Extended Conditional GMM and Covariance Matrix Correction
for Real-Time Spectral Voice Conversion

Pierre Lanchantin, Nicolas Obin, Xavier Rodet

IRCAM - CNRS-UMR9912-STMS,
Analysis-Synthesis Team,
1, place Igor-Stravinsky,
75004 Paris, France

lanchant@ircam.fr, nobin@ircam.fr, rod@ircam.fr

Abstract

Gaussian mixture model (GMM)-based spectral voice conver-
sion (VC) can be performed in real-time by applying the conver-
sion method frame by frame. However, this local method can
produce inappropriate trajectories of parameters and the con-
verted spectrum can be excessively smoothed due to the statis-
tical approach. In order to address these limitations, we pro-
pose an approach based on a new Extended Conditional GMM
model. Two different features vectors are used for the descrip-
tion of the source characteristics: one is specifically designed
for a precise description of the spectral features to be trans-
formed, the other one being designed for the selection of the
transformations to be applied. The latter include local descrip-
tors of the trajectories of parameters via Discrete Cosine Trans-
form (DCT) coefficients in order to generate local trajectories
of parameters. Finally, the effect of over-smoothing is allevi-
ated by a covariance matrix correction method. The proposed
VC method is evaluated objectively and subjectively, showing a
dramatic improvement compared to conventional VC method.
Index Terms: Voice conversion, Extended Conditional GMM,
Discrete Cosine Transform.

1. Introduction

The aim of speaker conversion - a typical application of voice
conversion technique (VC) - is to modify the speech signal
of a source speaker so as to be perceived as that of a target
speaker. The overall methodology for speaker conversion is
to define and learn a mapping function of acoustic features of
a source speaker to those of a target speaker. Among other
statistical approaches described in [} [2} 3], one of the most
popular method proposed by Stylianou and al. [4] is based
on a Gaussian mixture model (GMM) that defines a continu-
ous mapping between the features of source and target voices.
Kain extended Stylianou’s work by modelling directly the joint
probability density of the source and target speaker’s acoustic
space [5]. This method allows the system to capture all the
existing correlations between the source and target speaker’s
acoustic features. In most cases, the method is applied frame by
frame which make its implementation for real-time conversion
straightforward. Although this type of method is relatively ef-
ficient, conversion performances are still insufficient regarding
speech quality: the frame by frame conversion process induces
inappropriate spectral parameters trajectories and the converted
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spectrum can be excessively smoothed. Toda and al. have pro-
posed in [6] a method based on maximum likelihood estimation
of trajectories of parameters, which greatly improves the qual-
ity of synthesis by taking into account the dynamic features and
the global variance. However, this method require a global op-
timization which can be a problem for real-time applications.

In order to address these limitations, we propose a novel
approach presented in this study. First, we define an Extended
Conditional GMM (XcGMM) in which the mixture weights de-
pend on an alternative representation of the source characteris-
tics different from the one used for the description of the spec-
tral characteristics to be converted. This modelling allows the
use of a high resolution representation of the spectral character-
istics to be transformed without necessarily increasing the com-
plexity of the model. At the same time, it allows the inclusion of
additional informations for the selection of the transformations
to apply. In this way, Discrete Cosine Transform (DCT) can be
used to stylize the trajectories of the spectral parameters. This
additional parameters are taken into account in order to generate
local trajectories of parameters. Finally, we propose a covari-
ance matrix correction method to overcome the over-smoothing
of the transformed spectral characteristics.

The paper is organized as follows: Section [2| presents the
proposed approach and the related VC system, its optimization
and objective evaluation are described in Section 3} finally sub-
jective evaluation of the proposed approach is presented and dis-
cussed in Section 4]

2. Proposed Approach

Let Z = (X,Y) be the joint random process of source-target
acoustic spectral features in which X = {X, }heny and Y =
{Y, }nen are the source, and target processes respectively, and
N the set of frame indexes. Each X, and Y,, takes its values
in R? where d is the dimension of the acoustic feature vector.
We will denote z = (z,y) = {(@n, Yn) }nen a realization of
this process, in which x,, and y,, are the acoustic features vec-
tor at frame n for the source and that for the target, respectively.
We assume that Z is an independent and identically distributed
process (i.i.d.) such as p(z) = [],,cn P(2x). We introduce the
auxiliary i.i.d. process of mixture components U = {Up }nen,
each U, taking its values in I/ with cardinal K. The joint prob-
ability distribution of the source and target features vectors is
then modeled by a Gaussian mixture as follows

K
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Figure 1: The proposed approach: at each frame n € N
the global conversion function is a weighted sum of ele-
mentary conversion functions {E}j¢()}fi1 whose weights

{’y?’¢(£n)}f:1 depend on an alternative representation Z,, of
the source characteristics different from x,, which is used for
the description of the spectral characteristics to be converted.
A covariance matrix correction method is finally applied on the
transformed vector.

with NV (zn; ¢r) = p(2n]|un = k; ¢x) and the mixture weight
ar = p(un = k) foreach k € U. ¢, = {uj,Xi} is the pa-
rameters set including the mean vector pf = [ug, u?]* and the
covariance matrix Xj = [[S§", SV7]%, [S7Y, Ezy]tk] for each
mixture components k € U. pf and pj are the mean vector
of the k-th mixture component for the source and that for the
target, respectively. ¥3” and 7Y are the covariance matrix of
the k-th mixture component for the source and that for the tar-
get, respectively. 37¥ and X}” are the cross-covariance matrix
of the k-th mixture component for the source and that for the
target, respectively.

2.1. Extended Conditional GMM

We introduce an alternative source i.i.d process X =
{Xn}nej\[ in which each X, takes its values in R?. %, is
the alternative acoustic feature vector for the source at frame
n which is used exclusively for the computation of the mix-
ture weights of the transformation mixture. We also make the
assumptions that for each n € N, u, is independent of z,,
conditionally on Z,, and y,, is independent of Z,, conditionally
on (xn, un) such that the conditional probability density of yy,
given x;} = (2, %y ) is given by the following extended con-
ditional Gaussian mixture distribution with ¢x = {ug, X527},

ot = {0, 0}, ¢ = {pr 1, and ditto for ¢ and a:

P(yalz:6") Zv W (9o BL (20),C27) @)

’Y;:’q;(‘i'n) = p(tn = k|Zn; ar, ¢r) < arN (Zn; or)
N yn;E,ﬁ’¢(:€n)7C;§'¢) = p(Yn|zn, un = k; ¢x)
3)

and

C’y ¢ = zyy z:z“” ()t o

©
3

©c o o ©o
w > v o

Frequencyl[rad]

o
)

N

20 40 60 80
Time [ms]

0.1

OO

Figure 2: 2-order DCT trajectory stylization (red) of the first 5
LSFs (blue) on a 80ms window size.

{a,¢"} are estimated on a parallel speech database
(.’E:;M.n, Ytrain) in which xjmm and Ytrqin have been tempo-
of the dis-

_\K
rally aligned. To do so, the parameters {ozk, Dk }

tribution of X are first estimated by Expectation-Maximization
on the speech database T+rqin. Then, at the last step of the es-
timation, ¢, can be estimated for each k € U in the following
way

ZTIY 1 'Y;Q(i'n) (5)
Zn 1'Yk ¢(zn)(zn p‘k)(zn_‘u‘i)t
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Note that when z = z, the proposed model is equivalent to the
conventional one. However, the estimation procedure is sensi-
bly different from the conventional approach in which the dis-
tribution of X is deduced for the estimation of the joint source-
target distribution.

The conversion is finally performed on the basis of the min-
imum mean-square error (MMSE): the global conversion func-
tion is a weighted sum of elementary conversion functions - the
conditional mean vectors E¥*?(.) - whose weights depend on
the source vector to be transformed.

K
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Each weight ~," (xn) gives the probability of a given source
vector to belong to each one of the k-mixture components such
that their computation can be interpreted as a recognition step,
the components being seen as clusters. A schematic representa-
tion of the proposed VC system is presented on Figure[T]

2.2. Local Trajectory Modelling

The introduction of X allows to use lower resolution repre-
sentation of the spectral characteristics for the computation of
the weights while keeping a high resolution representation of
the spectral characteristics to be converted. Furthermore, it al-
lows to considerate other descriptors which can facilitate the
clusters discrimination. In this way, we use the Discrete Co-
sine Transform (DCT [7]) to locally stylize the acoustic fea-
tures trajectories - Line Spectral Frequencies (LSF) in the fol-
lowing - over various temporal segments. The principle is to
decompose acoustic features trajectories on a basis of slowly
time-varying functions defined by zero-phase cosine functions
¢ = (cos(wr),...,cos(wnr)) at discrete frequencies w,, =



57 (2m + 1). The trajectories can be stylized using differ-
ent DCT orders and different window sizes w. Compared to
derivate and second derivate often used in conventional VC
methods, DCT allow a finer description of trajectories using
a reduced amount of parameters. The stylization over various
temporal segments aims at representing the acoustic features
trajectories with more or less details, and to model short and
long term dependencies.

2.3. Covariance Matrix Correction

The source-target global covariance matrix can be deduced from
the Gaussian mixture given in the equation [I] as follows:

K
$& =Y an [Zi+ (k- n&) (ni —ps)] (D
k=1

with ug = Zle ar iy, The loss of global variance which is
usually observed and which result in the over-smoothing of the
spectrum is explicitely given by the residual covariance matrix
Nres = DU (SEF) T SE. This covariance matrix represents
the covariance non explained by the Gaussian mixture regres-
sion. The idea is to correct the converted frame values for each
n € N according to X¢7°. To do so, we use a Cholesky decor-
relation/correlation method. The new value 4, of the converted
source vector is given by

i = [(@n — ) L (L) } uh o ®
where LYY and Lé‘m are upper triangular so that
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where \g is a weight governing the amount of correction. Note
that when Ag=0 the resulting covariance matrix is the one of
the target given the source vector and the value of ¢ remains un-
changed. However, when Ag=1, the resulting covariance matrix
become the one of the target.

3. System Optimization

The parameters of the proposed system were optimized on a
development set. Both reduced dimension alternative source
vector and stylization of the spectral parameters are shown to
improve objectively the VC performance.

3.1. Evaluation procedure

Two speech databases have been recorded (32bits,
F,=44.1kHz) by French speakers with different accents
(Standard and Hispanic). Each database includes 200 pho-
netically balanced utterances, which represent approximately
10 minutes of speech depending on speakers speech rate.
The speech databases were then aligned by a Dynamic Time
Warping (DTW) algorithm constrained by phone boundaries
extracted using ircamAlign [8], an HMM-based alignment
system based on the HTK toolbox. The obtained parallel
speech database was then splitted into a training set (150
parallel utterances) a development set (30 parallel utterances)
and a test set (20 parallel utterances). Line spectral frequencies
(LSF) were used as spectral features for the source z; and
target y., vectors for each n € N. To do so, the spectral
envelope was estimated each 5ms by True Envelope method

Figure 3: Ppsr with respect to the number of mixtures compo-
nents in the following cases: in green: the conventional method
with d=45, in blue: the prgposed method with x = I, in red:
the proposed method with d=10, in black: the proposed method
with w=80ms DCT window size.

on a Mel scale (MTE) and coded by Linear Predictive Coding
(LPC). The optimal cesptral coefficient order considering the
MTELPC [9] estimator was determined equal according to
[9]. The order of the LPC was chosen equal to 45 which give
a good approximation of the spectral envelope. Analysis and
synthesis were performed using phase vocoder [10].

The performance index Prsr proposed by Kain [L1] was
used for the objective evaluation of the VC performance:

al dist(Yn, Gn)

= dist(yn, Tn) o)

Prsp=1-—

where g, is the converted target vector and the distance dist
is Euclidean. The upper part is the trans-speaker error defined
as the spectral distance between the converted speech and the
target speaker, while the lower part is the inter-speaker error
defined as the spectral distance between the source and target
speaker.

3.2. Estimation procedure

The estimation procedure of the proposed approach is sensibly
different from the conventional one. On the Figure [3| we pre-
sented in green line the Pr, s value with respect to the number
of mixture components K obtained with the conventional ap-
proach with an LPC order d=45. The blue line corresponds to
the Prsr value obtained with the new approach with z = Z.
In this case, both approaches are equivalent excepted for the
estimation method. The proposed estimation method outper-
forms the conventional one with a maximum of Prsr=0.321
for K=22 compared to a maximum of Pr,sr=0.310 for K=18.
This indicates that estimating the mixture weights o only on
the source part of the aligned speech database give better per-
formance than the conventional method which consists of es-
timating the weights on the joint source-target aligned speech
database.

3.3. Optimal LPC order of the alternative source vector

We kept « unchanged while decreasing the LPC order dof &
ranging from 45 to 5. We observed an improvement of per-
formance for each case where d < d with a maximum per-
formance Prsr=0.331 for K=22 with d=10. For clarity, we
only presented the results for d=10 in red line on the Figure
One explanation of this improvement can be the reduction of the
complexity of the model which allows the use of more mixture
components.



3.4. DCT Window Size

We kept the LPC order of 10 and we chose an order of DCT
equal to 2 giving a dimension vector of d=30. We then varied
the size of the frame centered window on which the DCT is
computed at each frame n € N. The best performance curve,
plotted in black on the Figure EL is obtained for a window size
w =80ms with a maximum of Prsp=0.334 for K=32. It is
of interest to note that the optimal temporal segment (80ms) is
found to be closer to the phoneme one (~50ms) than to the syl-
lable one (~200ms). This clearly indicates that the stylization
process succeeds in modelling co-articulation.

4. Evaluation

In this section, we aim to evaluate the proposed system accord-
ing to the speaker individuality and to the quality of the result-
ing converted speech.

4.1. Speaker individuality

The objective of the first part of the subjective test| was to eval-
uate the speaker individuality after conversion of the source
speech using the optimized system and the covariance correc-
tion method with Ag=0.9. We aimed to qualify if the converted
speech signal synthesized from §* was perceived closer to the
target, to the source or between them. 3 speech utterances of
the source converted considering both methods (conventional
vs proposed method) have been presented to 22 listeners. At
each trial, an utterance was randomly chosen among the 12 ut-
terances and presented to the listener which had to vote on the
perceived position relative to the source and target on a scale of
5 values, O if perceived as the source and 4 if perceived as the
target voice. The results of this first test are presented on the
left part of Figure E[ Most listeners couldn’t recognize neither
the source not the target, which is a well known effect (third-
speaker effect) reported in the litterature, especially in intra-
gender VC task. Nevertheless, the listeners perceived the con-
verted speech using the proposed method as significantly closer
to the target speaker (MOS=2.17+0.18) than using the conven-
tional method (MOS=1.75+0.22).

4.2. Speech quality

The second test was focused on the quality of the converted
speech. A comparison category rating test (CCR) was used
to assess the quality of the speech converted by the proposed
method in comparison to the speech converted by the conven-
tional method. 6 utterances were chosen to generate the test
samples for each methods. Utterances were presented in ran-
dom order to the listeners for evaluation. They were asked to
attribute a score to the quality of the second sample of a pair
compared to the quality of the first one on the comparison mean
opinion score (CMOS) scale. The ranking of the 2 methods
was evaluated by averaging the scores of the CCR test for each
method. The listeners perceived the quality of the converted
speech using the proposed method as drastically better than us-
ing the conventional method (CMOS=+1.00£0.18).

5. Conclusion

We presented a novel approach for spectral VC based on
XcGMM. In this model, the mixture weights depend on an al-
ternative representation of the source characteristics different
from the one used for the description of the spectral character-
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Figure 4: Left figure: Speaker individuality considering both
method (the vote scale has 5 values from 0 to 4). Right figure:
Speech quality (CCR boxplots).

istics to be converted. In this way, the spectral characteristics to
be transformed can be represented with a high LPC order with-
out increasing the complexity of the model. Furthermore, this
model allows to take into account local trajectories of param-
eters. Finally, we proposed a covariance correction method to
alleviate the well-known over-smoothing of the converted spec-
tral parameters. Objective and subjectives tests revealed that the
proposed method dramatically improve the VC performances.
Further researches include the study of the impact of the DCT
order on the conversion performances. Finally, the covariance
matrix correction method will be compared to the global vari-
ance method proposed in [6] .
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