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ABSTRACT

Timbral modeling is fundamental in content based music similar-
ity systems. It is usually achieved by modeling the short term
features by a Gaussian Model (GM) or Gaussian Mixture Models
(GMM). In this article we propose to achieve this goal by using
the GMM-supervector approach. This method allows to represent
complex statistical models by an Euclidean vector. Experiments
performed for the music similarity task showed that this model
outperform state of the art approches. Moreover, it reduces the
similarity search time by a factor of ≈ 100 compared to state of
the art GM modeling. Furthermore, we propose a new supervector
normalization which makes the GMM-supervector approach more
preformant for the music similarity task. The proposed normaliza-
tion can be applied to other Euclidean models.

1. INTRODUCTION

Exploring the wide world of music requires some navigation tools.
To discover new tracks, one might consider several options. Spe-
cialized magazines or music expert friends can guide the user. In
a more passive way, the user can wait for new music production
by listening to his favorite radio or following the statistically made
recommendation of online mp3 providers, based on user profiles
and puchase analyses. But to explore several million of iTunes c©

music tracks, one may need to employ a content based similarity
search system. The principle is quite simple. From a starting mu-
sic and for a given similarity measure,the system provides the user
a list of similar songs found in the entire database. If the user is
not satisfied with the result, he/she can change or adapt the sim-
ilarity measure according to his/her wishes. The system can also
learn the user preferences using relevance feedback. One can also
use the result of previous queries as starting point for a new search
and, thereby, perform a step by step smart exploration of the music
space.

Obviously, the relevance of the similarity measure is funda-
mental. A music track can be described in several ways. Using
the mpeg-7 taxonomy, we distinguish the meta description (e.g.:
music author or title) and the content description. Similarity sys-
tems based on content description mimic human perception of sim-
ilarity. Timbral modeling is nowaday state of the art in such sys-
tems. It consists in statistical modeling of short term audio fea-
tures, usually the Mel Frequency Cepstrum Coefficients (MFCC).
The model used can be a Gaussian Mixture Model (GMM) as pro-
posed in [1, 2], or a single Gaussian Model with full covariance
matrix [3, 4] which provides similar performances. The measure
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used to compare the models is the Symmetrized Kullback-Leibler
Divergence (SKLD) [5] or alternatively the Earth Mover’s Dis-
tance based on the SKLD when models are GMMs [2].

We present here an application of the Gaussian Mixture Model
using Universal Background Model (GMM-UBM) approach for
content based music similarity. This method, initially developed
in the field of speaker recognition [6] has been successfully ap-
plied for music genre classification and similarity [7]. The main
idea is to build a generic Gaussian mixture model by using a large
data set of representative signals, which are in our case extracted
from a large set of music tracks. This model, named Universal
Background Model, aims at modeling the overall data distribution
and can be composed of hundred of Gaussians. The model for a
specific track is then obtained by adapting the UBM model param-
eters by using the track data. The final model is composed of a
subset of the GMM parameters, stacked into a vector, the so called
supervector. This approach presents several advantages:

• it allows to build a complex model from a small amount of
data,

• the final model can be embedded into the Euclidean space,
which allows fast similarity search.

In this paper, a complete description of the GMM-UBM model
is proposed in section 2. Then our main contribution it presented
in section 3. It consists in a new supervector transformation, which
provides a significant improvement of the similarity system. Ex-
periments are detailed in section 4 and the perspectives of this
work are presented in section 5.

2. GMM-UBM APPROACH

2.1. Universal Background Model

The Universal Background Model (UBM) aims at modeling the
overall data distribution. It consists of a classical Gaussian Mixture
Model. For a D-dimensional feature vector x the mixture density
used for the likelihood function is defined as a weighted sum of
unimodal Gaussian models :

p(x|λ) =
MX
i=1

ωipi(x) (1)

whereM is the number of Gaussian components, pi = N (µi,Σi).
λ represents the GMM parameters, where λi = {ωi, µi,Σi},
i = 1, · · · ,M . x represents a feature vector, which in our case
is a short term descriptor, usually an MFCC.
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The UBM is usually composed of Gaussian models with di-
agonal covariance matrix. The loss of modeling ability due the
diagonal covariance matrix can be compensated by increasing the
number of Gaussian in the mixture [6]. The UBM is trained us-
ing a large and representative set of data by using the Expectation
Maximization (EM) algorithm.

2.2. UBM adaptation

The UBM adaptation is the process of modifying the UBM param-
eters in order to fit a particular data distribution. In our application,
this subset is the data extracted from a track to modelize.

This adaptation is made using the Maximum A Prosteriori
(MAP) approach. The first step consists in determining the proba-
bilistic alignement of the training vectors with the UBM Gaussian
components. For a Gaussian i in the UBM we compute :

Pr(i,xt) =
ωipi(xt)PM

j=1 ωjpj(xt)
(2)

ni =

TX
t=1

Pr(i,xt) (3)

Ei(x) =
1

ni

TX
t=1

Pr(i,xt)xt (4)

These statistical values are then used for adapting the mean vector
µ̂ of each Gaussian during the following iterative process:

µ̂0
i = µi (5)
µ̂k
i = αiEi(x) + (1− αi)µ̂

k−1
i (6)

αi =
ni

ni + r
(7)

where xt represents the tth feature vector of the music track to
modelize and r is a fixed “relevance factor“, usually set between 8
and 20. k = 1, · · · ,K represents the iteration number.

2.3. GMM supervector

To summarize, a music track model is directly derived from a
generic GMM, estimated using a large set of representative data
(the so called UBM). During the adaptation process, only the mean
vectors of the Gaussians are modified to fit the particular music
track distribution. Consequently, all the the music track models
have both the same covariance matrix and weight. Knowing the
parameter of the UBM, a particular music model can be summa-
rized by the mean vectors of its Gaussian mixture components:

µ =

0B@ µ1

µ2

· · ·
µN

1CA (8)

where µ, named the GMM supervector, is the concatenation of
all the mean vectors of the N Gaussian components. In [8], the
authors propose to approximate the Kullback-Leibler divergence
between two models a and b by :

d(µa, µb) =
1

2

NX
i=1

ωi(µ
a
i − µb

i )
TΣ−1

i (µa
i − µb

i ) (9)

where µa and µb are the GMM supervectors of the models a and b
respectively, λi represents the mixture weights and Σi the covari-
ance matrix of the ith Gaussian component (which is common to
the models a and b). From this representation, we can deduce the
following natural normalization:

µ̄i =
√
ωiΣ

−1/2
i µi (10)

i ∈ 1, · · · , N

where N is the number of Gaussian components of the model.
Then, the divergence presented in eq. 9 can be rewritten as the
square Euclidean distance between the normalized supervectors:

d(µa, µb) =
1

2
‖µ̄a − µ̄b‖2 (11)

Finally, because of the monotony of the square function (·)2,
one can directly use the Euclidean distance ‖µ̄a − µ̄b‖ for music
similarity retrieval, as proposed in [7].

3. SUPERVECTOR NORMALIZATION FOR MUSIC
SIMILARITY

3.1. Hubs and orphans

Even if the statistical modeling of short term descriptors gives
good results for music similarity, it usually tends to create false
positive results which are usually the same songs. This songs,
named hubs, are falsely close to all the tracks of the database. As
well, some songs, named orphans, are falsely far from the rest of
the database. J. Aucouturier et al.[9] showed that this phenomenon
is “not a property of a given modeling strategy and tends to appear
with any type of model”.

For a better understanding of the problem we propose to mod-
elize a set of music tracks and to study their distance distributions.
The music database and the modeling process are fully described
in section 4. From this set of supervectors we compute the dis-
tance matrix between all the supervectors. Figure 1 presents the
distance distribution between the track supervectors and the rest
of the database. We can observe that the distributions have a sig-
nificant variability. For example, the distribution related to the
first music track shows that this model is far from the rest of the
database. Consequently, it will have a poor probability to appear
within the results of the similarity search. This is a good example
of an “orphan” song.

3.2. P-norm

To overcome this drawback, a distance normalization method was
proposed by T. Pohle et al.in [4]. The key idea of this method is
to transform the distances between two models by using their dis-
tance distribution according to a normalization set. After the nor-
malization process, the histogram of the new ”distance“ between
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Figure 1: Distance distribution between supervectors. Each curve
represents the histogram of the distance between a given supervec-
tor and the rest of the database.

a model and the rest of the database must be a normal distribution
N (0, 1). This normalization is given by:

P-norm (d(a, b)) =
1

2

„
d(a, b)− µ̊a

σ̊a
+
d(a, b)− µ̊b

σ̊b

«
(12)

where d(a, b) is the original distance between models a and b,
µ̊a, σ̊a are the mean and standard deviation of the distances be-
tween the models a and the normalization set. For convenience, in
the rest of this paper, we will refer to this method as the P-norm
(Pohle-normalization). One can notice that this type of normaliza-
tion is very close to the ZT-norm developed in the field of speaker
verification [10].

3.3. UCS and MCS normalizations

An important benefit of the supervector approach is the ability to
represent a complex statistical model as an Euclidean vector. It
allows the use of efficient indexing algorithms for fast similarity
search into very large databases like local sensitive hashing [11].
The use of the P-norm (which modifies the distances) transforms
the original Euclidean space into a non-metric space, constrain-
ing the use of ad-hoc indexing methods which are usually slower.
Therefore, a normalization which can be applied directly to the su-
pervector is more suitable. Let us consider the supervector as a
point into a high dimensional space and a large representative data
set. To reproduce the benefit of the P-norm by a geometric trans-
formation of the supervectors, the projected points must “see the
world in a same way” i.e. the distance distribution between a point
and the rest of the database must be the same for all the points. It is
easy to show that a uniform data distribution on a hyper sphere sat-
isfies this constraint. We propose two different methods to reach
this goal:

1. project the supervectors on a unit sphere centered on the
Universal Background Model,

2. project the supervectors on a unit sphere centered on the
mean supervector of a representative data set (here we used
the entire database).

For convenience, we named the first approach the UBM Centered
Spherical normalization (UCS-norm) and the second one the Mean
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Figure 2: Distance distribution between supervectors normalized
by the UCS-norm.

Centered Spherical normalization (MCS-norm). The following
equations detail the implementation we used.

µ̄a
UCS =

µ̄a − µ̄UBM

‖µ̄a − µ̄UBM‖ (13)

µ̄a
MCS =

µ̄a −M
‖µ̄a −M‖ (14)

with M =
1

N

NX
k=1

µ̄k , µ̄k ∈ Ω (15)

where µ̄a represents the supervector to normalize, µ̄UBM is the
supervector of the UBM andM represents the mean supervector
of a subset Ω composed ofN supervectors. Figure 2 clearly shows
that the UCS-norm allows to reduce the variability of the distance
distributions. One can observe that the track number one is no
more “orphan” still its distances from the rest of the database have
been significantly reduced.

4. EXPERIMENTS

4.1. Data set

For our experiments, we used a music data set composed of 1304
tracks belonging to the following music genres: Country, Electron-
ica, Folk, Gospel, Jazz, Latin, New Age, Pop/Rock, R&B, Rap,
Reggae, World. These songs, originally encoded in mp3 32kHz
stereo were down-sampled in 22050 kHz and turned into mono by
summing the two channels.

4.2. Feature extraction

The short term feature vectors extracted are composed of 13 Mel
Frequency Cepstrum Coefficients (MFCC) and 4 Spectral Flatness
Measures (SFM). This extraction is made using a sliding window
of 40 ms and a hop size of 20 ms.
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4.3. Model

For this experiment, we used two types of models: the GMM su-
pervector and a classical multivariate Gaussian Model (GM) with
full covariance matrix. For the GMM-UBM approach, the whole
data set was used for building a UBM composed of 64 Gaussian
components with diagonal covariance matrix. This model was
adapted for each song with 5 iterations of MAP using a relevance
factor r = 10 (see 2.2). Normalized supervectors were extracted
as described in section 2.3. The similarity is obtained by the Eu-
clidean distance between supervectors. In the case of GM, the
Symmetrized Kullback-Leibler divergence is used.

4.4. Evaluation metric

The evaluation metric used is the “average ratio of genre matches”
in the top 1, 3 and 5 nearest neighbors after filtering the results be-
longing to the same artist as proposed in the MIREX Audio Music
Similarity and Retrieval task 1.

4.5. Similarity search time cost

For the GM approach we used a fast implementation of the Symetrized
Kullback-Leibler Divergence using its close form expression for
multivariate Gaussain models. The covariance matrix inversion
was computed off-line and stored into the model. With this sys-
tem, the time cost for computing the full similarity matrix was of
16 s in a 3GHz 64bits computer which represents≈ 9.4 ·10−6s by
model comparison. Using the supervector approach, the duration
of the entire similarity matrix process was of 0.13 s, which rep-
resents ≈ 7.6 · 10−8s by model comparison, representing a time
improvement factor of 123.

4.6. Results

The obtained similarity results are presented in Table 1. First of
all, we can observe that the supervector approach is slightly better
than the standard Gaussian Model using the Kullback-Leibler di-
vergence when no normalization is used. We can also notice the
relevance of the P-norm. The UCS-norm and MCS-norm when
applied for supervector normalization allows a significant perfor-
mance improvement compare to the supervector whithout normal-
ization. Moreover, the proposed normalizations methods perform
slightly better in average than the P-norm. It is interesting to notice
that the MCS-norm achives a better normalization than the UBM
centered one. Furthermore, chaining the UCS-norm and the MCS-
norm (SV + UCS-norm + MCS-norm) and using a sequence of
all the normalization methods (SV + UCS-norm + MCS-norm +
P-norm) significantly improve the results, showing that these nor-
malization methods are complementary.

5. CONCLUSIONS

We have presented here an application of GMM supervector ap-
proach to the music similarity task. This modeling method allows
to represent a complex statistical distribution into a Euclidean vec-
tor. We have proposed two new supervector projections suitable
for the music similarity task. Experiments showed the relevance
of our approach.

1http://www.music-ir.org/mirex

Table 1: Average ratio of artist-filtered genre matches in the top 1,
3 and 5 nearest neighbors. GM = Gaussian Model, SV = Super-
vector. The last column shows the type of distance related.

System 1NN 3NN 5NN dist. type
GM 45.01 44.06 44.20 non eucl.
GM + P-norm 48.31 47.52 47.14 non eucl.
SV 46.93 45.67 45.07 euclidean
SV + P-norm 51.38 49.16 47.95 non eucl.
SV + UCS-norm 50.15 49.13 48.81 euclidean
SV + MCS-
norm

50.92 49.80 49.09 euclidean

SV + UCS-norm
+ MCS-norm

51.08 50.13 49.45 euclidean

SV + UCS-norm
+ MCS-norm +
P-norm

52.61 51.51 50.41 non eucl.

The improvement obtained by the MCS-norm is promising.
Indeed, this normalization can be applied to all type of models
which can be embedded into the Euclidean space. Our current
research focuses on extending this normalization to other type of
models.
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