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ABSTRACT
In this paper, a novel approach for the computation of a pitch
salience function is presented. The aim of a pitch (considered here
as synonym for fundamental frequency) salience function is to es-
timate the relevance of the most salient musical pitches that are
present in a certain audio excerpt. Such a function is used in nu-
merous Music Information Retrieval (MIR) tasks such as pitch,
multiple-pitch estimation, melody extraction and audio features
computation (such as chroma or Pitch Class Profiles). In order to
compute the salience of a pitch candidate f , the classical approach
uses the weighted sum of the energy of the short time spectrum at
its integer multiples frequencies hf . In the present work, we pro-
pose a different approach which does not rely on energy but only
on frequency location. For this, we first estimate the peaks of the
short time spectrum. From the frequency location of these peaks,
we evaluate the likelihood that each peak is an harmonic of a given
fundamental frequency. The specificity of our method is to use as
likelihood the deviation of the harmonic frequency locations from
the pitch locations of the equal tempered scale. This is used to cre-
ate a theoretical sequence of deviations which is then compared to
an observed one. The proposed method is then evaluated for a task
of multiple-pitch estimation using the MAPS test-set.

1. INTRODUCTION

A salience function is a function that provides an estimation of the
predominance of different frequencies in an audio signal at every
time frame. It allows to obtain an improved spectral representa-
tion in which the fundamental frequencies have a greater relevance
compared to the higher partials of a complex tone. The compu-
tation of a salience function is commonly used as a first step in
melody, predominant-pitch (pitch is considered here as synonym
to fundamental frequency or f0) or multiple-pitch estimation sys-
tems [1, 2, 3, 4].

1.1. Classical approach

In the classical approach [5], the salience (or strength) of each f0
candidate is calculated as a weighted sum of the amplitudes of the
spectrum at its harmonic frequencies (integer multiples of f0). In
the discrete frequency case, this can be express as:

S[k] =
H∑
h=1

wh|X[hk]| (1)

∗ Thanks to the Quaero Program funded by Oseo French State agency
for innovation.

where k is the spectral bin,H is the number of considered partials,
wh is a partials’ weighting scheme and |X[k]| is the amplitude
spectrum. This process is repeated for each time frame m. In
this approach, the choice of the number of considered harmonics
H and the used weighting scheme wh are important factors and
directly affect the obtained results [5]. The weighting scheme wh
implicitly models the sound source. Since the classical approach
is based on the amplitude/energy of the spectrum, it is sensitive to
the timbre of the sources. In order to make the estimation more
robust against timbre variations, spectral whitening or flattening
processes have been proposed [2, 6, 7, 8].

Among other approaches, the one of [9] proposes to estimate
the salient pitch of a complex tone mixture using a psychoacoustic
motivated approach. It uses the notions of masking and virtual
pitch (sub-harmonic coincidence) calculation.

1.2. Proposal

In this paper, we propose a novel salience function which does
not rely on the amplitude/energy of the spectrum but only on the
frequency location of the peaks of the spectrum. Doing this, our
method is not sensitive to timbre variations hence does not neces-
sitate whitening processes.

The specificity of our method is to use as likelihood the de-
viation of the harmonic frequency locations from the pitch loca-
tions of the equal tempered scale. This is illustrated in Figure 1,
for the harmonic frequencies of the pitch C4 (MIDI Key Number
i = 60), which 3-rd and 6-th harmonic frequencies are slightly
above the pitches i = 79 and i = 81 respectively, while its 5-th
and 7-th are below the pitches i = 88 and i = 94 respectively
(in the equal tempered scale). This is used to create a theoretical
sequence of deviations which is then compared to an observed one
derived from the peaks detected in the spectrum.

Paper organization: In section 2 we present the motivation
behind the concept of this novel salience computation approach
(section 2.2) and the details of its computation (sections 2.3, 2.4,
2.5 and 2.6 ). In section 3 we propose a basic evaluation framework
of salience function based on a multi-pitch estimation paradigm
(section 3.1) and asses the performances of our proposed method
(section 3.4). We finally conclude in section 4 and provide direc-
tions for future works.
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Figure 1: (Lower part) Frequency location of the pitches of the
equal tempered scale for a tuning of 440 Hz. (Upper part) Fre-
quencies of the harmonic series of the pitch C4 (261.6 Hz).

2. PROPOSED METHOD

2.1. Overview

The global flowchart of our method is represented in Fig. 2.
The content of the audio signal is first analyzed using Short

Time Fourier Transform (STFT). At each time frame m, the peaks
of the local Discrete Fourier Transform (DFT) are estimated using
a peak-picking algorithm.
We denote by Pm = {(f1, a1), . . . , (fP , aP )} the set of peaks
detected at the frame m where fp and ap are the frequency and
amplitude of the p-th peak. Since our salience function is based
on an equal tempered cents grid, we then need to estimate the tun-
ing frequency fref of the audio signal. We then compute at each
frame m the salience value of each peak p by comparing its fre-
quency to the ones of an equal tempered scale tuned on fref . This
salience allows to discriminate peaks which are fundamental fre-
quency from the ones that are harmonic partials.

STFT

Spectrum Peak−Picking

Input Song

Salience computation Salience Output

Estimation

Referece Frequency

Figure 2: General scheme of the method.

2.2. Motivations for using frequency deviations for pitch salience
computation

The computation of our salience function only relies on the fre-
quency positions of the peaks of the spectrum (not on their en-

ergy). The basic idea we develop is the following: for a given note
at fundamental frequency f0 its h-th harmonic frequency exhibits
a specific deviation from the equal tempered scale. For example,
for a tuning at 440 Hz, the third (h = 3) harmonic of a A4 note
(f0 = 440 Hz) is at frequency 1320 Hz while the closest note of
the equal tempered scale is at 1318.5 Hz. The specific deviation of
the third harmonic is then 1.95 cents.

For a given frequency f0, the frequency of its h-th harmonic
is defined by

ff0h = h · f0 (2)

The deviation in cents of the harmonic ff0h from the equal tem-
pered grid is defined as:

df0h = 100

[
12 log2

(
ff0h
fref

)
−

⌊
12 log2

(
ff0h
fref

)⌉]
(3)

where b·e is the rounding operator and fref is the A4 tuning fre-
quency estimated from the data1. We denote by {ff0h }, the se-
quence of all the harmonic frequencies of f0 and by {df0h }, the
theoretical sequence of deviations.

This deviation is independent2 of the actual f0. We therefore
simply denote it by {dh} in the following. In Fig. 3, we illustrate
the deviation of the first 20 harmonics of a complex tone from the
equal tempered note scale.

Figure 3: Deviation of the first 20 harmonic frequencies of a com-
plex tone from the pitch of the equal tempered scale.

Salience computation: Since the sequence {dh} is indepen-
dent of fundamental frequency, we can simply compute the salience
of each f0 candidate at frequency fp, as the correlation between

1Or blindly chosen as 440 Hz.
2Proof that df0h is independent of f0: Under the hypothesis that the

analysed musical excerpt is played on the equal temperament scale and us-
ing an accurately tuned instrument, we can calculate each equal-tempered
note frequency fi in the audio spectrum using an integer number i as fol-
lows:

fi = fref · 2(
i
12

) (4)
The integer number i represents the note index in the MIDI notation

without the offset of 69 (for the sake of simplicity, we assume that A4
correspond to i = 0 instead of i = 69). Now, it is easy to check that for
all fundamental frequencies f0 = fi, (3) can be rewritten as:

d
fi
h = 100 [12 log2(h) + i− b12 log2(h) + ie]

= 100 [12 log2(h)− b12 log2(h)e] (5)

Since i ∈ Z, we can say that b12 log2(h) + ie = i + b12 log2(h)e and
it is clear that the sequence {dfih } does not depend on the fundamental
frequency fi.
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the theoretical sequence of deviation {dh} and the measured se-
quence of the deviation {d̂fph }. The measured sequence of devia-
tions is the one corresponding to the peak detected in the spectrum
Pm.

Extension to inharmonic signals: Inharmonicity is a phe-
nomenon related to the physical characteristics of a non-ideal string.
The frequencies of the modes of vibration of an ideal string are ex-
act integer multiples of the fundamental, but the stiffness of the
material of the real strings shifts the modes of vibration at non-
integer multiples [10].
In mathematical terms, the relation between the h-th partial ff0h
and the fundamental frequency f0 can be modelled as

ff0h (β) = hf0
√

1 + βh2 (6)

where β is the inharmonicity coefficient which is related to the
physical properties of a string. In order to take into account in-
harmonicity we use (6) instead of (2) into equation (3). It should
be noted that whatever inharmonicity is taken into account or not,
the theoretical sequence of deviations is always independent of f0.
However, the theoretical sequence of deviations now depends on
the parameter β and it is denoted by {dh(β)}.

In the next sections, we describe in details each block of our
algorithm (see Fig. 2).

2.3. Short Time Fourier Transform

The N -terms STFT, at time frame m, of a discrete signal x[n] is
defined as

Xm,k =

N−1∑
n=0

x[n+ τm] · w̄[n] · e−j2π
k
N
n (7)

where k ∈ [−N/2 + 1, . . . , N/2], τ is the hop size (in samples)
from two subsequent frames and w̄[n] is the windowing function.
For our computation, we only use the amplitude of the STFT de-
noted by |Xm,k|. We use N = 4096 samples (which corresponds
to 92.9 ms for a sampling rate of 44.1 KHz), τ = 2048 samples
(overlap of 50%) and w̄[n] is a Hanning windowing function.

2.4. Spectrum Peak Picking

In order to detect the local peaks of the spectrum, we use the al-
gorithm proposed in the context of the Sinusoidal Modelling Syn-
thesis framework (SMS) [11, 12]. In this context, a fixed number
P of local maxima is detected in the amplitude spectrum |Xm,k|.
For each local maximum, its frequencyMp is refined using a 3-
point parabolic interpolation using [Mp − 1,Mp,Mp + 1]. The
obtained frequency is denoted by fp in Hz. The result of the peak
picking algorithm is the sequencePm = {(f1, a1), . . . , (fP , aP )}
made of pairs of peaks frequency location fp and amplitude ap.
The peak-picking is performed at each time frame m ∈ [1 . . .M ].
The concatenation of all peaks sequences,Ptot = P1‖P2‖ . . . ‖PM ,
is used as input for the reference tuning estimation algorithm.

2.5. Reference Frequency Estimation

Since our algorithm relies on the equal-tempered cent scale, the
tuning fref (or reference frequency) of the audio signal being ana-
lyzed need to be estimated. For this, we use the method presented
in [13]. This approach is entirely based on the observation that
the deviation d is a periodic measure and not an absolute measure,

since it is a “wrapped around” quantity that should be evaluated
from the nearest 100 cents grid point. Each cent value is mapped
onto a unit circle 100 cents-periodic, and represented as a vector
as follows

up = ap · ejφp (8)

where

φp =
2π

100
· 1200 · log2

(
fp
440

)
(9)

and ap is the peak amplitude used to weight each vector to avoid
high impact of small (noise) peaks. We take the mean vector û of
all circular quantities up as follows

û =

∑Ptot
p=1 up∑Ptot
p=1 ap

(10)

wherePtot is the element count of the concatenated sequencePtot.
The overall deviation is then computed from the angle of the re-
sulting vector û, that is

D =
1

2π
∠(û) (11)

The reference frequency of the entire music piece can be com-
puted as

fref = 440 · 2
D
12 (12)

2.6. Salience Function Computation

As previously said, the salience Sp(β) of a given peak p can be
calculated as the correlation C between the theoretical sequence
of deviation {dh(β)} and the measured one {d̂fph (β)}. From the
abstract point of view, Sp(β) is calculated using:

Sp(β) = C
(
{dh(β)}, {d̂fph (β)}

)
(13)

where C(·, ·) is a generic correlation measure. The two deviation
sequences can be seen as two vectors d(β) = [d1(β), . . . , dH(β)]

and d̂p(β) = [d̂
fp
1 (β), . . . , d̂

fp
H (β)], so that, a good correlation

measure can be the inner product < ·, · >. In practice, in order
to reduce the influence of very small values (hence often noisy) in
the computation of the salience, the correlation is weighted by the
local amplitude ap of the f0 candidate fp:

Sp(β) = ap < d(β), d̂p(β) >= ap

H∑
h=1

dh(β) · d̂fph (β) (14)

Computation of d̂fph (β): {ffph (β)} is the sequence made
of the harmonic frequencies of a detected peak p: f

fp
h (β) =

hfp
√

1 + βh2. {d̂fph (β)} is the vector of measured deviations
corresponding to {ffph (β)}. {d̂fph (β)} is computed for all the de-
tected peaks p ∈ Pm at frame m (i.e. we consider each detected
peak as a potential pitch candidate).

To validate a given pitch candidate fp, we look among the
detected peaks the ones that are harmonics of this candidate. This
is done by using a function G centered on the h−th harmonic of
fp and evaluated at the detected peaks fp′ .

More precisely, G(fp′ ;µh,p(β), σh,p(β)) is a Gaussian func-
tion evaluated at fp′ , with

• mean µh,p(β) = hfp
√

1 + βh2 and
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• standard deviation σh,p(β) = µh,p(β)
(

1− 2
α

1200

)
where the parameter α = 20 cents is chosen experimentally in
order to take into account the effect of the frequency location error
of the peak picking step. We chose the α such that the number
of the False Positive is reduced without losing Precision (see the
section 3.2 for the explanation of the evaluation measures).
The Gaussian function we use, has a maximum value of one when
fp′ = µh,p(β) = hfp

√
1 + βh2; in other words G will only take

non-zero values for the fp′ (the detected peaks) which are close to
hfp
√

1 + βh2.
To each detected peaks fp′ is associated a deviation d̄p′ as

defined in (3).

d̄p′ = 100

[
12 log2

(
fp′

fref

)
−
⌊

12 log2

(
fp′

fref

)⌉]
(15)

The deviation of ffph (β) is then computed as the following
weighted sum:

d̂
fp
h (β) =

P∑
p′=1

G(fp′ ;µh,p(β), σh,p(β)) · d̄p′ (16)

A single value of β is assigned to each pitch candidate fp.
The typical range of β for a piano string [10] is β ∈ B = {0} ∪
[10−5, 10−3]. In order to estimate β we maximize

Sp = max
β∈B

[Sp(β)] (17)

Notice that in the practical case, all the values of β in the search
range must be tested exhaustively because Sp(β) is an “unpre-
dictable” function and no numerical optimized algorithm can be
used in order to find the maximum of that function. The maxi-
mization of (17) provides simultaneously the value of Sp and the
one of the inharmonicity coefficient β for each spectral peak p.
Of course, only the values of β corresponding to true notes make
sense.

The limits of the equal temperament: Using the equal-
tempered grid of semitones is fundamental for the consideration
made in Sec. 2.2. Moreover, it is reasonable to think that only ex-
act tuned instruments3 are needed in order to maintain the validity
of equation (5). However, the gaussian weighting scheme used in
(16) ensures that the slighted deviated fundamental frequencies are
not much negatively affected. However, the spectral peaks that are
detuned more than ±α cents can be excessively penalized.

3. EVALUATION

There is no standard method to evaluate the performances of a
salience function by itself. This is because such a function is usu-
ally a pre-processing step of a more complicated algorithm (as for
example a pitch-estimation method [2, 14]). Therefore, in order to
be able to test our salience, we chose to construct a very simple
and straightforward multiple-pitch estimation algorithm from our
salience function. In section 3.1, we explain the post-processing
applied to the salience function in order to obtain a multi-pitch
estimation.

3For example, the octave stretching in piano tuning can be a problem.

3.1. Multiple-pitch estimation: post-processing of the salience
function

In order to test our salience function as a multi-pitch estimation
algorithm, we chose to apply a basic post-processing process that
transforms the salience function into a piano-roll representation.
The piano-roll R̂m,i can be seen as a spectrogram-like binary rep-
resentation where the rows are the time framesm and the columns
are the MIDI Key Number i4 . If a note i is marked as detected
at the time frame m, the corresponding element R̂m,i is set to 1;
otherwise it is set to 0.

At each time frame m, we have a sequence of P pairs of peak
frequency and salience values Sm = {(f1, S1), . . . , (fP , SP )}.
We normalize the values Sp in order to obtain maximum amplitude
of one at each time frame. The negative values of salience are set
to zero. Each peak frequency fp is quantized to the nearest MIDI
Key Number using

ip = 69 + 12 log2

(
fp
fref

)
(18)

where 69 correspond to the MIDI Key Number associated to the
note A4 in the MIDI Tuning Standard (MTS). In order to remove
holes (estimation errors) in the middle of notes (disruption in the
salience value), we then apply a sliding median filter of size L
frames along the time dimension m. Finally the binary piano-roll
is obtained by applying a fixed threshold T to the values of R̂m,i.
We set to 1 all the values that are above T , and 0 the other ones.
In Fig. 4, an example of piano-roll transcription is shown and dif-
ferent colors are used in order to highlight the True Positive, False
Positive and False Negative. Notice that a considerable number of
False Positive are just after a True Positive in the same MIDI Key
Number. This is caused by the release time of the piano sound that
is extended by the reverberation time simulated in the recordings.

Figure 4: Piano roll representation R̂m,i obtained using our
salience function. In this case P = 0.65, R = 0.8 and F = 0.72
(see explanation of the evaluation measures in section 3.2).

3.2. Evaluation measures

In order to evaluate our salience-based piano-roll, we have to com-
pute a ground-truth piano-roll Rm,i for each song in the dataset.

4Ranging from 21 (A0) to 108 (C8).
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Rm,i is obtained from the ground-truth text annotation that re-
ports onset time, offset time and MIDI Key Number for each note
played in a specific song. The note onset and offset time are quan-
tized with the same hop size τ (converted in seconds) used by the
algorithm.

We compare the ground-truth piano-rollRm,i to the estimated
piano-roll R̂m,i by comparing the values on each cell (m,i). We
then compute the Precision (P), the Recall (R) and the F-Measure
(F) defined as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
, F =

2PR

P +R
(19)

where TP (True Positive) is the total number of correctly identi-
fied notes, FN (False Negative) of missed notes and FP (False
Positive) the number of false notes detected.

3.3. Test-Set

Experiments are performed on the MIDI Aligned Piano Sounds
test-set [15]. MAPS provides CD quality piano recording (44.1
kHz, 16-bit). This test-set is available under Creative Commons
license and consists of about 40GB (65 hours) of audio files
recorded using both real and synthesized pianos. The aligned
ground-truth is provided as MIDI or plain text files. The align-
ment and the reliability of the ground-truth is guaranteed by the
fact that the sound files are generated form this MIDI files with
high quality samples or a Disklavier (real piano with MIDI in-
put). In order to have a generalized test-set, the pianos have been
played in different conditions, such as various ambient with dif-
ferent reverberation characteristics (9 combinations in total). This
collection is subdivided into four different subsets. The set ISOL
contains monophonic excerpts, MUS contains polyphonic music,
UCHO is a set of usual chords in western music, and RAND is a
collection of chords with random notes.

3.4. Results

Setting the parameters: The parameters of our algorithm are:

• H: the total number of considered harmonics,

• L: the length of the median filter,

• T : the salience threshold.

In order to tune these parameters we used the AkPnStgb audio
files of the test-set5. The values that maximize the F-Measure are
H = 8, L = 6 and T = 0.2. The total number of peaks per frame
P , is not itself a parameter of the salience algorithm. P = 40 is
chosen experimentally.

Harmonic vs Inharmonic model: We first compare in Figure
5 the Pitch estimation obtained by our model in harmonic setting
(the β parameters is forced to 0) to the inharmonic setting (β is
estimated). This is done using the whole MAPS test-set.

As we expected, taking into account the inharmonicity brings
an improvement on overall. The precision P increases by 12%
(from 0.43 to 0.55) and the F-Measure increases by 5%. Since the
Recall does not change significantly, while the Precision does, we
can say that considering string inharmonicity allows reducing the

5This is one of the nine different piano and recording condition set-up
in the MAPS test-set

Figure 5: Pitch estimation results for our model in Harmonic
(model forced to β = 0) vs Inharmonic setting (β is estimated).

number of False Positive. Because the results are better with our
inharmonic model, we only consider this one in the following.

Detailed Analysis: In Fig. 6, we provide the results in terms
of Pitch estimation for each subset of MAPS using the inharmonic
model. In Fig. 7, we provide the results in terms of Pitch-Class
(i.e., without octave information). As we can see from the Figures,
our approach is prone to octave errors. This is due to the fact
that the deviation template itself does not exploit the octave
information6. This octave ambiguity could only be solved with
an ad hoc procedure. Figures 6 and 7 also show that on average,
the precision P is greater than the recall R. For a fixed number
of True Positive, this means that the number of False Negative
(missed notes) is greater than the False Positive (added notes).

Influence of the T parameter: In Figure 8, we show the
variation of the Recall and Precision in function of the choice of
the parameter T (threshold on salience values). We see that the
choice of T is a key parameter for the Precision/Recall trade-off,
hence for the FP / FN trade-off. If our system is used as a
front-end of a more complicated system which can filter-out the
False Positives, we should use a value of T which maximizes
Recall. It should be noted that Figure 8 is computed using only
the MUS subset of MAPS. Because of this, the best value for T
(in F-Measure sense) is T = 0.1 (which is different from the
global optimum value for the entire MAPS test-set).

Comparison to state-of-the-art: In Table 1, we indicate the
Pitch F-Measure results of our system in harmonic setting (P1, β
is forced to 0) and in inharmonic setting (P2 , β is estimated). We
compare our results to the ones obtained by Emiya et al. [15] and
Benetos et al. [7] on the same test-set. Also, the results obtained
by directly applying a threshold on the detected peaks are reported
as a baseline results. As expected, the results obtained with our
methods are not as good as the ones obtained with dedicated
multi-pitch estimation algorithms.

The main reason is that our system is not a multi-pitch estima-
tion method but only a pre-processing step to be used in a more
complex system. Our straightforward post-processing procedure

6In a hypothetical scenario where the peak peaking algorithm detects
the peaks at frequency fp and in an infinite number of its harmonics with
amplitude equal to ap, the salience value for the peak p and for the peaks
with frequency h̄fp with h̄ = 2j , j ∈ N+ will be the same. To put it
in another way, the peaks with frequency that is j octaves above fp will
measure the same salience value as fp.
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Figure 6: Pitch estimation result for each subset and the overall av-
erage (β is estimated).

Figure 7: Pitch-Class estimation result for each subset and the over-
all average (β is estimated).

Peak P1 P2 Emiya et al. Benetos et al.
F-Meas. 0.31 0.44 0.49 0.82 0.87

Table 1: Comparison of Pitch F-Measure results on MAPS test-
set. Peak is a fixed threshold on detected peaks, P1 is the proposed
method without considering inharmonicity (β forced to 0) and P2
is with the inharmonic model (β is estimated). Emiya et al. is
presented in [15] and Benetos et al. in [7].

Figure 8: Pitch Recall/Precision curve for different values of T
for the MUS subset. The best F-Measure (0.62) is obtained for
T = 0.1 and is marked with the “O”.

has been introduced only to asses the potential performances of
our novel salience function design. In this context, our salience
exhibit very promising results.

4. CONCLUSIONS

The performances obtained by our proposed salience function
for the estimation of pitch-classes (Fig. 7) show that this kind
of salience, even with simple post-processing procedure, is suit-
able for extracting audio features like Pitch Class Profile (PCP
[16]) used in cover song detection or key/chord recognition tasks
[17, 18]. Moreover, especially for a piano music test-set such as
MAPS, considering the string inharmonicity is beneficial in terms
of precision and F-Measure. Despite the fact that our salience
function look promising, further development of an ad-hoc post-
processing procedure is needed in order to be used for multi-pitch

estimation. Moreover, as indicated in Section 3.4, the parameter T
should be tuned depending on the application, in order to favour
the F-Measure or the Recall. During our tests we have identified
some weakness that are subjects for future research. The accuracy
of the peak peaking algorithm is a key factor. A missing peak can
negatively affect the overall accuracy performances. The octave
ambiguity discussed in the previous section can be treated by de-
veloping specific procedure. Furthermore, the worst resolution in
the low frequency spectrum can led to a large error when calculat-
ing the high order harmonic frequencies. Conversely, the note in
the high portion of the audio spectrum does not have a sufficient
number of partials to give a consistent value of salience because of
the spectral roll-off near the Nyquist limit.
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