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Abstract
Statistical methods for voice conversion are usually based on a
single model selected in order to represent a tradeoff between
goodness of fit and complexity. In this paper we assume that
the best model may change over time, depending on the source
acoustic features. We present a new method for spectral voice
conversion1 called Dynamic Model Selection (DMS), in which
a set of potential best models with increasing complexity - in-
cluding a mixture of Gaussian and probabilistic principal com-
ponent analyzers - are considered during the conversion of a
source speech signal into a target speech signal. This set is built
during the learning phase, according to the Bayes information
criterion (BIC). During the conversion, the best model is dy-
namically selected among the models in the set, according to
the acoustical features of each source frame. Subjective tests
show that the method improves the conversion in terms of prox-
imity to the target and quality.
Index Terms: Voice conversion, model selection.

1. Introduction
A typical application of voice conversion technique (VC) is
speaker conversion: the speech signal of a source speaker is
modified to be perceived as if it had been uttered by a target
speaker [1]. The overall methodology for speaker conversion is
to first learn a mapping function of acoustic features of a source
speaker to those of a target speaker. To learn this mapping
function, several approaches have been proposed such as vec-
tor quantization [2], neural networks [3] or multivariate linear
regression [4] among others statistical methods [5]. One of the
most popular statistical method, proposed by Stylianou and al.
[6], is based on a Gaussian mixture model (GMM) that defines
a continuous mapping between the features of source and tar-
get voices. The comparative study [7] suggests a better perfor-
mance of this method compared to vector quantization, neural
networks and multiple linear regression. Although this type of
method is relatively efficient, conversion performance are still
insufficient regarding speech quality: the frame by frame con-
version process induces inappropriate spectral parameter trajec-
tories and the converted spectrum can be excessively smoothed.
Toda and al. have recently proposed in [8] a method based
on maximum likelihood estimation of a parameter trajectory,
which greatly improves the quality of synthesis by taking into
account the dynamic features and the global variance.

In most statistical methods of speaker conversion, a unique
model is used for the conversion. This model is selected among

1This study was supported by FEDER Angelstudio: Générateur
d’avatars personnalisés ; 2009-2011

others during the learning phase according to the spectral dis-
tortion obtained from the conversion of a test corpus or to an
informational criterion such as the Bayesian information crite-
rion (BIC[9]). In this paper, assuming that the best model may
change over time according to the source acoustic features, we
propose a new conversion method called Dynamic Model Se-
lection (DMS) based on the use of several models in parallel.
At each frame of the source vector, the most appropriate model
is selected according to the values of the acoustic features: if
the values are far from training datas, low complexity general
model is selected for the conversion. However, if the source
datas are close to training datas, a more complex and precise
model is selected leading to a more accurate conversion.

The paper is organized as follows: Section 2 presents the
proposed approach and the voice conversion system is described
in Section 3; finally evaluation of the method is presented and
discussed in Section 4.

2. Proposed Approach
In subsection 2.1, we introduce the Gaussian mixture model-
ing framework for spectral conversion. Then, in subsection 2.2,
we introduce mixtures of probabilistic principal component an-
alyzers which provide an entire range of covariance structure
that incrementally includes more covariance information. This
will allow us to define a whole range of models with increasing
number of components from which the best model will be se-
lected in order to perform the conversion at each source frame.
The DMS method is presented in subsection 2.3.

2.1. Spectral conversion with Gaussian mixture models

Stylianou and al. [6] proposed to model the source speaker
acoustic probability space with a GMM. The cross-covariance
of the target speaker with source speaker and the mean of the
target speaker were then estimated using least squares optimiza-
tion of an overdetermined set of linear equations. Kain extended
Stylianou’s work by modeling directly the joint probability den-
sity of the source and target speaker’s acoustic space[10]. This
method allows the system to capture all the existing correlations
between the source and target speaker’s acoustic features. We
briefly describe the method in the following.

Let Z = (X, Y ) be a joint random process in which
X = {Xn}n∈N and Y = {Yn}n∈N are the source and target
acoustic features random processes respectively, and N the set
of frame indexes. Each Xn and Yn takes its values in R

d where
d is the dimension of the acoustic features vector. We will de-
note z = (x, y) = {(xn, yn)}n∈N a realization of this random
process, in which xn and yn are the acoustic features vectors
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at frame n for the source and that for the target, respectively.
We assume that Z is an independent and identically distributed
random process (i.i.d.) such as p(z) =

Q
n∈N p(zn). We intro-

duce the auxiliary i.i.d random process of mixture components
U = {Un}n∈N , each Un taking its values in U with cardinal
K. The joint probability density of the source and target feature
vectors is then modeled by a GMM as follows

p(zn|φ) =

KX
k=1

p(un = k)p(zn|un = k, φk) (1)

with p(zn|un = k, φk) = N (zn; μ̄z
k, Σz

k). φ is the GMM
parameters set which consists of the weight p(un = k), the

mean vector μ̄z
k =

»
μ̄x

k

μ̄y
k

–
and the covariance matrix Σz

k =»
Σxx

k Σxy
k

Σyx
k Σyy

k

–
for all mixture components k ∈ U . μ̄x

k and

μ̄y
k are the mean vector of the k-th mixture component for the

source and that for the target, respectively. Σxx
k and Σyy

k are
the covariance matrix of the k-th mixture component for the
source and that for the target, respectively. Σxy

k and Σyx
k are

the cross-covariance matrix of the k-th mixture component for
the source and that for the target, respectively. φ is estimated
by Expectation-Maximization on a parallel corpus z = (x, y)
in which x and y have been automatically aligned by Dynamic
Time Warping (DTW).

The conditional probability density of yn given xn is also a
GMM as follows:

p(yn|xn; φ) =
KX

k=1

p(un = k|xn; φk)p(yn|xn, un = k; φk)

(2)
where

j
p(un = k|xn; φk) ∝ p(un = k)N (xn; μ̄x

k, Σxx
k )

p(yn|xn, un = k; φk) = N (yn; Ey
k,n, Dy

k)
(3)

with

j
Ey

k,n = μ̄y
k + Σyx

k (Σxx
k )−1 (xn − μ̄x

k)

Dy
k = Σyy

k − Σyx
k (Σxx

k )−1 Σxy
k

(4)

In each mixture component k ∈ U , the conditional target mean
vector Ey

k,n for the given source acoustic features vector is cal-
culated by a simple linear conversion based on the correlation
between the source and target acoustic features vector as shown
in equation (4).

The conversion is finally performed on the basis of the min-
imum mean-square error (MMSE): the converted feature vector
is the weighted sum of the conditional mean vectors in which
the weights are the posterior probabilities of the source acoustic
features vector belonging to each one of the mixture compo-
nents:

ŷn = E[yn|xn] =
KX

k=1

p(un = k|xn; φk)Ey
k,n (5)

2.2. Mixtures of Probabilistic Principal Component Ana-
lyzers

In the following of this paper, a set of potential best models with
increasing number of parameters will be built during the train-
ing from which the best model will be chosen at each frame

during the conversion step. The increase of the number of com-
ponents of a Gaussian mixture is limited by the increasing com-
plexity of the model due to the large number of parameters as-
sociated with the covariance matrices. One way to solve this
problem is to use diagonal structures, but the performances are
then sacrified because the latter are unable to model the under-
lying second order statistics. Mixture of Probabilistic Principal
Component Analyzers (PPCAs) is a method proposed by Tip-
ping and Bishop [11] to solve the inflexibility of GMMs by per-
forming a pseudo-local Principal Component Analysis (PCA)
on each mixture component. It has been applied to VC in [12].
Modeling covariance structure with a mixture of PPCAs pro-
vides an entire range of covariance structures that incrementally
includes more covariance information.

PPCA’s statistical model assumes that a set of q latent vari-
ables is responsible for generating the d-dimensional data set
zn. Under several assumptions given in [11], the observations
zn are Gaussian with mean μ and model covariance

Σ = WW t + σ2I (6)

in which the d× q matrix W contains the factor loadings which
account for the statistical dependencies between the individual
variables of zn (e.g. correlations between LSF) and the specific
factors σ explain small disturbances in each individual random
variable of zn (e.g. sensor noise about each individual LSF). It
gives the flexibility of removing dimensions from W which in
turn adds to σ2, the average variance not captured in the pro-
jection. Several of these models can be combine into a mix-
ture of PPCAs as described in [11]. The only difference with
a GMM is that each of the K component densities are rep-
resented with a single PPCA model rather than with a multi-
variate normal distribution. An equivalent expression for the
conditional expectation in equation (4) can be found by posing:
Σxx

k = W x
k (W x

k )t + σ2
kI and Σyx

k = W y
k (W x

k )t. Mixture of
PPCAs can be seen as a more general case of the GMMs for
spectral conversion as shown in [12]. In the following it will be
use in order to define models with increasing number of mix-
tures while keeping a reasonable model complexity.

2.3. Dynamic model selection

In classical speaker conversion methods, a unique model is se-
lected during the training step and used for the conversion. This
model is selected among others according to the spectral dis-
tortion obtained from the conversion of a test corpus or by us-
ing methods from the model selection research field. Informa-
tion criteria as BIC[9] have been designed for this purpose. A
good model will balance goodness of fit and complexity, so it
should have neither a very low bias, nor a very low variance. A
model with too large a variance due to overparametrization will
give poor performance on datas different or far from the train-
ing datas because of the high variance of the local estimators
resulting in overfitting. The model undergoes oscillations that
are both very large and whose features strongly depend on the
exact positions of the points leading to a model with a huge vari-
ance and very large response errors. However, the same model
will give excellent conversion performances on datas similar or
close to the training ones.

The Dynamic Model Selection (DMS) method that we pro-
pose consists of using several models in parallel assuming that
the best model may change over time according to the source
acoustic features. To do so, a set of potential best models M
including GMMs and mixtures of PPCAs is built according to
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Figure 1: Example of Dynamic Model Selection along a seg-
ment of a speech utterance. On the left the set of potential mod-
els. In bold line: selected models at each frame n, in light lines:
LSF representation of the source spectral envelope.

the BIC criterion during the training step. During the conver-
sion step, at each frame n ∈ N , the most appropriate model
is chosen according to the likelihood of the source datas given
each model as

M̂n = arg max
M∈M

p(xn|M) (7)

with

p(xn|M) =
KX

k=1

p(un = k)N (xn; μ̄x
k, Σxx

k ) (8)

the values of p(un), μ̄x
k , Σxx

k and K, depending on the model
M . In the case where M is a mixture of PPCA, Σxx

k is replaced
by W x

k (W x
k )t+σ2

kI . In this way, we aim to use a general model
with low complexity if the values are far from training datas and
a more complex and precise model if the source datas are closer
to training datas, leading to a better conversion. An example of
model selection along a segment of a speech utterance is given
on Figure 1: complex models are used on stable spectrum parts
while simpler and general models are used in transition parts.

3. Voice Conversion System
3.1. Corpora description

3 corpora have been recorded by 3 speakers with different
French accent:

• the speaker S has a standard accent;

• the speaker A has a Hispanic accent;

• the speaker B has a French Canadian accent.

The voices of the speakers S,A and B, will be denoted as voice
S, voice A and voice B respectively. The voice S will be use as
the source voice and the voices A and B will be used as target
voices during conversion. Each corpora includes 200 phoneti-
cally balanced utterances, which represents between 9 and 10
minutes of speech depending on speakers speech rate (<9 min-
utes for voices S and A and >10 minutes for voice B). The
voices S and A were recorded in an anechoic chamber (32 bits,
Fe=48kHz). The recording quality of the speaker B is lower
(16 bits, 44.1khz compressed MP3 format) and slightly rever-
berated. The recordings were downsampled to Fe=24kHz for
the experiments.

The corpora of voices S and A on the one hand and voice S
and B on the other hand were aligned by DTW. Each of the two
obtained parallel corpora (S, A) and (S, B) was then splitted
into a training part (190 parallel utterances) and a test part (10

parallel utterances). To avoid alignment errors - such as match-
ing between voiced and unvoiced segment which can lead to a
bad estimation of the joint probability density - a pre-rejecting
method of mismatched source-target frames was applied: a
two-components GMM was first estimated for each corpus and
couples zn = (xn, yn) for which arg maxun p(un|xn) �=
arg maxun p(un|yn) were rejected from the training corpus as
they were considered as mismatched frames. These frames rep-
resent a nearly 9% of both parallel training corpora. During our
experiments, this rejecting method of poorly matched source-
target datas was found to improve quality in an informal listen-
ing test.

3.2. Spectral features

Line spectral frequencies (LSF) were used as spectral features
vector for the source xn and target yn for each n ∈ N . To
do so, the spectral envelope was estimated each 2.5 ms by True
Envelope method on a Mel scale (MTE) and coded by Linear
Predictive Coding (LPC). The optimal order considering the
MTELPC[13, 14] estimator has been set to 30 in agreement
with [13]. Linear Spectral Frequencies (LSF) parametrization
was chosen due to their good linear interpolation properties.
Analysis and synthesis were done using phase vocoder [15].

3.3. Model pre-selection for the DMS

Several joint models including GMMs with full covariance ma-
trices and mixture of PPCAs with different values of q (3, 5, 10,
30 and 50) were estimated on both corpora (S, A) and (S, B)
by considering different numbers of mixture components K (2,
4, 8, 16, 32, 64, 128, 256, 384 and 512). Then, for each corpus
and for each K, the best model among the estimated ones was
selected according to the BIC criterion (the best model being the
one with the lowest BIC value). The selected model topologies
in the following were valid for both corpora but with differents
estimates values:

• Up to K=32 mixture components: GMM with full covari-
ance;

• for K=64: mixture of PPCAs with q=50;

• for K=128: mixture of PPCAs with q=30;

• for K=256 and K=384: mixture of PPCAs with q=10;

• for K=512: mixture of PPCAs with q=5.

This set of best potential models - denoted M - will be used
during the evaluation of the DMS method in the following sec-
tion. The best model of M - which was the GMM with full
covariance matrices and 16 components - will be used as the ref-
erence model for the classical conversion method and denoted
as GMM16 in the following.

4. Subjective evaluation
In this section, we aim to evaluate the DMS method according
to the perceived conversion effect and to the quality of the re-
sulting converted voice. Two subjective tests2 were designed
aiming to evaluate these 2 aspects of VC. Both tests were per-
formed on 27 listeners including 14 speech processing experts
and 13 non-experts, 21 French native speakers, 6 non-native
French speakers.

2The tests can be found online at http://recherche.ircam.
fr/equipes/analyse-synthese/lanchant/index.php/
Main/TestDMS
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Figure 2: Left: conversion effect test considering both method
(the vote scale has 5 values from 0 to 4). Right: quality pref-
erence scores for the DMS method for speaker A (left) with
mean=0.31, and for speaker B (right) with mean=0.36

4.1. Conversion Effect

The objective of this first subjective test was to evaluate the per-
ceived conversion effect after modification of the source speech
S. We aimed to qualify if the converted voice was perceived
closer to the target, to the source or between them. For each
target voice (A and B), 3 speech utterances of the source con-
verted considering both methods (GMM16 vs DMS) have been
presented to listeners. Also, three utterances of both original
source and target voice speakers have been introduced in the
evaluation data to assess the ability of discrimination of listen-
ers between the source and target voice speakers. At each trial,
an utterance was randomly chosen among the 12 utterances and
presented to the listener which had to vote on the perceived po-
sition relative to the source and target on a scale of 5 values,
from 0 if perceived as the source to 4 if perceived as the target
voice.

The results of this first test are presented on the left part
of Figure 2. Note that the vote values axis as been zoomed be-
tween 1 and 3 for convenience but that the votes have been given
on a scale from 0 to 4 during the test. For both target voice,
the french accent is clearly identified. However, most listeners
couldn’t recognize neither the source nor the target, which is
a well-known effect (third-speaker effect) reported in the bibli-
ography, especially in intra-gender voice conversion task. For
the target voice A, the mean values of the votes are 2.32 for
GMM16 model and 2.56 for the DMS method. For the target
voice B the mean values are lower with 2.17 for the GMM16
model and 2.22 for the DMS method which could be explain
by the presence of reverberation in the recordings of the tar-
get which are not present in the converted speech signal. How-
ever, for both speaker the DMS method outperform the GMM16
based method in term of perceived conversion effect.

4.2. Converted Speech quality

The second test was focused on the quality of the converted sig-
nals. A comparison category rating test (CCR[16]) was used to
assess the quality of the speech converted by the DMS method
in comparison to the speech converted by the GMM16 model.
6 utterances were chosen to generate the test samples for each
method. Utterances were presented in random order to the lis-
teners for evaluation. They were asked to attribute a score to the
quality of the second sample of a pair compared to the quality
of the first one on the comparison mean opinion score (CMOS)
scale. The ranking of the 2 methods was evaluated by averaging
the scores of the CCR test for each method. The results are pre-
sented on the right part of Figure 2. Only the preference score
for the DMS method is presented on the figure (the score for
the classical GMM16 method being the negative value of the
latter).

The results show that for each target speaker the new DMS
method provides a better conversion quality than the one based
on the single GMM16 model, with a preference mean equal to
0.31 for the target speaker A and 0.36 for the speaker target
B. A multi-class one-way analysis of variance (ANOVA[17])
for speaker A (F(1,322)=29.6;p-value<0.001) and speaker B
(F(1,322)=36.9;p-value<0.001) confirms that the difference in
quality between both methods is significant, for both target
speakers cases.

5. Conclusion
A new approach for spectral voice conversion involving several
models has been proposed. In this approach, a set of potential
best models is chosen during the learning phase. During the
conversion, the model selection is achieved dynamically on this
set, at each source frame, according to its acoustical features.
Subjective tests showed that the method is promising as it can
improve the conversion in terms of proximity to the target and
quality compared to the method based on a single model. In
further work, we will focus on the choice of more appropriate
criteria for the selection of the best model during the conversion.
We will also apply this framework to the conversion method
described in [8] to improve the quality of synthesis by taking
into account the dynamic features and the global variance.
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