Travaux ECL LIRIS MusicDiscover

Aliaksandr PARADZINETS, Hadi Harb, Zhongzhe Xiao, Emmanuel Dellandréa, Liming Chen

*

Outline

- Musical title recognition
- Similarity measures
 - Ideas
 - Details
 - Application and results
 - Automatic genre classification
 - Similarity search and playlist composition
 - Conclusion
- Other works

Musical Title Recognition System

Introduction

- Extraction of fingerprint
- Realization in the form of web service (recognition by telephone)

Web service prototype

Musical Similarity Measures

Introduction

- Tempo, rhythm ≠ rhythmical image
- Tempo in BMP is not interesting
- Perception of tempo may have an error of 2
- Existing techniques
 - energy envelop
 - signal autocorrelation
 - mathematical models-resonators
 - image treatment techniques

FFT vs. Wavelets?

Delta-impulse

Wavelet

Wavelets used

"Wavelet-kind" function

 $\psi(x,k) = H_{x,m(k)}e^{jw(k)x};$

$$m(k) = L_{\max} K 1 \times e^{-\frac{K 2(k+1)}{N}}; \qquad w(k) = \frac{2}{L_{\max}} e^{\log\left(\frac{L_{\max}}{L_{\min}}\right) + 1}$$

where

k – number of wavelet

K1,K2 – scale choice factor (0.8 and 2.8)

Lmax/min - maximum/minimum scale of wavelet (6000 and 14)

N - total number of wavelets used (256

H(x,m) – function of Hamming window

Wavelet image

- Example of CWT representation of musical excerpt
 - strongly visible vertical structures
 - melody and voice lines are enough clear unlike FFT

After enhancement

- Application of image treatment techniques
- Beat probability curve

New beat histogram

A 3-D beat histogram

- axis X beat period
- axis Y amplitude of a beat (defined as threshold in peak detection algorithm)

New beat histogram

- Can be used for
 - Genre classification
 - Tempo estimation
 - Feature vector for similarity search

Distance measure

Needed for similarity search

$$Dist_{H1,H2} = \sum_{x=1,y=1}^{N,M} \frac{1}{2} \left(\min_{R} \left(H_{x,y} - H_{x,y} - H_{x,y} \right) \right) + \min_{R} \left(H_{x,y} - H_{x,y} \right) \right)$$

where H1, H2 – beat histograms to compare N, M – beat histogram size R – an area of the following form

Search by similarity

- Subjective evaluation
- Objective evaluation
- Genre classification

Music navigator (automatic playlist composition)

Search by similarity

- A database with 1000 various musical titles
- 8 songs with multiple (from 2 to 6) reinterpretations injected
- Composition of playlists by acoustic similarity
- Consideration of positions of similar titles

Original music composition	Number of interpretations	Positions of similar titles in playlists		
Chi Mai	3	(1), 2, 3		
Listen To Your Heart	3	(1), 3, 12		
Wish You Were Here	2	(1), 2		
Not Gonna Get Us	2	(1), 2		
All the Things She Said	3	(1), 2, 3		
30 minutes	2	(1), 2		
Cry Me a River (ver. 1)	5	(1), 2, 3, 4, 6		
Cry Me a River (ver. 2)	6	(1), 2, 4, 7, 8, -1		

Genre classification

- Database of 1873 titles from 822 artists
- 6 genres
- Multi-expert architecture

Genre classification

Average 70.3% classification rate

	Classic	Danse	Jazz	Metal	Rap	Rock
Classic	88	0	14	7	2	7
Danse	2	68	3	5	6	3
Jazz	5	8	67	1	8	12
Metal	3	9	3	68	6	13
Rap	1	7	5	3	72	6
Rock	1	8	8	16	6	59

Conclusion

Tempo in BPM itself is not important

- Still some evaluation was made in tempo estimation (Compared to ISMIR2004 tempo contest)
- 71% (with 2x tempos) / 46%
- A good rhythmical image representation was found
 - Experiments in similarity search showed acceptable results perceptive and objective similarity of musical compositions

Other Works

- Emotion classification
 - Hierarchical emotion classification
 - Work underway by Zhongzhe Xiao, Emmanuel Dellandréa