
MULTIPLE HYPOTHESES AT MULTIPLE SCALES
FOR AUDIO NOVELTY COMPUTATION WITHIN MUSIC

Florian Kaiser and Geoffroy Peeters

STMS IRCAM-CNRS-UPMC
1 Place Igor Stravinsky

75004 Paris
florian.kaiser@ircam.fr

ABSTRACT

Novelty-based segmentation of audio signals has proven good per-
formances for the estimation of boundaries of structural sections
within music pieces. However, boundaries are detected only if
structural sections satisfy the condition of sufficient acoustic inner-
homogeneity. While this constraint is very restrictive and not repre-
sentative of all musical contents, we propose in this paper to extend
the detection of acoustic novelty to transitions between homoge-
neous and non-homogeneous sections and vice versa. Moreover,
the length of the considered sections for the boundary detection is
crucial, we also introduce a multi-scale novelty approach that allows
to capture boundaries between sections of different temporal scales
in a same segmentation. Evaluation of the combination of these
two methods proves convincing results for temporal segmentation
of music pieces. Embedding the algorithm in a music structure seg-
mentation system, we show that performances can be consistently
improved for this task.

Index Terms— Audio Novelty, Audio Segmentation, Music
Structure Segmentation

1. INTRODUCTION

Music structure segmentation is the task of estimating the largest
temporal musical entities that can be segmented in a music piece,
e.g. verse or refrain in popular music. Of great interest for many ap-
plications such as audio summarization, similarity or synchroniza-
tion, the task has raised a growing interest in the Music Informa-
tion Retrieval community in recent years. Beyond applications, the
challenge in this particular task resides in the music itself that im-
plies major acoustic changes at all temporal levels. With the beat-,
note-, or melody- level, the musical content is highly hierarchical.
Structure segmentation aims at estimating the highest degree of this
hierarchy.

In order to match this level of hierarchy, a technique that is com-
monly applied in music structure segmentation consists in first es-
timating the boundaries of structural sections and limit the search
space for the structure labeling. Such a temporal segmentation has
proven major impact on music structure segmentation and its perfor-
mance is thus crucial. Music structure segmentation methods were
developed on three main different hypotheses on musical structures
[1]: Novelty-, Homogeneity-, and Repetition- based methods. Con-
sequently, methods for the estimation of structural boundaries make
use of the same hypotheses.

The novelty principle is often applied in audio temporal segmen-
tation and consists in estimating time points of significant acoustic

changes. In applications such as speaker segmentation, an efficient
method consists in comparing adjacent segments with the Bayesian
Information Criterion to decide whether or not they belong together
[2]. In music structure segmentation however, the novelty princi-
ple was extended by Foote to the notion of ”acoustic contrast” [3]
and is implicitly related to the homogeneity hypothesis of structural
sections. Time points of major acoustic contrast are indeed defined
as junctions between two homogeneous audio segments that present
sufficient dissimilarity when compared. Foote proposed to detect
such boundaries by embedding the audio signal in an audio Self-
Similarity Matrix (SSM) [4] in which acoustic contrast is visualized
as the transition between blocks of high similarity. Note that such a
visualization of structural sections as blocks is formalized by Peeters
in [5] as the ”state” representation. Novelty over time is calculated
with the convolution of the SSM with a novelty kernel inspired from
this representation of boundaries. Segmentation is then estimated by
means of the novelty curve. This method was successfully applied
in many music structure segmentation systems for boundary retrieval
[6] [7] [8] [9]. Sargent et al combine in [10] a novelty segmentation
with a prior regularity constraint on the temporal scale of the seg-
mentation. After each detected boundary, the temporal segmentation
is optimized given a regularity constraint at the music piece level.

The other dominant approach to music structure segmentation
is based on the repetition paradigm for which a structural section
defines itself by its repetitions. This principle of repetition is very
closely related to the notion of ”sequence” representation developed
by Peeters in [5]. Indeed, what characterizes repetitions is often a
particular sequence of notes or chords that is non-homogeneous. Vi-
sualization of the audio signal in a SSM computed on chroma se-
quences for example reveals the sequences and their repetitions as
stripes on the main diagonal and off-diagonals of the SSM. The de-
tection of music boundaries in the repetition paradigm is thus treated
as the problem of estimating the start and end of these stripes in the
SSM [11] [12] [13]. More recently, Serra et al. proposed in [14] a
structure feature for the detection of sequences in time series. Audio
features are temporally filtered and embedded in a circular time-lag
matrix that considers both future and past time-lags. The matrix is
convolved with a bivariate gaussian kernel to highlight sequences
and the structure feature is then constructed as the observation of
each time sample in this representation. Boundaries are finally de-
tected by computing the difference between consecutive frames of
the structure feature. Advantage of the method is that boundaries of
repetitions can be detected and to some extent boundaries of homo-
geneous sections within the sequences as well.



2. RELATED WORK

Methods for the temporal segmentation of music pieces are thus de-
veloped under either the constraint of homogeneity or repetition of
the structural sections. However, music is diverse and we observe
that none of these hypotheses can be uniquely applied to all musical
structures. In contrast, structural sections of a music piece may often
alternate between homogeneous and non-homogeneous sections.

As a matter of fact, recent work by Paulus [8] highlighted the
benefit brought by a non-unique hypothesis approach for the com-
parison of structural segments in music structure segmentation. We
therefore propose in this paper to extend the acoustic contrast mea-
sured in novelty-based methods to the particular transitions between
homogeneous and non-homogeneous sections and vice-versa, inde-
pendently of repetitions.

In the next section we therefore propose two new novelty ker-
nels for measuring the acoustic contrast under the constraint of
homogeneous/non-homogeneous transition and vice versa. A multi-
temporal scale approach for computing novelty by means of these
kernels and a method for fusing the information brought by all ker-
nels is then presented in Section 4. After illustrating the approach
with an example in Section 5, evaluation procedure and results are
presented in Section 6. Section 7 finally concludes this paper and
draws perspectives for future research.

3. MULTIPLE HYPOTHESES FOR NOVELTY

In this section we first recall the novelty-based segmentation as
used in music structure segmentation systems. We then introduce
two new novelty kernels that test further hypotheses on acous-
tic contrasts between structural sections with the consideration of
Homogeneous/Non-Homogeneous transitions.

3.1. Novelty-based Segmentation

The novelty approach to audio temporal segmentation was originally
proposed by Foote in [3] and allows to detect transitions between
homogenous segments of an audio signal. The idea is that such tran-
sitions visualized in a SSM locally resembles a 2 × 2 checkerboard.
Indeed, the boundary contrasts two sections of high self-similarity
that form two distinct blocks, and are at the same time highly dis-
similar forming blocks of low similarity when compared. Foote pro-
poses to detect these boundaries by correlating along the diagonal of
the SSM a kernel matrix inspired from this visual interpretation. In
the following of this paper we will denote SSMs as S and novelty
kernels as K.

The canonical kernel K that was proposed is a 2×2 checker-
board that is easily enlarged to any size L by means of the kronecker
product. K is also usually weighted with a symmetric gaussian ra-
dial function that gives less importance to the kernel’s edges. Such
a novelty kernel example is shown in Figure 1.a with a length L =
60 samples and radial gaussian weighting with σ = 0.5. Multiplica-
tion of K with the SSM measures the acoustic contrast at the centre
point of the kernel in the sense of the acoustic homogeneity on ei-
ther sides of the kernel’s center point and the dissimilarity between
the two segments. Correlation of the kernel along the diagonal of the
SSM thus yields a novelty curve in which boundary candidates can
be selected by peak-picking high values.
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Fig. 1: Novelty detection kernels

3.2. Multiple Hypotheses Kernels Ki

The novelty kernel introduced by Foote allows for the detection of
transitions between homogeneous sections. We now propose to ex-
tend the notion of acoustic contrasts to the transitions between ho-
mogeneous and non-homogeneous sections. We follow the same
approach as Foote and introduce two new novelty kernels for the
detection of such transitions (see Figure 1).

To estimate the canonical form of a novelty kernel that would
allow for the detection of such contrasts, we consider the theoretical
form of such transitions in similarity matrices. Ideally, a transition
from an homogeneous to a non-homogeneous section is indeed visu-
alized as a block of high similarity, i.e. state, followed by a stripe on
the main diagonal. This observation can be formalized in the 4×4
SSM S described in Equation (1) that is centered on an ideal tran-
sition between a state and a non-homogeneous segment. We denote
s the expected value of samples that contain structural information
and α the expected value of noise samples. Note that the similarity
measure for the computation of S is usually contained in [0 1].

S =

s s α α
s s α α
α α s α
α α α s

 , E
(
S(ti, tj)

)
=

{
s, if (ti,tj) ∈ struct
α, if (ti,tj) ∈ noise

(1)
From this observation SSM, we deduce a canonical novelty kernel
for the detection of transitions between homogeneous and non-
homogeneous segments by simply replacing s by 1 and α by
-1 for now. Note that homogeneous/non-homogeneous and non-
homogeneous/homogeneous transitions detection are reversed but
equivalent problems and we only detail detection of the latter.

3.3. Kernel Weighting

An implicit property of the kernel proposed by Foote is that it per-
fectly balances the probability of sections being in the state or non-
state hypothesis in the SSM, i.e. mean value of the kernel is zero. In
contrast, the canonical kernel introduced in the last subsection does
not give equal weights to state and sequence representations. Indeed,
the mean value of the kernel distribution is largely negative, and the
kernel will have more energy while in the middle of a stripe on the
main diagonal than while in the middle of a state section when con-
volved with a SSM. However, the energy of the kernel should be
maximum at the transition between these two representations and
rapidly decreasing while sliding towards the diagonal stripe for the
detection.

We thus apply a weighting of the kernel that forces its mean
value to zero. Samples of the SSM whose values are expected to
form states are weighted in the kernel with a coefficient κ, and re-
maining samples of the kernel with the coefficient ν. Calculating the
mean value of the weighted kernel Ki introduced in Equation (2)



in a 4×4 version, we deduce in Equations in (3) the condition on κ
and ν for the mean value of the kernel µK to equal zero, with L the
length of the kernel and l = L

2
.

Ki =

 κ κ ν ν
κ κ ν ν
ν ν κ ν
ν ν ν κ

 (2)

µK =
1

4l2
(
l(l + 1)κ+ l(3l − 1)ν

)
= 0 ⇒ ν = − l + 1

3l − 1
κ (3)

Since the main diagonal of the SSM usually equals one, we
set κ to one and deduce ν with the length of the kernel. Examples
of Homogeneous / Non-Homogeneous and Non-Homogeneous
/ Homogeneous transition kernels smoothed by a radial gaus-
sian function (σ=0.5) are respectively shown in Figures 1.b and
1.c. We now denote the kernels Ki as: (Ka) Foote’s kernel,
(Kb) Homogeneous/Non-Homogeneous kernel, and (Kc) Non-
Homogeneous/Homogeneous kernel.

4. TEMPORAL SEGMENTATION

Correlation with a SSM of kernels introduced in the last section mea-
sures the acoustic novelty over time according to different hypothe-
ses. In this section we propose a method to measure these novelties
at various temporal scales and combine the information of all kernels
in a single temporal segmentation.

4.1. Multi-scale kernels KiL

Novelty estimation by means of boundary detection kernels is of
course influenced by the shape of the kernel but also by its size. In-
deed, music content being highly hierarchical, enlarging the size of
the kernel allows to smooth low temporal level events such as notes
and focus on the novelty between events of a couple of seconds.
However, the temporal scale of structural sections is not known in
advance and may vary within music pieces.

Instead of setting the length L of kernels to a fixed value, we
thus compute multi-scale novelty curves for kernels KiL of vary-
ing lengths. The lengths vary between L = 7.5s (30 samples @4Hz)
and L = 30s (120 samples @4Hz). We call fiL(t) the novelty com-
puted with the convolution of a kernel KiL with a SSM. Novelty
distributions are then reduced to a unidimensional novelty curve that
still reflects the different temporal scales by summing over all ker-
nel lengths the novelty at each time sample. For each kernel i, the
novelty function ni(t) is thus defined as: ni(t) =

∑
L fiL(t).

4.2. Boundaries selection and fusion

Summing the novelty functions of all kernels for the detection of
boundaries would smooth the information brought by each kernel.
We therefore apply a late fusion strategy for the combination of
the temporal segmentations. Such a strategy was for example ap-
plied in [15] for merging structural segments. We therefore esti-
mate boundary candidates for each detection kernel independently
and then merge the boundaries in a single temporal segmentation.
To do so, we apply the adaptive peak tracking technique described
in [16] to extract boundary candidates on the novelty functions ni(t)
of each kernel.

For the fusion of boundaries we denote the set of boundary can-
didates extracted on all three novelty functions as Ta, Tb and Tc

respectively obtained with the kernels Ka, Kb and Kc. Since iden-
tical boundaries may be detected by all kernels but with a slight
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Fig. 2: From top to bottom: (1) Self-similarity matrix,
Multi-scale Novelty scores computed with: (2) Foote kernel
[3], (3) Homogeneous/Non-Homogeneous kernel and (4) Non-
Homogeneous/Homogeneous kernel, (5) to (7) Summed novelties
and detected boundaries, (8) Final segmentation

temporal deviation, the simple union of boundary sets is not pre-
cise enough for the fusion. We therefore define in Equation (4) the
operators ∩∆ and \∆ that respectively extract the intersection and
relative complement of boundary sets within a tolerance range ∆.
with T1 and T2 two sets of boundaries. When two boundaries t1 and
t2 are found at the intersection of two boundary sets, we only retain
t1. The final segmentation T is obtained with equation (5)

T1 ∩∆ T2 = {(t1, t2) : (t1 − t2) < ∆, t1 ∈ T1, t2 ∈ T2}

T1 \∆ T2 = {t : t ∈ T1, [t−
∆

2
, t+

∆

2
] 3 T2}

(4)

T =

(
(Ta ∩∆ Tb) ∩∆ Tc

)⋃(
(Ta \∆ Tb) \∆ Tc

)
(5)

We set the tolerance range at ∆ = 2 seconds (1 bar @120bpm) to
limit over-segmentation.



5. CASE STUDY

In this section we briefly illustrate the multiple hypotheses kernels
for novelty computation at different time scales with a music piece
example. The audio signal used is an excerpt of the song 32 of the
RWC Popular dataset1 on which chroma features are extracted. A
SSM sampled at 4Hz is computed by means of the cosine distance.
The SSM and the novelty distribution fiL(t) for all detection kernels
with varying lengths from 30 samples (7.5s) to 160 samples (40s) are
shown together with the novelty functions and detected boundaries
in Figure 2. We observe with this example that structural sections
indeed may alternate state and sequence representation. Moreover,
main boundaries (samples 150, 330 and 440) are detected by both
Foote’s kernel and either one of the kernels introduced in this pa-
per. Boundaries detected by the new kernels however allow for a
much finer segmentation of the audio signal. For example at sample
290, a boundary is clearly highlighted with the Homogeneous/Non-
Homogeneous kernel (second novelty curve of Figure 2). The use of
Foote’s kernel (first novelty curve of Figure 2) suggests this bound-
ary for very small kernel sizes but does not detect it. Secondly,
the multi-scale novelty curves illustrate the importance of the kernel
lengths and that different lengths produce different segmentations.

6. EVALUATION

We now present an evaluation of the novelty approach introduced
in this paper for the task of temporal segmentation of music pieces.
Post segment grouping is also applied in order to evaluate the impact
of our approach on structure segmentation performances.

6.1. Protocol

Test Set: In order to compare our method with current results
obtained at the 2012 MIREX2 evaluation for structural segmenta-
tion, we use the structural annotations provided in the Isophonics3

dataset that consists of 294 popular music songs (the Beatles, Queen,
Michael Jackson...)
Evaluation Metrics: The temporal segmentation is evaluated by
means of the precision P , recall R and F-Measure F . We distin-
guish two tolerance ranges of 0.5 and 3 seconds in these measures
for the True Positives, False Positives and False Negatives calcula-
tion. The segment grouping is evaluated by means of the pairwise
Precision, Recall and F-Measure introduced in [17].
Algorithms: SSMs sampled at 4Hz are extracted on timbre-
related features as described in [18]. Temporal segmentation is
then estimated with the method presented in this paper, denoted
as ”ICASSP13” in the results tables. The same matrices are seg-
mented with the standard novelty approach in the method denoted as
”MIREX12-Ircam”. For both segmentations, the structural grouping
of segments is performed as described in [18]. We compare the
performance of these two systems with the algorithm of Serra et al.
[14] evaluated on the same dataset at the 2012 MIREX.

6.2. Results and Discussion

Temporal segmentation and segment grouping evaluation are re-
ported in Tables 1 and 2 respectively. The methods ”ICASSP13”
and ”MIREX12-Ircam” only differ with the introduction of our

1http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/
2http://www.music-ir.org/mirex/wiki/2012:MIREX2012 Results
3http://isophonics.net/

Method F@0,5s P@0,5s R@0,5s
Serra et al. [14] 22,82 20,51 26,65
MIREX12 - Ircam [18] 28,16 24,14 35,77
ICASSP13 32,41 29,29 38,87

Method F@3s P@3s R@3s
Serra et al. [14] 64,49 57,95 75,05
MIREX12 - Ircam [18] 59,13 50,64 75,00
ICASSP13 64,41 61,54 71,44

Table 1: Temporal Segmentation Evaluation [%]

Method F P R
Serra et al. [14] 65,28 61,80 74,64
MIREX12 - Ircam [18] 57,18 56,61 62,26
ICASSP13 59,86 59,80 64,57

Table 2: Segment Grouping Evaluation [%]

novelty kernels and multi-scale novelty at the temporal segmenta-
tion step. Evaluation in Table 1 suggests that this extension of the
novelty approach strongly improves the quality of the segmentation
gaining respectively 4% and 5% in the F-Measures at 0.5s and 3s.
Moreover, precision@3s gains 11% with a relative loss of recall
of 4%. Segmentation with a single kernel in ”MIREX12-Ircam”
is set with a kernel length of L=60 samples (=15s) and tends to
over-segmentation with high recall compared to precision. The
multi-kernels and multi-scales segmentation in contrast thus seems
more balanced between over- and under- segmentation. Perfor-
mances of our method compares with the method of Serral et al.
[14] rather well and proves that novelty is a consistent approach
for segmentation of music. We also note that our method performs
comparatively very well @0.5s. Concerning the segment grouping,
the segmentation proposed in this paper increased the F-Measure of
about 2%. This is a very encouraging result. Results are however
still below the performance of [14] that applies string matching
techniques. While our method uses the homogeneity principle for
grouping, it would be interesting to extract with our kernels informa-
tion on the homogeneity or non-homogeneity of segments. Segment
grouping techniques adapted to this information could then strongly
improve the structure segmentation performance.

7. CONCLUSION

We proposed in this paper an extension for novelty-based audio seg-
mentation approaches to the detection of transitions between homo-
geneous and non-homogeneous sections. Moreover, we proposed a
multi-scale novelty computation to account for structural changes at
different temporal scales. While music structure segmentation sys-
tems are often developed under the constraint of a unique hypothesis
on the structural sections, we show in our evaluation the benefit of a
multiple hypotheses approach for the temporal segmentation of mu-
sic. Moreover, we believe that this approach allows to detect more
than temporal boundaries and contains information on the acous-
tic nature of segments that could trigger efficient segment grouping
techniques adapted to diverse musical contexts.
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