  and ny . We again find

the classical HMC for )(),( 1
1

1 nn

n

nn xxpyzxp +
−

+ =  and

)(),,( 11
1

11 ++
−

++ = nn

n

nnn xypyxzyp , and we again find the

classical PMC for )(),( 1
1

1 nn

n

nn zxpyzxp +
−

+ =  and

),(),,( 11
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++ = nnn

n

nnn xzypyxzyp . Otherwise, the

distribution of ),( YXZ =  can be written:
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This enables one to show classically that )( yxp  is a MC,

with transitions given by ),( 1 yxxp nn+

)()(),( 1

1

1 1 nnn

n
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+ += , with )( n

n xβ
calculable by the following « backward » recursions
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Therefore, these transitions are calculable once the

transitions ),( 1

1
−

+
n

nn yzzp  given by (3) are calculable for

every 11 −≤≤ Nn .

By introducing an auxiliary process N

nnUU 1)( == ,

PPMC can be extended to TPMC in the same manner as
PMC can be extended to TMC. The triplet process

),,( YUXT =  will be called “Triplet Partially Markov

Chain” if for each 11 −≤≤ Nn , ),()( 11

n

nn

n

n yvtpttp ++ = .

PPMC is then a particular case of TPMC in which
UX =  (this means that XV =  and that there is no latent

process)

3. GAUSSIAN PPMC

Let us briefly recall the so-called « Gaussian » PPMC
model proposed in [10] (in French). The crux is that in
Gaussian PPMC, in which )( xyp  are Gaussian, the

transitions ),( 1 yxxp nn+  are calculable. More precisely,

we need to calculate the transitions ),( 1

1
−

+
n

nn yzzp given
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in (3) for every 11 −≤≤ Nn . Let us consider a particular

case in which )(),( 1

1

1 nn

n

nn xxpyzxp +
−

+ =  and )( xyp

are Gaussian. The transitions ),,( 1

11
−

++
n

nnn yxzyp  are

then also Gaussian and can be recursively calculated using
the following classical property (P) :

Property (P):

Let N

nnWW 1)( ==  be a real Gaussian chain with, for

each Nn ≤≤1 , n

ii

n MM 1)( ==  the mean vector and

nlnkkl

n

≤≤=Γ ,)(γ  the covariance matrix of n

ii

n WW 1)( == . It

is then possible to calculate, for each n , the Gaussian

density )( nyp  corresponding to nM , nΓ . Classically,

one uses the fact that )()()( 11 −−= n

n

nn yypypyp , where

)( 1−n

n yyp  is Gaussian with mean

)()()( 1111 −−−− −Γ+ nnnTn

n MyAM  and variance
nnTn

nn AA 11 )()( −−Γ−γ , where ( )Tn

ini

nA 1

1, )( −
== γ  (the

matrix 11 )( −−Γ n  in )( 1−n

n yyp  is given by the Gaussian

density )( 1−nyp ).

The idea given in [10] is to apply this property 2k
times (remember that k  is the number of possible values
of each nx ). More precisely, for each ),( 1+nn xx  the

transition ),,( 1

11
−

++
n

nnn yxzyp  is the transition

corresponding to ),( 1+nn xx  and it is calculated using the

property above.

3.1 Bayesian segmentation using PPMC

To estimate xX =  from yY =  by Maximum Posterior

Mode (MPM), it is necessary to compute )( yxp n  for

Nn ≤≤1 . It can be done in the following way:

1) Compute )( 1

n

n zzp +  transitions according to the

property (P) by 2k  forward recursions;

2) Compute )( n

n xβ  by backward recursions and deduce

),( 1 yxxp nn+  and )( 1 yxp ;

3) Compute )( yxp n  for Nn ≤≤1  by the following

forward recursions:
  ∑ Ω∈ ++ =

nx nnnn yxpyxxpyxp )(),()( 11 .

We see that the points 2) and 3) are classical and used in
HMC, while the point 1) is new and is due to the
“partially” Markov aspect of the model.

3.2 Long Memory noise with non stationary hidden
process

We are now interested in the long memory noise, in which
the correlations of )( xyp  decrease in a “slow” manner so

that ρ
α

τ τρτ c=∞→ )(lim , where [1,0]∈α , 0>ρc  is a

constant, and )(τρ  is an autocorrelation function. These

processes are useful in numerous complex systems [1, 3]
and, in particular, in telecommunication networks [2]. As
the sequence nlnkkl

n

≤≤=Γ ,)(γ  of covariance matrices

considered above is of any kind, it suffices to take them of

the form 
αγργγ −−=−= lklk nnnnkl )( .

When, in such processes Y , there exists a hidden
“switching” process X  (in other words, when the given
long memory process Y  is not stationary), we can
consider that Y  is a noisy version of X , with a long-
memory noise. Then the corresponding PPMC enables us
to estimate X  from Y , using some Bayesian methods like
“Maximum a Posteriori” (MAP) or MPM.

Also, we showed in [6] that when ),( YX  is the

classical HMC-IN with non stationary X , this non
stationarity can be modelled by a third random chain U
and the use of the TMC ),,( YUX  enables us to improve

the results obtained with the HMC ),( YX . The same idea

can be apply considering long memory noise by using the
TPMC model.

4. EXPERIMENTS

4.1 Supervised restoration of a process with long
memory noise

In the first experiment, we consider the following case of a
noisy class image segmentation. There are four classes in
the hidden image, and it is considered as a realization of a
Markov chain X . The mono-dimensional process X  is
obtained from the bi-dimensional set of pixels using a
Hilbert-Peano scan, as already used in [5]. Moreover, we

assume that ),(),,( 1111

n

nn

n

nnn yxypyxxyp ++++ =  and

)(),( 1

1

1 nn

n

nn xxpyzxp +
−

+ = .

The four Gaussian distributions (we have four
distributions instead of sixteen because of the particular

case ),(),,( 11

1

11

n

nn

n

nnn yxypyxzyp ++
−

++ = ) of N

nnWW 1)( ==

will also assumed to be stationary, with all means null and
all variances equal to one. Thus the correlations are the
only discriminating parameters. All the four

autocorrelations have the following form: 
αττρ −+= 1)(
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where ij −=τ , 99.0
1

=ωα , 3.0
2

=ωα , 05.0
3

=ωα ,

01.0
4

=ωα  (and are therefore “long memory”

autocorrelations). The model parameters are then the

distribution ),( 21 xxp  on { }2

21
2 ,ωω=Ω , and 0>α . The

noisy version of (a) with long memory noise is presented
on (b) and the MPM restoration is presented on (c).

The model is then a particular case of PPMC that will
be denoted by “HMC with long memory noise” (HMC-
LMN) in the following.

(a) (b) (c)

Figure 1

(a) a four classes image, (b) its noisy version (same means
and same variances for all four classes), and (c) the
Bayesian MPM segmentation result considering the HMC
-LMN model. (a) and (b) are converted into mono-
dimensional chains via Hilbert-Peano scan (see [5]).

The misclassified pixels’ ratio is equal to 6.9%. We
can notice that the noise is rather strong and the human
eye can hardly distinguish anything in the image (b).

4.2 Unsupervised restoration of a process with long
memory noise

In the second experiment, we restore, in an unsupervised
way, a two-class image with 2 different noises. In the same
way as in the first experiment, we assume that X  is a
stationary Markov chain after conversion of the image (a)
using an Hilbert-Peano scan, and we assume that

),,( 1

11
−

++
n

nnn yxzyp  ),( 11

n

nn yxyp ++= . In both cases, the

two Gaussian distributions of N

nNWW 1)( ==  are stationary,

with all means null .
The first noisy image presented in the figure 2 (b), is

obtained by using an independent noise with variances
respectively equal to 1 and 4 for the two classes. The
second noisy image presented in (c) is obtained by using a
long memory noise, with both variances equal to 1 and

99.0
1

=ωα , 2.0
2

=ωα .

(a) (b) (c)

Figure 2

(a) is a two classes image, (b) the noisy version with
independent noise, and (c) the noisy version with long
memory noise

The parameters are estimated by an Expectation-
Maximisation (EM) algorithm considering the classical
HMC-IN model and the HMC-LMN model, with means
set to zero in both cases. The estimations are given in
Table I and Table II and the hidden processes restored by
MPM are given in Figure 3.

The MPM restoration results concerning the
independent noise are quite similar when it comes to the
HMC-IN (a) and the HMC-LMN (b) models, with a
misclassified pixels’ ratio equal to 5.3%. This confirms the
fact that HMC-IN is a particular case of the HMC-LMN
model. Also, we notice the high estimate values of

31.6
1

=ωα , 09.5
2

=ωα , which highlights the short range

memory nature of the independent noise.
Concerning the long memory noise, we can see that the

HMC-IN model (d) is unable to take account of the long
range correlation. The wrong estimates imply a poor MPM
restoration with a misclassified pixels’ ratio equal to
27.6%. On the other hand, the HMC-LMN gives better
estimates which  results in a good MPM restoration (c) of
the hidden process, with a misclassified pixels’ ratio equal
to 6.5%.

),( 21 xxp HMC-IN HMN-LMN

IN






30.000.0

00.069.0






30.000.0

00.069.0

LMN






34.002.0

02.061.0






32.000.0

00.067.0

Table I

),( 21 xxp  EM Estimates of the two models (HMC-IN and

HMC-LMN) for both noises (IN and LMN). The “real”
value, it is to say the value estimated from the class image,

is 





30.002.0

02.066.0
.
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HMC-IN HMC-LMN

1ω 2ω 1ω 2ω
2σ 3.93 0.97 3.93 0.97IN

α - - 6.31 5.09
2σ 1.25 0.33 1.02 0.70LMN

α - - 0.97 0.32

Table II

2σ  and α  (EM Estimates) of the two models (HMC-IN
and HMC-LMN)  for both noises (IN and LMN)

(a) (b)

(c) (d)

Figure 3

First line: MPM restoration results for the independent
noise considering (a ) the HMC-IN model (error
ratio=5.3%) and (b) the HMC-LMN model (error
ratio=5.3%). Second line: MPM restoration result
considering (c) the HMC-IN model (error ratio=27.6%)
and (d) the HMC-LMN model (error ratio=6.5%).

4. CONCLUSIONS

The aim of this paper was to show, via experiments, that
the recently introduced Pairwise and Triplet “Partially”
Markov chains enable one to deal with long-memory noise
hidden Markov chains. In fact, estimating all the
parameters, by the classical “Expectation- Maximization”
(EM) method, we gave two series of results, showing that
these recent models based supervised and unsupervised
segmentation methods can significantly improve the
classical hidden Markov chains based ones. Although we
have not presented any results concerning Triplet
“Partially” Markov chains, passing from pairwise models
to triplet one is quite straightforward and does not pose
any particular problem.
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