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ABSTRACT

Spectral voice conversion is usually performed using a sin-
gle model selected in order to represent a tradeoff between
goodness of fit and complexity. Recently, we proposed a new
method for spectral voice conversion, called Dynamic Model
Selection (DMS), in which we assumed that the model topol-
ogy may change over time, depending on the source acoustic
features. In this method a set of models with increasing com-
plexity is considered during the conversion of a source speech
signal into a target speech signal. During the conversion, the
best model is dynamically selected among the models in the
set, according to the acoustical features of each source frame.
In this paper, we present an objective evaluation demonstrat-
ing that this new method improves the conversion by reducing
the transformation error compared to methods based on a sin-
gle model.

Index Terms— Voice conversion, Gaussian Mixture Re-
gression, model selection.

1. INTRODUCTION

The aim of speaker conversion - a typical application of voice
conversion technique (VC) - is to modify the speech signal of
a source speaker to be perceived as if it had been uttered by a
target speaker [1]. The overall methodology for speaker con-
version is to define and learn a mapping function of acoustic
features of a source speaker to those of a target speaker. Sev-
eral approaches have been proposed such as vector quanti-
zation [2], neural networks [3] or multivariate linear regres-
sion [4] among others statistical methods [5]. One of the
most popular statistical method, proposed by Stylianou and
al. [6], is based on a Gaussian mixture model (GMM) that
defines a continuous mapping between the features of source
and target voices. The comparative study [7] suggests a better
performance of this method compared to vector quantization,
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neural networks and multiple linear regression. Although this
type of method is relatively efficient, conversion performance
are still insufficient regarding speech quality: the frame by
frame conversion process induces inappropriate spectral pa-
rameter trajectories and the converted spectrum can be exces-
sively smoothed. Toda and al. have recently proposed in [8] a
method based on maximum likelihood estimation of a param-
eter trajectory, which greatly improves the quality of synthe-
sis by taking into account the dynamic features and the global
variance.

In most statistical methods of speaker conversion, a sin-
gle model is used for the conversion. This model is selected,
among others during the training phase, according to the spec-
tral distortion obtained from the conversion of a development
corpus or to an informational criterion such as the Bayesian
information criterion (BIC [9]). Recently, assuming that the
best model may change over time according to the source
acoustic features, we proposed in [10] a new method for spec-
tral conversion called Dynamic Model Selection (DMS) based
on the use of several models in parallel. At each frame of the
source vector, the most appropriate model is selected accord-
ing to the values of the acoustic features: if the values are far
from training data, low complexity general model is selected
for the conversion. However, if the source data are close to
training data, a more complex and precise model is selected
leading to a more accurate conversion. Subjective tests were
performed and showed that the method is promising as it can
improve the conversion in terms of proximity to the target and
quality compared to the method based on a single model. In
this paper, we continue this work by presenting an objective
evaluation of the method according to the performance index
defined by Kain in [16].

The paper is organized as follows: Section 2 presents
the proposed approach and the voice conversion system is
described in Section 3; finally objective evaluation of the
method is presented and discussed in Sections 4 and 5



2. PROPOSED APPROACH

In the next subsection, we introduce the Gaussian mixture
modeling framework for spectral conversion. We define a
set of models with increasing number of components from
which we can select the best model to perform the conversion
of each source frame. This DMS method is finally presented
in subsection 2.2.

2.1. Spectral conversion with Gaussian mixture models

Stylianou and al. [6] proposed to model the source speaker
acoustic probability space with a GMM. The cross-covariance
of the target speaker with source speaker and the mean of the
target speaker were then estimated using least squares opti-
mization of an overdetermined set of linear equations. Kain
extended Stylianou’s work by modeling directly the joint
probability density of the source and target speaker’s acoustic
space [11]. This method allows the system to capture all the
existing correlations between the source and target speaker’s
acoustic features. We briefly describe the method in the
following.

Let Z = (X,Y ) be a joint random process in which
X = {Xn}n∈N and Y = {Yn}n∈N are the source and tar-
get acoustic features processes respectively, and N the set of
frame indexes. EachXn and Yn takes its values in Rd where d
is the dimension of the acoustic feature vector. We will denote
z = (x, y) = {(xn, yn)}n∈N a realization of this process, in
which xn and yn are the acoustic features vector at frame n
for the source and that for the target, respectively. We assume
that Z is an independent and identically distributed process
(i.i.d.) such as p(z) =

∏
n∈N p(zn). We introduce the aux-

iliary i.i.d process of mixture components U = {Un}n∈N ,
each Un taking its values in U with cardinal K. The joint
probability density of the source and target feature vectors is
then modeled by a GMM as follows

p(zn|φ) =

K∑
k=1

p(un = k)p(zn|un = k, φk) (1)

with p(zn|un = k, φk) = N (zn; µ̄z
k,Σ

z
k). φ is the GMM
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for all mixture components k ∈ U . µ̄x

k and

µ̄y
k are the mean vector of the k-th mixture component for

the source and that for the target, respectively. Σxx
k and Σyy

k

are the covariance matrix of the k-th mixture component for
the source and that for the target, respectively. Σxy

k and Σyx
k

are the cross-covariance matrix of the k-th mixture compo-
nent for the source and that for the target, respectively. φ is
estimated by Expectation-Maximization on a parallel corpus
z = (x, y) in which x and y have been temporally aligned.

The conditional probability density of yn given xn is also
a GMM as follows :

p(yn|xn;φ) =

K∑
k=1

p(un = k|xn;φk)p(yn|xn, un = k;φk)

(2)
where{

p(un = k|xn;φk) ∝ p(un = k)N (xn; µ̄x
k,Σ

xx
k )

p(yn|xn, un = k;φk) = N (yn;Ey
k,n, C

y
k )

(3)
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−1
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−1

Σxy
k

(4)

In each mixture component k ∈ U , the conditional target
mean vector Ey

k,n for the given source acoustic feature vector
is calculated by a simple linear conversion based on the cor-
relation between the source and target acoustic feature vector
as shown in equation (4).

The conversion is finally performed on the basis of the
minimum mean-square error (MMSE) : the converted feature
vector is the weighted sum of the conditional mean vectors in
which the weights are the posterior probabilities of the source
acoustic feature vector belonging to each one of the mixture
components:

ŷn = E[yn|xn] =

K∑
k=1

p(un = k|xn;φk)Ey
k,n (5)

The conditional covariance matrix can also be evaluated, giv-
ing a kind of confidence measure for the conditional mean
vector for each n ∈ N

C[yn|xn] =

K∑
k=1

p(un = k|xn;φk)2Cy
k (6)

2.2. Dynamic model selection

In classical speaker conversion methods, a single model is se-
lected during the training step and used for the conversion.
This model is selected among others according to the spec-
tral distortion obtained from the conversion of a development
corpus or by using methods from the models selection re-
search field. Information Criteria such as BIC [9] have been
designed for this purpose. A good model will balance good-
ness of fit and complexity, so it should have neither a very low
bias nor avery low variance. A model with too large a vari-
ance due to overparametrization will give poor performance
on datas different or far from the training datas because of the
high variance of the local estimators resulting in overfitting.
The model undergoes oscillations that are both very large and
whose features strongly depend on the exact positions of the
points leading to a model with a huge variance and very large



response errors. However, the same model will give excel-
lent conversion performances on datas similar or close to the
training ones

The Dynamic Model Selection (DMS) method that we ini-
tially proposed in [10] consists of using several models in par-
allel assuming that the best model may change over time ac-
cording to the source acoustic features. To do so, a set of
potential best models M including GMMs with increasing
number of components is built during the training step. Dur-
ing the conversion step, at each frame n ∈ N , the most ap-
propriate model is chosen according to the likelihood of the
source datas given each model as

M̂n = arg max
M∈M

p(xn|M) (7)

with

p(xn|M) =

K∑
k=1

p(un = k)N (xn; µ̄x
k,Σ

xx
k ) (8)

the values of p(un) µ̄x
k , Σxx

k and K, depending on the model
M . In this way, we aim to use a general model with low
complexity if the values are far from training datas and a more
complex and precise model if the source datas are closer to
training datas, leading to a better conversion.

3. VOICE CONVERSION SYSTEM

3.1. Corpuses description

Two corpuses have been recorded by French speakers with
different accents (Standard and Hispanic). Each corpus in-
cludes 200 phonetically balanced utterances, which represent
between 9 and 10 minutes of speech depending on speak-
ers speech rate. The corpuses were recorded in an anechoic
chamber (32 bits, Fe=48kHz). The recordings were down-
sampled to Fe=24kHz for the experiments. The corpuses were
then aligned by a Dynamic Time Warping (DTW) algorithm
constrained by phone boundaries extracted using ircamAlign
[12], an HMM-based alignment system based on the HTK
toolbox. The obtained parallel corpus was then splitted into a
training part (180 parallel utterances) and a test part (20 par-
allel utterances).

To avoid alignment errors, such as matching between
voiced and unvoiced segment - which can lead to a bad
estimation of the joint probability density - a pre-rejecting
method of mismatched source-target frames was applied: a
two-class GMM model was first estimated for each corpus
and couples zn = (xn, yn) for which arg maxun

p(un|xn) 6=
arg maxun

p(un|yn) were rejected from the training corpus
as they were considered as mismatched frames. These frames
represent a nearly 9% of both parallel training corpora. Dur-
ing our experiments, this rejecting method of poorly matched
source-target data was found to improve quality in an infor-
mal listening test.

3.1.1. Spectral features

Line spectral frequencies (LSF) were used as spectral fea-
tures vector for the source xn and target yn for each n ∈ N .
To do so, the spectral envelope was estimated each 2.5 ms
by True Envelope method on a Mel scale (MTE) and coded
by Linear Predictive Coding (LPC). The optimal order con-
sidering the MTELPC [13, 14] estimator is 30 according to
Ôopt = 0.15∗Fs/F0 [13]. Linear Spectral Frequencies (LSF)
parametrization was chosen due to its good linear interpola-
tion properties. Analysis and synthesis were done using phase
vocoder [15].

4. OBJECTIVE EVALUATION

In this section, we aim to evaluate the DMS according to
transformation error. To do so, several joint densities modeled
by GMM with full covariance matrix with increasing number
of components - from 1 to 32 - were estimated on the paral-
lel corpus. We used the performance index proposed by Kain
[16] defined as a ratio of two measures:

• the trans-speaker error which is the spectral distance
between the converted speech and the target speech de-
termining the proximity of the converted speech to the
target speaker’s one;

• the inter-speaker error which measures the spectral dis-
tance between the source and target speaker.

The performance index, denoted P in the following, is com-
puted according to the following equation:

P = 1−
N∑

n=1

d(yn, ŷn)

d(yn, xn)
(9)

where ŷn is the converted target vector and the distance d is
Euclidean. P equal zero if the transformation error equals
the inter-speaker error, and less than zero if the transforma-
tion error is even larger. In the opposite way, P approaches
one as the transformation error approaches zero. Finally, the
intra-speaker error, defined in [16] as a measure of how much
variablity is present from one rendition to the next of the
same sentence, approximates the lower bound of an achiev-
able transformation and, then, the optimal value of P will be
less that one. In our evaluation, source vectors of the test
parallel corpus are first converted according to each GMM
model and the performance indexes are computed according
to equation (9). Then source vectors are converted using the
DMS method with maximum likelihood criteria as defined in
equation (7). The results of the evaluation are presented in the
next section.

5. RESULTS & DISCUSSION

Performance indexes corresponding to each GMM model
with different number of components are presented in plain
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Fig. 1. Performance index for classical (plain line) and DMS
(dash-dotted line) methods.

Performance Index (P (10−1))

DMSopt 3.951

DMSML 2.720

GMMm 14 27 20 . . . 3 2 1

P (10−1) 2.684 2.682 2.680 2.551 2.503 2.361

Table 1. Performance indexes comparison between the dif-
ferent models and methods presented in this paper.

line in the Fig. 1 (referred as Classical method). They are
also given in decreasing order in the lowest part of table 1.
The best performance is obtained using the GMM with 14
components with P = 0.2684.

To evaluate the optimal performance index which could
be reach using DMS with the given set of models - denoted
as DMSopt in Table 1 - we first selected models maximizing
the performance index P at each frame. We obtain an aver-
age performance index P = 0.3951. Using the ML criterion
defined in equation (7) - denoted as DMSML in table 1 and
presented in dotted line in Fig. 1 - we obtain a performance in-
dex P = 0.2720 which represents an error reduction of 7.5%
relative to the optimal performance, which can be considered
as significant. However, the maximum likelihood criterion
seems far from being optimal and better performance could
be obtain using a more optimal criterion as suggested by the
optimal performance value.

6. CONCLUSION & FURTHER WORK

We presented an objective evaluation of the recently proposed
DMS method for spectral voice conversion. In this method,
several models with increasing complexity are used in paral-

lel and the model selection is achieved dynamically for each
source frame according to its acoustical features. Objective
tests show that the method can improve the conversion in
terms of transformation error. Further work includes the defi-
nition of a more optimal selection criterion which could lead
to better performance using the DMS method.
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